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Part One
CHAPTER 1

Images and Digital Processing

1.1 INTRODUCTION

Digital image processing—the manipulation of images by computer—is a relatively recent
development in terms of humans’ ancient fascination with visual stimuli. In its short history,
it has been applied to practically every type of imagery, with varying degrees of success.
The inherent subjective appeal of pictorial displays attracts perhaps a disproportionate
amount of attention from scientist and lay person alike.

Like other multidisciplinary fields, digital image processing suffers from myths, mis-
understandings, misconceptions, and misinformation. It is a broad umbrella under which fall
diverse aspects of optics, electronics, mathematics, photography, and computer technology.
It is plagued with imprecise and often contradictory jargon taken from many different fields.
This book attempts to collect the fundamental concepts of digital image processing into a
self-consistent package for a relatively easily digested introduction to the field.

Several factors indicate continued growth for the field. A major one is the perpetually
declining cost of the computer equipment required. Both processing units and bulk storage
devices continue to become less expensive year by year. A second factor is the increasing
availability of equipment for digitizing and displaying images. There are indications that
"the cost of computer equipment will continue to decline.

Several new technological trends promise to further stimulate the growth of the field.
Among these are parallel processing, made practical by low-cost microprocessors; inexpen-
sive charge-coupled devices (CCDs) for digitizing; new memory technologies for large,
low-cost image storage arrays; and inexpensive, high-resolution color display systems.

2 Images and Digital Processing Chap. 1

Another impetus for development stems from a steady flow of new applications. The
usage of digital imaging in commercial, industrial, and medical applications and in scien-
tific research continues to grow. Even with the scaling down of military expenditures comes
increased use of remote sensing with digital imaging techniques. Thus, with increasing
availability of reasonably inexpensive hardware and some very important applications on
the horizon, one can expect digital image processing to play an important role in the future.

1.2 THE ELEMENTS OF DIGITAL IMAGE PROCESSING

At its most basic level, digital image processing requires a computer upon which to process
images and two pieces of special input/output equipment: an image digitizer and an image
display device.

In their naturally occurring form, images are not directly amenable to computer anal-
ysis. Since computers -work with numerical (rather than pictorial) data, an image must be
converted to numerical form before processing by computer can commence.

Figure |-1 illustrates how a rectangular array of numbers can represent a physical
image. The physical image is divided into small regions called picture elements, or pixels.
The most common subdivision scheme is the rectangular sampling grid shown in the figure.
The image is divided into horizontal lines of adjacent pixels. The number inserted into the dig-
ital image at each pixel location reflects the brightness of the image at the corresponding point.

Gray level

NSNS NS S S
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NN

Pixels
Physical image Digital image

Figure 1-1 A physical image and a corresponding digital image

The conversion process itself is called digitization, and a common form is illustrated
inFigure 1-2. At each pixel location, the brightness of the image is sampled and quantized.
This step generates, for each pixel, an integer representing the brightness or darkness of the
image at that point. When this has been done for all of the pixels, the image is represented
by a rectangular array of integers. Each pixel has an integer location or address (line or row
number and sample or column number) and an integer value called the gray level. This array
of digital data is now a candidate for computer processing.

Figure 1-3 shows a complete system for image processing. The digital image pro-
duced by the digitizer goes into temporary storage on a suitable device. In response to
instructions from the operator, the computer calls up and executes image-processing
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Figure 1-2 Digi'tizing an image

Figure 1-3 A digital image-processing system

programs from a library. During execution, the input image is read into the computer line by
line. Operating upon one or several lines, the computer generates the output image, pixel by
pixel, and stores it on the output data storage device, line by line.

- During the processing, the pixels may be modified at the programmer’s discretion.
The processing steps are limited only by the programmer’s imagination and patience, and
the computing budget. After processing, the final product is displayed by a process that is
the reverse of digitization: The gray level of each pixel is used to determine the brightness
of the corresponding point on a display screen. The processed image is thereby made visi-
ble, and once again amenable to human interpretation.

4 Images and Digital Processing Chap. 1

1.2.1 The Terminology of Digital Image Processing

Images occur in various forms, some visible and others not, some abstract and others phys-
ical, some suitable for computer analysis and others not. It is thus important to have an
awareness of the different types of images. A lack of this awareness can lead to considerable
confusion, particularly when people are communicating ideas about images when they have
different concepts of what an image is.

Since images form an overwhelming part of our experience from birth, there is a ten-
dency to take them for granted. This section is intended to establish a foundation upon
which images of all forms can be discussed with minimal confusion. Our definitions neither
conform to nor establish a standard for the field, but are introduced to make the text
self-consistent. Further definitions appear in the glossary in Appendix 1. The reader may
wish to compare this section with other discussions of nomenclature [1-3].

Before we can define digital image processing, we must agree upon a definition for the
word image. While most people have a notion of what an image is, a precise definition is eju-
sive. Among the definitions of the word in several of Webster’s dictionaries [4-6] are the fol-
lowing: “A representation, likeness, or imitation of an object or thing, . . . a vivid or graphic
description, . . . something introduced to represent something else.” Thus, in a general sense,
an image is a representation of something else. A photograph of Abraham Lincoln, for
instance, is a representdtion of an American president as he once appeared before a camera.

An image contains descriptive information about the object it represents. A photo-
graph displays this information in a manner that allows the viewer to visualize the subject
itself. Notice that under this relatively broad definition of image fall many “representations”
that are not perceivable by the eye. '

Images can be classified into several types based upon their form or their method of
generation. {n this regard, it is instructive to employ a set-theoretical approach. If we con-
stder the set of all objects (Figure 1-4), the images form a subset thereof, and there is a cor-
respondence between each image in the subset and the object that it represents. Within the
set of images itself, there is a very important subset containing all the visible images—those
that can be seen and perceived by the eye. Within this set again, there are several subsets
representing the various methods of generation of the image. These include photographs,
drawings. and paintings. Another subset contains the optical images, that is, those formed
with lenses, gratings, and holograms.

The physical images are actual distributions of matter or energy. For example, optical
images are spatial distributions of light intensity. These can be seen by the human eye and
are thus visible images as well. Examples of nonvisible physical images are temperature,
pressure, elevation, and population density maps. A subset of the physical images is multi-
spectral images—those having more than one local property defined at each point. An
example is the trispectral (red, green, blue) image, as it is reproduced in color photography
and color television practice. Whereas the black-and-white image has one value of bright-
ness at each point, the color image has three values of brightness, one each for red, green,
and blue. The three values represent intensity in different spectral bands, which the eye per-
ceives as different colors.

Another subset of images contains the abstract images of mathematics, which con-
sists of the continuous functions.and the discrete functions, or digital images. Only the dig-
ital images can be processed by computer.
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Figure 1-4  Types of images

A picture is arestricted type of image. Webster [5,6] defines a picture as “a represen-
tation made by painting, drawing, or photography,. . . a vivid, graphic, accurate description
of an object or thing so as to suggest a mental image or give an accurate idea of the thing
itself.” For our purposes, we take the word picture to mean a distribution of matter that is
visible when properly illuminated. In the vernacular of image processing, however, the
word is sometimes used as equivalent to the word image.

The word digital relates to calculation by numerical methods or by discrete units. If
we now define a digital image to be a numerical representation of an object (which may
itself be an image), the pixels are the discrete units, and the quantized (integer) gray scale
supplies the numerica} component.

Processing is the act of subjecting something to a process. A process is a series of
actions or operations leading to a desired result. Thus, a series of actions is performed upon
an object to alter its form in a desired manner. An example is a car wash, wherein automo-
biles are processed to change them from dirty to clean.

Now we can define digital image processing as subjecting a numerical representation
of an object to a serjes of operations in order to obtain a desired result. In the case of pic-
tures, the processing changes their form to make them more desirable or attractive, or to
accomplish some other predefined goal.

For purposes of discussion, it is convenient to restrict the general definition of a dig-
ital image. Unless otherwise stated, then, in this text we use the restricted definition of adig-
ital image, which is a sampled, quantized function of two dimensions that has been
generated by optical means, sampled in an equally spaced rectangular grid pattern, and

6 Images and Digital Processing Chap. 1

quantized in equal intervals of amplitude. Thus, a digital image is now a two-dimensional
rectangular array of quantized sample values.

In discussing images that are less restricted, we shall make use of the following four
generalized images and processes: (1) nonoptical digital images generated from other than
optical images; (2) higher dimensional digital images defined in three or more dimensions
(this includes multispectral images in which there is more than one gray level value at each
point); (3) nonstandard sampling, in which the domain of the image is sampled by a scheme
other than the equally spaced rectangular grid; and (4) nonstandard quantization, where the
quantizing levels are not equally spaced.

An image is usually a condensation or a summary of the information in the object that
it represents. Ordinarily, an image contains considerably less information than the original
object; thus, an image is an incomplete and inexact, yet in some sense adequate, represen-
tation of the object.

Digital image processing starts with one image and produces a modified version of
that image. It is therefore a process that takes an image into an image. Digital image anal-
ysis is taken to mean a process that takes a digital image into something other than a digital
image, such as a set of measurement data or a decision. For example, if a digital image con-
tains a number of objects, a program might analyze the image and extract measurements of
the objects. The term digital image processing, however, is loosely used to cover both pro-
cessing and analysis.

Computer graphics is concerned with the processing and display of images of things
that exist conceptually or as mathematical descriptions rather than as solid objects. The
emphasis is often on the generation of an image, given a model that describes the object,
its illumination, and the geometry of an imaginary camera. Computer graphics also
includes “computer art,” the use of a digital imaging system as a medium for artistic
expression.

Computer vision is concerned with developing systems that can interpret the content
of natural scenes. In the field of robotics, computer vision supplies the eyes of the robot.

On a broader scale, we use the term digital imaging to encompass any manipulation
of image-related data by computer. This includes computer graphics and computer vision,
as well as digital image processing and analysis.

Digitizing is the process of converting an image from its original form into digital
form. The term conversion is used in a nondestructive sense because the original image is
not destroyed. Instead, it is used to guide the generation of the digital image. The reverse
operation is display, that is, the generation of a visible image from a digital image. Com-
monly used equivalents are the terms playback, image reconstruction, hardcopy, and image
recording. This process is nondestructive as well, since displaying a digital image does not
destroy the data. There are both volatile and permanent displays. The latter produce hard-
copy output.

We take scanning to mean the selective addressing of specific locations within the
domain of an image. Each of the small subregions addressed in the scanning process is
called a picture element, which is abbreviated by the word pixel. In digitizing photographic
images, scanning is the process of sequentially addressing small spots on the film. The term
is Joosely taken as equivalent to the term digitizing. The rectangular grid scanning pattem is
known as a raster.
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Sumpling means measuring the gray level of an image at each pixel location. Sam-
pling is usually done by an image-sensing device that produces a voltage proportional to the
light intensity at each pixet in an image.

Quantization is the representation of a measured value by an integer. Since digital
computers process numbers, it is hecessary to reduce the continuous measurement values to
discrete units and represent them by integers. The image sensor, then, is usually followed by
an analog-to-digital converter, an electronic circuit that generates a number proportional to
a voltage.

The steps of scanning, sampling, and quantization are sufficient to generate a numer-
ical representation of an image, and they comprise the steps of digitization. One can reverse
this process to display a digital image. With the ability to convert images into digital form
and back into visible form, one is able to define and execute digital processing steps on
selected images and observe the results.

When a process generates an output image from an input image, there must exist a
correspondence between points in the two images. Each pixel in the output image corre-
sponds to one pixel in the input image. Thus, when the operation is applied to one point or
a neighborhood centered upon one point in the input image, the resulting grzy-level value is
stored in the corresponding point in the output image.

The operations that can be performed on digital images fall into several classes. An
operation is global if it is applied equally throughout the entire digital image. A point oper-
ation is an operation in which the value of the output pixel depends only on the value of the
corresponding input pixel. The use of point operations is sometimes called contrast manip-
ulation or contrast stretching. A local operation is an operation in which the gray level of
each output pixel is computed from the gray levels of several pixels in a neighborhood of the
corresponding input pixel.

The notion of contrast refers to the amplitude of gray-level differences within an image.
Noise is broadly defined as an additive (or possibly multiplicative) contamination of an image.

Gray-scale resolution is the number of gray levels per unit of measure of image
amplitude. Storing a digital image in 8-bit bytes, for example, yields a 256-level gray scale.

The sampling density of a digital image is the number of sample points per unit of
measure (e.g., pixels per millimeter, etc.) in the domain of the image. The reciprocal of the
sampling density is the pixel spacing.

Magnification refers to the size relationship between the objects in an image and the
objects in the scene it represents. It is defined only for linear geometrical relations in which
one can define the same metric in the domains of both image and scene, and in which the
relationship is uniform over the entire image. Magnification is a meaningful relationship
between the input and output digital images in a processing step. However, the “magnifi-
cation” froma physical image to a digital image is not a meaningful concept. Sampling den-
sity (or pixel spacing) is the concept that proves useful in this regard.

1.3 PHILOSOPHICAL CONSIDERATIONS

One cannot approach a subject such as digital image processing without bringing to it a set
of notions and attitudes—in other words, a viewpoint or a philosophy. In this section, we
discuss two topics that are constructive in this regard.

9910019
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1.3.1 Continuous and Discrete Approaches

There are two viewpoints from which one can approach the design and implementation of
digital image-processing operations. One can think of the digital image as a set of discrete
sample points (which it actually is), each having its own individudl identity. Then the pro-
cessing operation becomes.the manipulation of these discrete units, much as one might han-
dle the individual companents when assembling amachine. The process is described interms
of what is done to the pixels, rather than what is done to the image or the objects therein.

On the other hand, images of interest commonly originate in the physical universe,
which obeys principles well described by continuous mathematics (quantum mechanics
excepted). For this reason, the image and its content are often better described by continuous
functions. Thus, when manipulating an array of integers, one can think of the processing steps
as they affect the underlying continuous function that the digital image temporarily represents.

The theory behind many of the processing operations is based on the analysis of con-
tinuous functions, and this approach serves the analyst well. Other processes are more pro-
ductively thought of as logical operations performed on individual pixels, and the discrete
approach serves better there. Often, eithet approach can describe the process, and we are left
with a choice. In many cases we find that two developments, one based on the analysis of
continuous functions and the other employing discrete techniques, lead us to the same solu-
tion. The insight gained along the way, however, may be significantly different.

Since the digital image is fundamentally discrete, it is dangerous to hold solidly to the
continuous philosophy and overlook this basic characteristic. Sometimes, while thinking in the
continuous mode, one can be surprised by an unexpected characteristic of the processed image,
something brought about by its discrete nature. This can be a visible artifact (e.g., a moiré pat-
tern) or a particularly inaccurate measurement. When the processing result differs markedly
from that predicted by the analysis of continuous functions, we call this a sampling effect.

Since the objects in the scene to which the image corresponds, as well as the devices
that formed the image, are better described by continuous functions, it is similarly unwise
to restrict one’s thinking to discrete mathematics and logical operations alone. Inimage res-
toration, for example, one uses digital (discrete) methods to improve an image that origi-
nated, became degraded, and will be displayed and viewed in analog (continuous) form.
Thus, to regard digital imaging as strictly an exercise in discrete mathematics is to ignore
the bulk of the process. Only when the image originates and culminates in digital form is an
all-discrete approach justified.

Most commonly, we use discrete technigues to process images of a continuous world.
The native state of the image is continuous, and the results of our processing normally will be
interpreted in analog form as well. The image only becomes discrete for a brief time so that
we can use the digital computer as a tool to implement our algorithms. Even if the image is
presented to us in digital form, we usually cannot ignore its origin in the continuous domain.

The term digital image processing, then, does not mean processing digital images; rather
1t means digital processing of images. This distinction, albeit rather subtle, is fondamental
to our approach to the subject.

The Approach. We can summarize the approach taken here as follows. First, we
expect to be able to characterize the effects digitization has upon an image that originates in
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continuous form. Second, we seek means to convert an image into digital form, and back
into analog form, in such a way that the content of interest is not lost or significantly dam-
aged. Third, we expect to be able to predict sampling effects, to recognize them when they
occur, and to take steps to eliminate them or reduce them to tolerable levels. This unifies
continuous and discrete processing into a more general approach to the problem. Chapters
12 and 15 discuss what is required to establish and maintain this approach.

When the unified approach is followed, the digital image that we process becomes
essentially equivalent to the continuous original it represents. This is because (1) we can, at
any time, recover the underlying continuous image from the discrete array by a properly
conducted image display or printing process, and (2) we can implement digitally a process
that produces the same effect that the equivalent physical process conducted in the contin-
uous domain would produce. Under these conditions we are free to choose between contin-
uous and discrete analysis, at each step and as it is convenient, because they produce the
same result. Thus, ideally, one should be able to look at digital image processing from either
viewpoint, as appropriate and without confusion.

1.3.2 Correspondence between Images

In most digital image-processing applications, we process the image of an object in order to
derive information about the object itself. Since it is only digital images that can be pro-
cessed by the computer, such images act as temporary substitutes for the objects they rep-
resent. Thus, we establish a comrespondence between an object and the image that is used to
represent it. Since we cannot digitally process an object, or even a nondigital image, we are
restricted to processing its corresponding digital image.

Figure 1-5 views an image-processing sequence in terms of a chain of corresponding
images. The camera forms an optical image that corresponds to the subject. The developed
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Figure 1-5  An image-processing sequence
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film has on it a negative image corresponding to the optical image. The film forms a corre-
sponding optical image on the digitizer faceplate, and that produces an input digital image
that gives rise to a series of 6 corresponding images. the last of which is the desired output
picture. Even if the actual processing is a simple one-step operation, there is still a series of
10 corresponding images between the subject and the output picture. Although our casual
parlance belies this fact, it is important to remember how many corresponding images are
involved.

Each step in the process provides an opportunity for the image to be degraded. To
minimize degradation, each step should be well designed and properly controlled. One goal
of this book is to develop means to analyze quantitatively the performance of each step and
of the process as a whole.

1.4 DIGITAL IMAGE PROCESSING IN PRACTICE

Digital image processing requires knowledge from a varied background for its successful
use. Practitioners in the field are called upon for both theoretical analysis and practical
application. The technique requires a balanced knowledge of mathematics, optics, and com-
puter technology, as well as the use of intuition and common sense.

1.4.1 Functional Requirements for Digital Image Processing

The following is a list of requirements an effective general-purpose image-processing sys-
tem should meet:

1. The hardware must be adequate for the problems attempted. Inadequate sampling in
the spatial domain and inadequate gray scale quantization may not preclude success,
but can render the reason for failure inconclusive. Processing algorithms often assume
that the image function is continuous. If the sampling and quantization in use do not
justify this assumption, performance may suffer considerably. Thus, inadequate data-
handling capability can be a threat to a successful solution to a problem.

2. High-quality equipment is required. When system noise levels degrade the image,
success is once again in jeopardy.

3. While image analysis requires a high-quality image digitizer, image processing
requires a high-quality image display device as well.

4. For general-purpose work, the software system should allow simple and logical menu
selection of processing and analysis programs. Convenient storage of, and quick access
to, input and output digital images and library programs is a practical requirement.

5. The tasks in the image-processing library should be maintained with an eye toward ver-
satility. The power of the system is greatly enhanced if existing programs can be used
to try out new approaches to old or new problems without the need for reprogramming.

6. The program library should be easily expandable to include new modules as they are
developed, so that the system undergoes continual growth.
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PROBLEMS

1.

Watch a television news program, and make a log of all the uses of digital imaging and what each
contributes to the overall image the producers are seeking for the program.

. Watch someone play an arcade video game, and write an short paper describing how digital

imaging is used to create the illusion.

. Watch a motion picture that uses a substantial amount of computer-generated animation (e.g.,

The Last Starfighter), and write a short paper describing what digital imaging techniques are used
and how each contributes to the story line.

. Tour the medical imaging facility of a hospital, and write a short paper describing which digital

imaging techniques are used in the equipment and how each contributes to health care delivery
in terms of accuracy, throughput, and cost savings.

. Interview a police officer, prosecuting attorney, or defense attorney zbout cases involving pho-

tographic evidence, and write a short paper describing how digital image processing could be
used to solve, prosecute, or defend one such case.

. Use a computer painting or drawing program to generate a picture for some purpose, and write a

short paper describing what digital imaging techniques are used and how each contributes to the
creation of the picture and to the purpose the picture serves.

. Acertain graphical environment uses icons that are 32 by 32 pixel images, and each pixel is one

of 16 colors. How many different icons are there? Assuming that one in a million of the possible
icons is potentially useful, how large a piece of paper would be required to print them all side by
side at 100 pixels per inch? If this turns out to be impractical, how many 8-by-10 prints would it
take to catalogue them? If the paper is 0.01 inch thick, how tall will the stack of prints be?

. How long would it take to flip through a catalogue containing all the recognizable images that are

200 by 200 pixels with 40 gray levels? Assume that one out of every billion of the possible
images is recognizable and that it takes one second to peruse each image.
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CHAPTER 2

Digitizing Images

2.1 INTRODUCTION

Since computers can process only digital images, and nature affords images in other forms, a
prerequisite for digital image processing is the conversion of images into digital form. The
specialized equipment for digitizing images is, by and large, what transforms an ordinary
computer system into an image-processing workstation. An image-recording device may also
be required, although a dot matrix (graphics) printer can produce hard copy of limited quality.

In the early days of digital image processing, image-digitizing equipment was so
expensive and complex that only a relatively few research centers could afford such a capa-
bility. Advances in technology, however, have made image digitizers inexpensive and their
use widespread.

Widely diverse configurations of apparatus have been used to convert images into
digital form. In this chapter, we discuss the elements of an image digitizer and some of the
physical phenomena that are often employed in the process, and we examine several imple-
mentations. The aim is to develop an insight into the capabilities and limitations of these dif-
ferent approaches to image digitization and a feeling for the noise and distortion that can be
introduced by each. The reduction or removal of digitizer noise and distortion is one of the
major functions of digital image processing.

2.1.1 The Elements of a Digitizer

An image digitizer must be able to divide an image into picture elements (pixels) and
address each individually, to measure the gray level of the image at each pixel, to quantize
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the continuous measurements to produce a set of integers, and to write that set of integers on
a data storage device. To accomplish this, a digitizer must have five elements.

The first element of the digitizer is a sampling aperture—something that allows the
digitizer to access picture elements individually while ignoring the remainder of the image.

The second element is a mechanism for scanning the image. This process consists of
moving the sampling aperture over the image in a predetermined pattern. Scanning aliows
the sampling aperture 0 address the pixels in order, one at a time.

The third element is a light sensor, which can measure the brightaess of the image at
each pixel through the sampling aperture. The sensor is commonly a transducer that con-
verts light intensity into an electrical voltage or current.

The fourth element, a quantizer, converts the continuous output of the sensor into an
integer value. Typically, the quantizer is an electronic circuit called an analog-to-digital
converter. This unit produces a number that is proportional to the input voltage or current.

The fifth element of an image digitizer is the output storage medium. The gray-level
values produced by the quantizer must be stored in an appropriate format for subsequent
computer processing. The output medium can be solid-state memory, magnetic disk, or
some other suitable device.

2.2 CHARACTERISTICS OF AN IMAGE DIGITIZER

While image digitizers differ in the apparatus they use to perform their function, they may
be compared on the basis of their relevant characteristics.

Pixel Size. Two important characteristics are the size of the sampling aperture and
the spacing between adjacent pixels. If the digitizer is mounted on an optical system with
variable magnification, the sample size and spacing at the input image plane are variable,
and it is the range that is of interest.

Image Size. Another important parameter is the input image size capability of the
instrument. In the case of a film scanner, the maximum input size might be 35 mm film or,
perhaps, 11-by-14-inch X rays. At the output, image size is specified by the maximurm num-
ber of lines and of pixels per line.

Local Property Measured. A third significant characteristic of an image digi-
tizer is the physical parameter that it actually measures and quantizes. In the case of film
scanners, for example, the instrument could measure and quantize either the transmittance
or the optical density of the film. Both are functions of the darkness or lightness of the film.
but in certain applications one may be more useful than the other.

Linearity. The degree of linearity of the digitization is also an important factor.
For instance, if the instrument digitizes light intensity, one should know to what degree of
accuracy the gray levels are, in fact, proportional to the actual brightness of the image. The
validity of subsequent processing may be jeopardized by a nonlinear digitizer. Of interest.
as well, is the number of gray levels to which the instrument can quantize the image. Early
image digitizers had only two gray levels: black and white. In current monochrome digitiz-
ing practice. eight-bit (256-level) data is commonplace, and considerably higher resolution
is possible with available instrumentation.
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Noise. Finally. one of the most important characteristics of a digitizer is its noise
level. If a uniformly gray image is presented to a digitizer, the noise inherent in the system
will cause variations in the output gray level across the image. even though the input bright-
ness is constant. Noise introduced by the digitizer is a source of image degradation, and this
should be small relative to the contrast within the image.

These characteristics constitute a brief specification sheet for an image digitizer.
They provide a basis upon which to compare different instruments or to decide whether a
particular digitizer is adequate for a specific job. In some applications, digitizing images
with relatively few lines, pixels per line, and gray ievels, and with appreciable nonlinearity
and a high noise level, may be adequate. Many of the important applications of digital
image processing, however, require a high-quality image digitizer-—one capable of digitiz-
ing large images to many gray levels with good linearity and a low noise level. In later sec-
tions, we discuss image digitizer requirements in light of processing applications.

2.3 TYPES OF IMAGE DIGITIZERS

An important and highly versatile type of image digitizer is the digitizing camera, which has
a lens system and can digitize an image of any object presented to it. An example is a tele-
vision camera interfaced to a computer. Such a device can digitize not only physical objects,
but also images such as photographic film.

A restricted, but nonetheless important, type of image digitizer is the film scanner.
This is an instrument made specifically for scanning photographic images on film. Film
scanners can digitize an image of an object only after it has been photographed initially by
a film camera. Historically, film scanners have played a predominant role in image process-
ing, but current practice tends to favor direct digitizing cameras.

2.3.1 Scan-In and Scan-Out Digitizing

There are two general digitizing approaches, called scan-in digitizing and scan-out digitiz-
ing. In a scan-out system (Figure 2-1), the entire object, or film image, is illuminated con-
tinuously, and the sampling aperture allows the light sensor to “see” only one pixel at a time.
In a scan-insystem (Figure 2-2), only one small spot of the object is illuminated at any time,
and all the transmitted light is collected for the sensor. In this case, the object is scanned
with the illuminating beam, and the sensor is spatially nonspecific.

There is a third philosophy that is a combination of the previous two. In a scan-in/
scan-out system, the object is illuminated by a moving spot and sampled through a moving
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plate Figure 2-1 A scan-out digitizer
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lens Figure 2-2 A scan-in digitizer

aperture that follows the spot. Such a system reduces the effects of glare and has found some
application in digitizing microscope images. Their complexity, however, particularly in
tracking the illuminating spot with the sampling spot, has somewhat limited the application
of scan-in/scan-out systems.

2.4 IMAGE-DIGITIZING COMPONENTS

As discussed before, an image digitizer must have a light source, a light sensor, and a scan-
ning system. Furthermore, either the light source or the light sensor (or both) must be behind
asampling aperture. In this section, we discuss various types of discrete light sources, light
sensors, and scanning systems. In the next section, we put them together to form complete
image digitizers.

2.4.1 Light Sources

Incandescent Bulbs. The most common artificial light source is the incandes-
cent bulb. For scan-out systems, incandescent lighting is convenient for general illumina-
tion of the object or image being digitized. For scan-in work, the filament of a small bulb or
alight-emitting diode (LED) can be imaged with a lens to form a small bright spot.

Lasers. Highly concentrated beams of light can be produced with a laser. The laser
generates a narrow, intense, coherent beam of light by first raising the atoms of an active
material (argon, helium, neon, etc.) to a high-energy state and then stimulating a simulta-
neous transition back to the normal state. "This transition gives rise to a high-intensity beam
of coherent light that is easily focused and deflected. While the laser could be used for gen-
eral illumination in a scan-out system, its principal advantage lies in producing small
high-intensity spots for scan-in digitizers.

Phosphors. Certain phosphors emit light when irradiated with electrons. If an elec-
tron beam is focused to a small spot on the face of a phosphor-coated glass plate (Figure 2-3),
light is emitted from that spot. The phosphor that coats the face of the cathode-ray tube (CRT)
is a crystalline compound doped with certain impurities. The phosphor is deposited on the
face of the tube over a transparent aluminum film. This film is positively charged and forms
an anode that attracts the electron beam.

The impact of the energetic electrons in the beam excites the atoms of the host phos-
phor, raising some of their electrons to high-energy states. As each of these electrons
decays back to its normal state, it emits a photon. The spectrum (color) and persistence
(decay rate) of the light generated can be controlled in the manufacture of the phosphor. A
wide variety of emission spectra and persistence times, from less than 1 microsecond to
several seconds, is available.
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Figure 2-3 CRT target construction

The brightness of the light spot produced by the electron beam is roughly proportional
to the average beam current density. The phosphor is made up of granules and is therefore
subject to graininess and scattering of light within the phosphor layer. Cathode-ray tubes
have a resolution limit of 30 to 70 line pairs (cycles) per millimeter.

LEDs. Solid-state LEDs also form compact and convenient light sources. LEDs are
typically made of gallium arsenide semiconductor. They emit light at controlled intensity
from a spatially small source. This also makes them useful for scan-in systems.

2.4.2 Light Sensors

Light sensors produce an electrical signal proportional to the intensity of light falling upon
them. Five different physical phenomena are employed, and these give rise to five types of
light sensors: photoemissive devices, photovoltaic cells, photoconductors, silicon sensors,
and junction devices. Photoemissive substances emit electrons when irradiated with light.
Photovoltaic substances, such as silicon solar cells, generate an electrical potential when
exposed to light. Photoconductors, such as cadmium sulfide, show a drop in their electrical
resistance when exposed to light. Silicon devices exploit the light-sensing properties of sil-
icon in pure crystal form. Photodiodes and phototransistors change their junction charac-
teristics under the influence of incident light.

Phot issive Devi The photomultiplier tube (Figure 2-4) has a photo-
emissive face that forms a semitransparent photocathode. The tube is coated with oxides of
the alkaline metals (silver, cesium, antimony, sodium, bismuth, and rubidium). When pho-
tons of sufficient energy (A < | micron or so) strike the negatively charged photocathode,
electrons are freed from the surface. )

Behind the photocathode is a series of dynodes held at progressively higher positive
voltages. Primary electrons that have been freed from the photocathode by incident photons
accelerate toward the first dynode. The impact of each frees several secondary electrons,
producing a multiplying effect. The resulting electrons are then attracted toward the second
dynode, where the same effect takes place. The process continues until the electrons from
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the last dynode are collected by the anode, producing a current in the external circuit. This
current is proportional to the photon flux incident on the photocathode. It is sensed by the
external circuit and may be sampled and quantized.

The photomultiplier tube is quite sensitive because of the multiplying effect of the
dynodes. One primary electron may give rise to as many as a million electrons in the exter-
nal circuit. This high sensitivity makes the photomultiplier tube useful for digitizing at low
light levels.

Silicon Sensors. Prepared to a very highdegree of punity, silicon can be grown in
large crystals. Each silicon atom is covalently bonded to its six neighbors in a three-dimen-
sional rectangular crystal lattice. Incident photons of sufficient energy (A < | um) will break
such a bond, freeing an electron and leaving a “hole™ where the eleciron was.

A thin metal layer deposited on the surface of the silicon and charged with a positive
voltage creates a potential well that collects and holds the photoelectrons that have been
freed by photons in the local area. Each potential well corresponds to one pixel in an array
of sensors. A potential well can hold about 800 electrons per square micron of area, or 10°
to 10° electrons per pixel on typical chips.

The dynamic range of a well is the ratio of its capacity in electrons to the readout noise
level, also in electrons. Readout noise can be as ow as 5-10 electrons for high-quality
devices. Overexposure of a well generates excess electrons that can spread to adjacent
wells, causing blooming of the image.

Thermal energy also causes random bond breakage. creating occasional thermal elec-
trons that are indistinguishable from photoelectrons. This gives rise to the dark current of
a silicon sensor—that is, the current it produces even in the absence of light. The dark cur-
rent is temperature sensitive, doubling for each 6°C increase in temperature. At the long
integration times that are required for low-light-level image sensing, the wells can fill with
thermal electrons rather than photoelectrons.

Cooling is often employed to reduce dark current and thereby extend the usable inte-
gration time. Cooling a silicon sensor well reduces its dark current from several thousand
electrons per second at room temperature to a number on the order of one electron per sec-
ond at -60°C.

Photodiodes. The photodiode (Figure 2-5) is a solid-state P-N junction device.
An electric field forms in the vicinity of the junction-of two semiconductor materials of
opposite polarity. This field sweeps the charg. carriers (electrons and holes) out of the
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Figure 2-5 The photodiode

junction region, creating a depletion layer that impedes current flow. Such a device nor-
mally aliows current flow in only one direction. In photodiodes, one side of the device (e.g.,
the P-layer) is made very thin so that light can penetrate to the junction.

In operation, the junction is supplied with a reverse-polarity voltage, and it thus con-
ducts very little current. Impinging photons, however, release electron-hole pairs inside the
material. In the depletion layer, where the electric field is strong, most of these mobilized
carriers drift apart under the influence of the field before they can recombine. Their migra-
tion creates, in the external circuit, a current that is proportional to the incident photon flux.

Since the P-N junction presents a high resistance to current flow in the reverse direc-
tion, what current does flow is controlled by the light intensity and is relatively independent
of the externally applied voltage. The depletion layer can be made comparatively thick to
capture long-wavelength photons.

The avalanche photodiode achieves higher sensitivity than the ordinary photodiode
through an electron multiplication effect reminiscent of the photomultiplier tube. The ava-
lanche photodiode is subjected to a very high reverse-polarity voltage. Electrons that are
freed by impinging photons are accelerated by the intense field in the depletion layer. They
attain such high velocities that they have ionizing collisions within the material, freeing
more electrons. This effect can produce gain factors as high as 1,000, considerably increas-
ing the sensitivity of the device.

In the previous discussion, photodiodes were said to produce a steady-state current
proportional to the incident photon flux. Alternatively, they can operate in the integrating
mode. Since the photodiode junction exhibits capacitance, it will hold a charge of the
reverse-biased polarity. Subsequently, photoconduction bleeds off the charge at a rate pro-
portional to incident photo flux. If the photodiode is periodically recharged to some refer-
ence voltage, the required charge (number of electrons) is proportional to the integral of the
incident photon flux over the period between recharges. Thus, in the integrating mode, the
photodiode senses not instantaneous photon flux, but photon flux integrated over a certain
period of time.

Two factors limit the dynamic range of photodiodes operating in the integrating
mode. First, the small junction capacitance limits the initial charge that can be stored. Sec-
ond, the dark current, which flows even without incident light, gradually discharges the
photodiode. These factors limit the integration period to a few milliseconds and the
dynamic range to about 100 to 1 at room temperature. Since the dark current is temperature
sensitive. cooling the photodiade significantly increases practical integration times.

Phototransistors. The phototransistor is a three-layer semiconductor device
mounted in clear plastic or in a can with a lens on top to permit light to access the transistor
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Jjunction (Figure 2-6). Impinging photons release electron-hole pairs in the collector-base
junction. The movement of these carriers constitutes base current in the transistor. The col-
lector current is proportional to the base current multiplied by the current gain factor (the
beta) of the transistor. Externally, the phototransistor behaves like the photodiode, except
with higher sensitivity. Design requirements for speed and linearity, however, dictate com-
promises in transistor design that place limits on achievable current gains. Both the photo-
diode and the phototransistor have a fast and stable response to light intensity variations,
and they make excellent point sensors for digitizing images.

2.4.3 Scanning Mechanisms

In this section, we discuss techniques that may be used to move the scanaing or illuminating
spot about the image. In the next section, we consider light sources, sensors, and scanning
mechanisms operating together in complete image-digitizing systems.

Mechanical Scanning Devices. Figure 2-7 shows two mechanical methods
for image scanning: the rotating drum and the lead screw. A photographic image is
wrapped, partially or completely, around a cytindrical drum, and the drum is rotated to pull
the image past a stationary aperture. This effects scanning in one direction. The scanning
aperture may be mounted on a lead screw that rotates to move the aperture across the image.
In the figure, a rotating drum and lead screw have been combined to produce a two-dimen-
sional image scanner. If the lead screw turns continuously rather than in steps, the scan is
helical, but this is normally an adequate approximation fo a rectilinear scan.

Mechanical scanning devices such as these are limited in speed of operation, but can
provide good geometric stability on large images at relatively low cost.

Rotating drum

Image
Sensor
OF SOUTCe —

/ Figure 2-7 Mechanical scanning
Carrier - Lead screw

mechanisms
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Electron Beam Scanning. Several electronic devices that are useful in digitiz-
ing and displaying images scan the images with an electron beam. Figure 2-8 illustrates two
means of deflecting an electron beam to scan a target.

Electrostatic Electromagnetic
defiection deflection Figure 2-8 Electron beam deflection

Electrostatic Deflection. An electron beam, generated by an electron gunin the
base of the tube, is attracted toward the target by the positively charged anode. As the elec-
tron beam passes between the electrostatic deflection plates, the electric field there exerts a
force on the electrons, changing their direction of travel. The deflection angle is dependent
on the beam velocity and the electrical potential between the plates. By controlling the
potential, one can cause the electron beam to impact any point on the target.

Magnetic Deflection. A transverse magnetic field can also be used to deflect an
electron beam. The force on a moving charged particle in a magnetic field is the vector cross
product of the particle velocity and the magnetic field. The deflecting force acts at right
angles to both the beam direction and the magnetic field. Thus, in Figure 2-8, the negatively
charged electrons will be deflected downward.

Beam Focus. Electron beams must also be focused to a small spot on the target.
Like deflection, this can be done by electrostatic or electromagnetic means. Poor conver-
gence of the electron beam leads to large scanning spots and low resolution.

2.5 ELECTRONIC IMAGE TUBE CAMERAS

' Electronic imaging tubes were the first devices to see widespread usage in television image
sensing [1—4]. While they still play an important part in image digitization, they are losing
out to solid-state devices.

2.5.1 The Vidicon Camera Tube

Figure 2-9 illustrates the construction of the vidicon, 2 common type of television image-
sensing tube. The vidicon is a cylindrical glass envelope containing an electron gun at one
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end and a target and faceplate at the other. The tube is surrounded by a yoke containing
electromagnetic focus and beam deflection coils. The faceplate is coated on the inside with
a thin layer of photoconductor over a thin transparent metal film. This double layer forms
the rarger. A small positive charge is applied to the metal coating of the target, behind
which is a positively charged fine wire screen called the mesh.

Arriving electrons decelerate after passing through the mesh, and they reach the target
with approximately zero velocity. In darkness, the photoconductor behaves as an insulator,
not allowing electrons to flow through to the positively charged film. The effect of the elec-
tron beam is to deposit a layer of electrons on the inner surface of the photoconductor to bal-
ance the positive charge on the metal coating. Thus, after a complete scan by the electron
beam, the photoconductor appears as a capacitor with a positively charged plate on one side
and a surface charge of electrons on the other side.

When light strikes a small area of the photoconductor, electrons begin to flow
through, locally depleting the surface charge layer. Thus, if an optical image is formed on
the target, the photoconductor will leak electrons until an identicai electronimage is formed
on the back of the target. That is, electrons will be present in dark areas and absent in light
areas.

As the electron beam scans the target, it replaces the lost electrons, restoring the
uniform surface charge. As the electrons are replaced, a current flows in the external cir-
cuit of the target. This current is proportional to the number of electrons required to
restore the charge and, therefore, to the light intensity at that point. It is also proportional
to the scanning beam velocity, which, in turn, determines the time available for the charge
to flow.
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Current variations in the target circuit produce the video signal. The electron beam
repeatedly scans the surface of the target, replacing the charge that bleeds away. The vidicon
target is thus an integrating sensor, with the period of integration set by the scanning rate.

Scanning Convention. Figure 2-10 illustrates the Electronic Industries Associ-
ation (EIA) RS-170 scanning convention, which is the standard for monochrome broadcast
television in the United States [2-8]. The beam scans the entire surface of the target in 525
horizontal scan lines, 30 times each second. The lines are not scanned in sequential order,
however, because if the TV screen were tobe refreshed at only a 30-per-second rate, the eye
would perceive an annoying flicker. Instead, an interlaced scanning convention is used to
yield a 60-per-second refresh rate on the monitor.

-
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Each frame is made up of two interlaced fields, each consisting of 262.5 lines. The
first field of the frame scans all the odd lines, while the second scans the intervening even
lines. Interlacing yields a 60-per-second field rate to minimize perceived flicker, while the
30-per-second frame rate reduces the frequency bandwidth requirement of the transmitted
signal.

Each horizontal line scan requires 63.5 ps, of which 83 percent, or approximately
50 ps, are active. Of the 525 lines per frame. 21 are lost in the vertical retrace of each field,
leaving 483 active lines per frame. The bandwidth of the standard video signal extends up
to 4.5 megahertz (MHz). which allows 225 cycles, or about 550 pixels worth of information,
across the active portion of each line. The topics of sampling and resolution are addressed
in Chapter 15.

Color Scanning Conventions. The National Television Standards Committee
(NTSC ) RS-170A timing standard for color television differs only very slightly from the
RS-170 convention. It was designed to accommodate color transmission while maintaining
compatibility with existing monochrome receivers. Different scanning conventions are
used in other countries. The Comité Consultatif International des Radiocommunications
(CCIR) standard, for example, used in much of Europe, employs a frame of 625 interlaced
scan lines of about 768 pixels each. It runs at 25 frames per second.

One can use the vidicon camera as an image digitizer simply by sampling the video
signal with a fast analog-to-digital converter. To obtain approximately 500 points per line,
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however, one must sample the video every 100 nanoseconds. A frame grabber is a digitizer
that stores this high-speed data stream in a solid-state memory and then feeds it out at a
slower rate to a more permanent storage device.

The Vidicon Family. The target of the standard vidicon is made of selenium
photoconductor material. A similar tube, the plumbicon, has a lead oxide target. Other rel-
atives of the vidicon, having similar sounding names, differ mainly in the composition of
the photoconductive material used in the target. The plumbicon is somewhat more sensitive
than the vidicon and has faster response to a rapidly changing image, but slightly lower res-
olution. The other members of the family excel in various imaging characteristics, depend-
ing upon the nature of the target material.

2.6 SOLID-STATE CAMERAS

A more recently developed type of image sensor is the electronic self-scanning solid-state
sensor array. The three principal types are the charge-coupled device (CCD) array, the
charge injection device (CID) array, and the photodiode array. All of these devices have a
linear or rectangular array of light sensor sites on a single integrated circuit chip, complete
with the circuitry necessary to read out the electron charge generated by the incident image.

2.6.1 Photodiode Arrays

The self-scanning photodiode array (Figure 2—11) contains, on one chip, an array of pho-
todiode sensors and a series of switches with associated controf circuitry. The photodiodes
operate in the light-integrating mode. Responding to externally supplied clock pulses, the
circuitry closes the switches, one at a time, to allow the junction capacitance to be recharged
by the external circuit. The pulse of charging current, , is proportional to the total amount
of light that has fallen on the diode during the period between scans. The rather large
amount of associated circuitry that must be manufactured on the chip places practical lim-
itations on the size of photodiode arrays. They are most commonly made in long, one-
dimensional arrays such as those used in facsimile scanners.
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2.6.2 Charge-Coupled Devices

CCD chips {9-12] are manufactured on a light-sensitive crystalline silicon chip, as discussed
earlier. A rectangular array of photodetector sites (potential wells) is built into the silicon
substrate. The photoelectrons produced in a local area are held in the nearest potential well
and are shifted as a charge packet down a series of wells until they reach an external terminal.
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Three different architectures can be employed for reading the accumulated charge
out of CCD image-sensing devices: the classical or full-frame architecture, the interline-
transfer architecture, and the frame-transfer architecture (Figure 2-12).
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Figure 2-12 Charge-coupled device (CCD) construction: (a) full frame; (b) interline
transfer, (c) frame transfer

FullFrame CCD. Following exposure, the full-frame CCD must be shuttered to
keep it in the dark during the readout process. It then shifts the charge image out of the bot-
tom row of sensor wells, one pixel at a time. After the bottom row is empty, the charge in
all of the rows is shifted down one row, and the bottom row is again shifted out. This process
repeats until the top row has at last been shifted down and out of the bottom row of sensor
wells. Then the device is ready to integrate another image.

Interline-Transfer CCD. In an interline transfer CCD every second column of
sensors is covered by an opaque mask. These columns of masked wells are used only in the
readout process. After exposure, the charge packet in each exposed well is shifted into the
adjacent masked well. This transfer requires very little time since all charge packets are
shifted at once. While the exposed wells are accumnulating the next image, the charge in the
masked columns is being shifted down and out in the same way as the classical CCD. In a
sensor of this type, the number of pixels per line is half the actual number of wells per row
on the chip. No more than 50% of the chip area is light-sensitive since the masked columns
occupy half of its surface.

Frame-Transfer CCD. A frame-transfer CCD chip has a doubly long sensor
array. The top half senses the image in the standard manner. The bottom half—the storage
array—is protected from incident light by an opaque mask. At the end of the integration
period, the entire charge image that has accumulated in the sensing array is shifted rapidly,
row by row, into the storage array. From there it is shifted out, pixel by pixel in the standard
manner, while the sensing array integrates the next image. Like interline transfer, this tech-
nique employs simultaneous integration and readout, making video-rate image sensing
possible.

CCD Performance. Available in a variety of configurations, CCDs give rise to a
line of compact and rugged solid-state cameras for both television usage and image-digitizing
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applications. These cameras are fiee of geometric distortion and highly linear in their
response to light. CCDs are emerging as the device of choice for a variety of image-sensing
applications.

CCDs can be scanned at television rates (30 frames per second) or much more slowly.
Since they can integrate for periods from seconds to hours to capture low-light-level images,
they are used in astronomy and fluorescence microscopy. for example. The long integration
times require that the seasor be cooled well below room temperature to reduce dark current
effects. Dark current can fill the wells with thermal electrons before the photoelectrons have
dchance o build up. Due to imperfections in the crystal lattice, dark current can vary signif-
icantly from pixelto pixel. particularly in the less expensive chips. In long-exposure images,
this leaves a fixed noise pattern that looks like a star field. The effect is due 10 a few pixels
with abnormally high dark current. Since the pattern is stationary, it can be recorded and sub-
tracted out, unless dark current has been allowed to saturate the well with thermal electrons.

Readout noise is random noise generated by the on-chip electronics. It ranges from a
few to many electrons per pixel. depending on the chip design. It gets worse as the charge is
read out at a faster rate. Readbut noise is usually the dominant noise factor under short-expo-
sure, low-light conditions, where the dark current and photon noise components are small.

Phaoton noise results from the quantum nature of light. If a CCD is illuminated with.
for example. 100 photons per pixel per second on the average, the actual number of photons
striking any particular pixel in any one second will be a random number. Statistically, that
number has a Poisson distribution, 5o its standard deviation is equal to the square Toot of its
mean. In the foregoing example, the average number of photons incident upon pixels would
be 100, witha standard deviation of 10. In general, the photon noise component is the square
root of the number of electrons that accumulate in a well (i.e.. photoelectrons plus thermal
electrons). This usually becomes the dominant noise source under high exposure or high
dark current conditions.

The charge developed in a pixel must be shified from well to well as many as a thou-
sand times or more (depending upon its location and the array size) before leaving the chip.
This requires the charge-transfer efficiency to be extremely high, or significant aumbers of
photoelectrons will be lost in the readout process.

Often, half or more of the available area of the sensor is covered by opaque charge-
transfer circuitry. leaving gaps between the pixels. Overexposure of a CCD sensor can
cause blooming of the image as excess photoelectrons spread to adjacent pixels. Defects in
the crystal lattice can cause a deud pixel. which will not hold photoelectrons. Since charge
15 shifted through the pixels on its way out of the chip, one dead pixel can wipe out all or part
of an entire column.

2.6.3 Charge Injection Devices

CID sensors [ 13-17] exploit the photoelectronic properties of silicon as do CCDs. Their
readout method, however. is considerably different, and this yields distinctly different
image sensing properties.

CID Operation. At euach pixel site. the CID has two adjacent potential-well-
producing electrodes (Figure 2-13). These are separated from the silicon surface by a thin,
metal-oxide insulating layer. One electrode is electrically connected to one electrode of al}
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the other pixels in its column, while the other electrode is connected to all the pixels in its
row. Thus, a single pixcl can be addressed by selecting its row and column address.

When both electrodes at a pixel site are held at a positive voltage, photoelectrons will
accumulate under them This is the integrating mode. If all rows and columns are held pos-
itive, the entire chip accumulates an image.

When one electrode is driven to (or below) zero volts, the accumulated photoelectrons
will shift to a position underneath the second (still positive) electrode. This shift creates a
current pulse in the external circuitry connected to the second electrode. The size of the cur-
rent pulse reflects the amount of accumulated photoelectronic charge. The accumulated pho-
toelectrons remain in the well after the shift. This is the nondestructive readout mode. The
pixel can be read repeatedly by shifting the charge back and forth without losing it.

When the second electrode is also driven to (or below) zero, the accumulated photoelec-
trons are flushed, or injecred. into the underlying substrate, producing a current flow in the
external circuitry. Again. the size of the current pulse reflects the amount of accumulated pho-
toelectronic charge. This process, however, leaves the well empty of electrons. Hence, it is
called the destructive readout mode. It is used to prepare the chip for integrating another image.

The circuitry built into the chip controls the voltages on the row and column elec-
trodes as required to integrate an image and read it out destructively or nondestructively.
This allows the CID to address individual pixels in any order. so that subimages of any size
can be read out at any speed. The nondestructive readout capability allows one to watch the
image as itaccumulates on the chip, rereading it continuously (for hours) without erasing it.
This is useful when the proper length of the integration period is not known. One can also
average together several nondestructive readouts of the same image to reduce the effects of
the random noise generated by the readout circuitry.

CID Performance. ClDs are less susceptible to blooming and radiation damage
than CCDs and are thus useful under severe lighting and environmental conditions. Blooming
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is avoided because there is no built-in pathway connecting adjacent wells (as there is in the
CCD)and excess photoelectrons are captured by the underlying substrate rather than spread-
ing to neighboring pixels. Also, with nondestructive readout, the control program can moni-
tor the filling of the wells and flush individual pixels that become full before the integration
period is over.

Since CIDs do not shift their charge across the array, there is no concern about charge-
transfer efficiency. Unlike the situation with the CCD, a defect in the crystal lattice affects
only the pixel in the immediate area. Also, essentially the entire surface area is light sensi-
tive, leaving virtually no gaps between pixels.

CIDs are considerably less light sensitive than corresponding CCDs. They are used in
specialized applications in which their random access, nondestructive readout and anti-
blooming characteristics are particularly valuable.

(Note: The foregoing explanations of CCDs and CIDs assume that the silicon is pre-
pared as an N-type semiconductor, having electrons as the majority charge cariers. In
actual practice, CIDs are commonly made of P-type silicon, in which the charge carriers are
[positive| holes, and the row and column electrodes are held at negative, rather than posi-
tive, voltages during integration.)

2.7 FILM SCANNING

Photography [ 18] often plays an important role in digital image processing, both before dig-
itizing and after display. In this section. we discuss the photographic process and some con-
siderations that apply to film scanners.

2.7.1 Transmittance and Density

When an object passes some, but not all, of the light that is incident upon it, it is neither
transparent nor opaque. There are two ways this partial light-transmitting property is com-
monly measured: in terms of transmittance and in terms of optical density (OD). The trans-
mittance of the left-hand object in Figure 214 is given by

T, == 0<T,<I ()

where /; is the incident and /, the transmitted photon flux density. Transmittance is merely
the factor by which an object attenuates light intensity, and it is confined to the range from
zero to one. The optical density of the left-hand object is
!
Dy = log3 = Iog—l— = -logT; 0<D S0 )
I T
and is not confined to a convenient range, since it approaches infinity for opaque objects.
The two objects in Figure 2-14 are serially arranged in the light path and thus super-
imposed. The transmittance of the combination is
I _ hhL

T=y=i;=Th 3)
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Figure 2-14 Density, transmittance,
and superimposition

whereas the optical density of the combination is
1 1 1 1
= log— = log=— = log—~ +log= = D| + D 4)
Dy = log = logz = log +logr = Di+ D

Thus, when light-absorbing objects are superimposed, their optical densities add and their
transmittances multiply. In Chapter 7, we use these properties to remove undesirable super-
imposed information by computer processing.

2.7.2 The Photographic Process

Photographic Film. The construction of photographic film is illustrated in Fig-
ure 2-15. The film base is either glass or a flexible, transparent acetate sheet that gives the
film its mechanical stability. The base is coated with a 5- to 25-micron-thick emulsion made
up of silver salt grains embedded in gelatin. The grains are halides of silver—silver chlo-
ride, silver bromide, or silver iodide crystals.

Light
Silver halide Emulsi
grains mulsion
Film base f
Film during exposure
Silver
grains Dy = 2.0 Typical — Dy, = 0.04 Typical
Dise =001
Figure 2-15 The photographic
Film after development process

Dpar

Dyog |
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During the manufacturing of the film, the silver halide grains are activated to make
them photosensitive. During exposure, different parts of the emulsion receive light at vary-
ing intensities. When a silver halide grain absorbs a photon, one or more molecules are
reduced to silver, and the grain becomes exposed.

Film Development. The development process reduces the silver halide grains to
silver. The reduction reaction, however, proceeds much more rapidly on exposed than on
unexposed grains. After a suitable period of time, most of the exposed grains and only a few
of the unexposed grains have been reduced. As a final step, the unreduced grains are washed
off the base. Thus, the developed film has a granular silver coating of varying thickness. In
areas that have been heavily exposed, the entire emulsion thickness is maintained, giving a
maximum density. In unexposed areas, the silver halide grains are almost completely
removed, leaving only a fog level of approximately 0.04 optical density.

Emulsion Response to Light. Figure 2-16 shows a convenient means for char-
acterizing the light response of the emulsion. The response is called the D-log E curve or the
H and D curve, after its original proponents, Hurter and Driffield. It shows the density of the
developed film as a function of the logarithm of exposure. For reasdnable exposure times—
that is, from milliseconds to seconds—the exposure may be taken as the product of incident
radiant energy flux density times duration. This equivalence between intensity and expo-
sure time is called the reciprocity law. The breakdown of the law at extremely long or short
exposure durations is called reciprocity failure.

T T T
Straight Shoulder
portion Aegion of
N \A reversal |
Alog E:
+«—Latitude —» = [Undi
1 1 1
log £, Figure 2-16 The emulsion
log E-— characteristic curve

The gross fog level (emulsion fog level plus base density) sets the minimum density
for unexposed film. The maximum density is limited by the emulsion thickness and grain
size. Over a relatively wide range of exposure, the relationship between density and the log-
arithm of exposure is approximately linear. This is the normal working range of a photo-
graphic emulsion. The length of the abscissa in the linear portion is the latitude of the
emulsion. The slope of the curve in the straight portion is called gamma () and represents
the contrast of the emulsion. Beyond the shoulder of the curve is a region of reversal, where
continued exposure brings about a decrease in density.

Emulsion Characteristics. The emulsion thickness and grain size determine
several important characteristics of the film. For example, a high maximum density is
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possible only with a thick emulsion. High resolution, however, requires small grains in a thin
emulsion to avoid light scatter within the emulsion. Highly sensitive films that must work at
low light levels require a thin emulsion containing relatively few grains. Thus, any film is a
compromise among the opposing constraints of resolution, sensitivity, and maximum den-
sity. So many different emulsions are available, however, that a suitable compromise usu-
ally can be found. In general, the lower the speed rating (sensitivity) of an emulsion, the
higher its resolution and gamma will be, while its granularity and latitude will be lower.
Granularity is due to the random grain distribution within the emulsion. It results in the sub-
jective phenomenon of graininess and becomes more pronounced as density increases.

Maximum resolution of a low-contrast image is obtained when the image is exposed
and developed tolie between about 0.8 and 1.2 optical density on the film. Below that range,
the toe of the H and D curve reduces the contrast, while granularity becomes more of a prob-
lem at higher densities.

The H and D curve for a particular emulsion varies with the parameters of the devel-
opment process. For example, overdevelopment tends to shift the curve to the left and
increase gamma. Obtaining predictable, reproducible results requires careful control of the
exposure and development parameters.

Film Resolution. While the H and D curve illustrates an emulsion’s response to
light, it says nothing about the resolution of the film. The modulation transfer function
(MTF) (Figure 2-17) is a common way to specify the resolution characteristics of an emul-
sion. Suppose we expose an emulsion with a spatially periodic pattern of light intensity
given by

logE = logEy + sin(2xfx) (&)}

where log Ej, falls in the central part of the straight portion of the H and D curve. From the
H and D curve, one would expect the density to be
D(x) = Dy + ysin(2xfx) (6)

When the spatial frequency fis high. however, grain size and light scatter within the emul-
sion reduce the contrast of the sinusoidal density variations. Thus, the observed density is

MTF
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D(x) = Do+ yM(f)sin(2nfx) OSM(f) <1 @)

where M (f) represents the loss of image contrast as a function of spatial frequency. To fur-
ther simplify the specification of film resolution, manufacturers often refer to the frequency
of limiting resolution, f;. This is the spatial frequency at which the modulation transfer func-
tion falls to 0.1, and it corresponds roughly to the limit of visibility.

2.7.3 Photocopying

Often, one must work with film images that are not originals, but photographic copies of
other film images. Figure 2-18 illustrates the setup for photocopying and photomicrogra-
phy. Let the density of the original image be D,(x, y), and assume that the copy film has the
characteristic shown in Figure 2-19. Suppose the specimen is illuminated from behind with
intensity Iy for duration T. This means that the amount of exposure coming from (x, y) and
reaching point (x', ") on the film is

E(x',y) = [,T1072Y (8)
Letting E, = [;T and taking the log of both sides yields
log[£(x’,y')] = log€g - Di(x, y) 9

X

Figure 2~18 Photocopy configuration
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In the linear region of Figure 219, the density is given by
D(logE) = Dypp + Y(logE~ log£,) (10
Combining this with Eg. (9) produces
D(x’,y") = Diog + YllogEy~ D(x, ¥) ~log E\] = Dy - yDy(x, y) an
where
Dy = Drog + y(logEg - l0gE)) = D{log Ey) (12)
Eq. (11) illustrates that the copy is a negative image with density falling below Dy, and with

contrast modified by the factor y.

2.8 SUMMARY OF IMPORTANT POINTS

10.

11

12

13.

14.

. The necessary elements of an image digitizer include (1) the sampling aperture, (2) a

means of scanning, (3) a light sensor, (4) a quantizer, and (5) an output medium

. The important characteristics of an image digitizer include (1) the pixelsize, (2) the

spacing between pixels, (3) the number of pixels per column and per line, (4) the num-
ber of gray Ievels, (5) the photometric parameter the digitizer measures, (6) the lin-
earity of that measurement, and (7) the noise level.

. Light sources include incandescent bulbs, arc lamps, LEDs, lasers, and phosphors.
. Light sensors include photomultiplier tubes, photodiodes, phototransistors, and solid-

state sensors.

Scanning can be done with mechanical means, electron beams, and integrated
circuitry.

Electronic imaging tubes produce a video signal that can be sampled and digitized.

. Solid-state image sensors include photodiode arrays, charge-coupled devices

(CCDs), and charge injection devices (CIDs).
Commonly used CCD architectures are full frame, interline transfer, and frame
transfer.

. The major CCD noise sources are readout, which produces noise that increases with

readout rate; dark current, which doubles with each 6°C temperature increase, and
photon noise, which increases as the square root of electron count.

Cooled CCDs can integrate for long periods of time to record low-light-level
images.

C1Ds are less light sensitive than CCDs, but are less subject to blooming and radiation
damage, and they can be read out nondestructively and with random access.

When partially transparent objects are superimposed, their transmittances multiply,
but their optical densities add.

Developing a photographic emulsion produces optical density approximately propor-
tional to the logarithm of exposure intensity multiplied by exposure time.

The contrast of a photographic emulsion can be specified by gamma, the slope of the
curve of its density vs. the logarithm of its exposure (its H and D curve).
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PROBLEMS
1. A certain 480-by-64() pixel frame-transter CCD unage-sensing chip is used at video rates (16.7

msec exposure time, 14 MHz readout frequency). it has 6.3- x 9.3-mucron pixels and a pixel well
capzcity of 20.000 electrons. How does its charge storage density compare with the 800 electrons
per square micron of well area mentioned in the text? The chip has readout noise of 80 electronx
per pixclata 10-MHv readout rate and 180 electrons per pixel at 20 MHz. Assuming alinear rela-
tionship, what 1s its readout noise at 14 MHz? What is its dynamic range? The chip has a quantum
efficiency of 0.35 at visible wavelengths and dark current of 6,000 electrons per second per pixel
at 25°C. What would its dark current be if it were cooled to 0°C? Assuming that the incident light
flux is 2 x 10¢ photons per second per pixel, to what percent of capacity will the wells fill during
the 16.7-msec exposure time? What exposure time would saturate the wells (fill them com-
pletely)? At 25°C, what s the chip’s signal-to-noise ratio (SNR)? What is its photon noise level?
What is its total noise level?

. A certain 384-by 576-pixel full-frame CCD image-sensing chip has 23- x 23-micron pixels and

a pixel well capacity of 175,000 electrons, How does its charge storage density compare with the
800 electrons pers square micron of well area mentioned in the text? The chip has readout noise
of § electrons per pixel at a 40-Hz readout rate and 24 electrons per pixel at 200 kHz. Assuming
a linear relationship, at what readout frequency will it have a dynamic range of 10,0007 20,0007
The chip has a quantum efficiency of 0.40 at visible wavelengths and dark current of 6.5 electrons
per second per pixel at —45°C. What s its dark current at 0°C? Assuming that the incident light
flux is 10,000 photons per second per pixel, to what percent of capacity will the welis fill with a
20-sec exposure time? What exposure time would saturate the wells (fill them compietely)? At a
50-kHz readout rate and 0°C, what exposure time would make the chip’s SNR 300? What would
be the filling percentage of the wells at this exposure time?

. A certain 1317- by 1,035-pixel full-frame CCD image-sensing chip has 6.8- x 6.8-micron pixels

and a pixe! well capacity of 45,000 electrons. How does its charge storage density compare with
the 800 electrons per square micron of well area mentioned in the text? The chip has readout
noise of 5 electrons per pixel at a 50-kHz readout rate and 13 electrons per pixel at 500 kHz.
Assuming a linear refationship. at what readout frequency will it have a dynamic range of 4.000?
The chip has a quantum efficiency of 0.41 at visible wavelengths and dark current of 0.02 elec-
tron per second per pixel at —40°C. What js its dark current at 25°C? Assuming that the incident
light flux is 2,000 photons per second per pixel, what exposure time would saturate the wells (fill
them completely)? At a 400-kHz readout rate and 0°C. what exposure time would make the
chip’s SNR 2007 Whar would be the filling percentage of the wells at this exposure time? What
exposure time would make the SNR 100? What would be the filling percentage of the wells at this
exposure time”?

. Acertain 2,048- by 2,048-pixel full-frame CCD image-sensing chip has 9- X 9-micron pixels and

a pixel well density of 1.049 electrons per square micron. What s its well capacity? The clip has
readout noise of 13 electrons per pixel at a 200-kHz readout rate and at 500 kHz. What is its
dynamic range? The chip has a quantum efficiency of 0.45 at visible wavelengths and dark cur-
rent of 0.25 electron per second per pixel at —20°C. What is its dark current at 25°C? Assuming
that the incident light flux is 20,000 photons per second per pixel, what exposure time would sat-
urate the wells (fill them completely)? At a400-kHz readout rate and ~30°C, what exposure time
would make the chip’s SNR 1507 What would be the filling percentage of the wells at this expo-
sure time? What is the total noise level?

. A certain 3,072- by 2.028-pixel full-frame CCD image-sensing chip has 9- X 9-micron pixels,

and a pixel well capacity of 85.000 electrons per pixel. Ithas readout noise of 9 electrons per pixel
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PROJECTS

1.

at 4 500-kHz readout rate and 20 electrons per pixel at 2 mHz. What frequency gives it adynamic
range of 5,0002 The chip has a quantumn efficiency of 0.45 at visible wavelengths. and dark cur-
rent of 0.05 electron per second per pixel at —40°C. What is its dark current at 25°C? Assuming
that the incident light flux is 8.000 photons per second per pixel, what exposure time would sat-
urate the wells (fill them completely)? At a I-MHz readout rate and -30°C, what exposure time
would make the chip’s SNR 2567 What would be the filling percentage of the wells at this expo-
sure time?

. Under what general conditions of illumination, temperature, and exposure time would you

expectto see predominantly readout noise in animage digitized from a CCD sensor? Under what
conditions of illumination, temperature, and exposure time would you expect to see predomi-
nantly dark current noise? Under what conditions of illumination, temperature and exposure time
would you expect to see predominantly photon noise?

. A vidicon camera has a target 25 mm in diameter and a sensing spot 35 microns in diameter. What

is the maximum number of rows and columns it can digitize in a square image if its pixel spacing
is set equal to the spot diameter? If the digitized image is 480 by 640 pixels, what is the maximum
pixel spacing on the target?

Referring to problem 6 above, digitize flat field images from a CCD video camera under light and
dark conditions, and analyze them to determine the qualitative and quantitative nature of the
readout and photon noise components. Use the standard deviation of the gray level or the width
of the gray level histogram (see Chapter 5) to quantify the noise level. Account forany unflatness
of the test image.

. Referring to problem 6 above, digitize flat field images from a cooled integrating CCD camera

under light and dark conditions, at short and long exposures at high and low temperatures. Ana-
lyze the images to determine the qualitative and quantitative nature of the readout, dark current,
and photon noise components. Use the standard deviation of the gray leve] or the width of the
gray level histogram see Chapter 5) to quantify the noise level. Account forany unflatness of the
test image.

. Digitize an image from film, and characterize the resolution, noise level, and linearity of the pro-

cess. Use areas of constant gray level to estimate the noise level and sharp edges to estimate the
resolution. 1f the scene contains areas of different known brightnesses, plot the photometric
response of the process
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CHAPTER 3

Digital Image Display

3.1 INTRODUCTION

Image display is the final link in the digital image-processing chain. After all processing is
completed, the display transforms the digital image into a form suitable for human con-
sumption. While it is required for digital image processing, image display is not, strictly
speaking, required for digital image analysis—something that produces its output in the
form of numerical data or decisions. Display is useful in image analysis, however, for mon-
itoring and interactive control of the process.

In this chapter, we consider the construction and characteristics of digital image dis-
play systems and, in particular, the factors that determine the quality of displayed images
[1-6]). There are several display-related pitfalls that-should be avoided if one is to produce
images that do not call attention to themselves as having been processed by computer. Con-
sistent with the philosophy that computer processing, per se, should not degrade image
quality, we wish te avoid allowing a clearly imaged, properly digitized, and accurately pro-
cessed digital image to be degraded by a noisy or inaccurate display system.

3.1.1 Image Quality

The eye is capable of resolving only about 40 gray levels. This means that if the range
between black and white were divided into more than 40 equal intervals, adjacent gray lev-
els would appear identical to the human eye. There is, however, a built-in edge enhance-
ment process on the retina that makes it possible for the eye to detect gray-level transitions
much smaller than 1/40 of the total range.
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For example, consider a gray-scale target consisting of an array of 256 squares rang-
ing in gray level from black to white (Figure 3-1). The normal human observer can easily
see the boundary between adjacent squares, even though the difference in gray levels is only
| step in a range of 256 steps. However, if the boundary between adjacent squares is
obscured by a narrow strip, then adjacent squares appear to have equal brightness. Thus, it
is the edge, not the difference in gray levels, that is perceived.

There are two basic types of displays: permanent and volatile. Permanent displays
produce a hard-copy image on paper, film, or other permanent recording medium by per-
manently altering the light-absorbing characteristics of the recording medium. Volatile dis-
plays produce a temporary image on a display screen.

The basic components of a CRT display system are similar to those discussed in
Chapter 2. The scanning spot intensity is controlled by the gray-level values of the digital
image being displayed. Some CRT devices can be used as both film scanners and film
recorders.

Ordinarily, a display system produces an image in which the brightness of each dis-
play pixel is controlled directly by the gray level of the corresponding pixel in the digital
image. However, the primary function of the display is to allow the human observer to
understand and interpret the content of the image. In some cases, then, it is helpful to match
the display process to the characteristics of the human eye. For example, the human eye has
considerable acuity in discriminating fine detail (high-spatial-frequency information),
although itis not particularly sensitive to low-frequency (slowly varying) information inthe
image. Some images may be more easily understood if they are displayed indirectly by
using contour lines, shading, color, or some other graphical representation. Examples of
such displays appear later in the book.

Figure 3-1 256-step gray level test
target
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3.2 DISPLAY CHARACTERISTICS

In this section, we discuss those characteristics which, taken together, determine the quality
of a digital image display system and its suitability for particular applications. The primary
characteristics of interest are the size, photometric and spatial resolution, low-frequency
response, and noise characteristics of the display.

3.2.1 Displayed Image Size

The image size capability of a display system has two components. First is the physical size
of the display itself, which should be large enough to permit convenient examination and
interpretation of the displayed images. The second characteristic is the size of the largest
digital image that the display system can handle. The display must be adequate for the num-
ber of lines and the number of pixels per line in the largest image to be displayed. The trend
is toward processing larger images. Inadequate display size can reduce the effectiveness of
an image-processing instatlation.

3.2.2 Photometric Resolution

For display systems, photometric resolution refers to the accuracy with which the system
produces the correct brightness or density value at each pixel position. Of particular interest
is the number of discrete gray levels that the system can produce. This is partially dependent
on the number of bits used to control the brightness of each pixel.

Some displays are capable of handling only four-bit data, therefore producing only
16 distinct gray levels, while others handle eight-bit data producing 256 gray levels. How-
ever, it is one thing to design a display that can accept eight-bit data and quite another to
produce a system that can reliably display 256 distinct levels of gray. The effective number
of gray levels is never more than the number of gray levels in the digital data, but it may
well be less.

If electronic noise generated within the display system occupies more than one gray
level, then the effective number of gray levels is reduced. As a rule of thumb, the
root-mean-square (RMS) noise level represents a practical lower limit for gray-scale reso-
lution. For example, if the RMS noise levelis I percent of the total display range from black
to white, then the display can be assumed to have a photometric resolution of 100 shades of
gray. If the display system accepts gight-bit data. it still has only 100 effective gray levels.
If it is a six-bit display system, then it has 64 gray levels. The RMS noise level is used
because, if the noise can be assumed to have a normal distribution, then it will stay within
one standard deviation about 68 percent of the time.

3.2.3 Gray-Scale Linearity

Another important display characteristic is the linearity of the gray scale. By this, we mean
the degree to which brightness or density is proportional to input gray level. Any display
device has an input-gray-level to output-brightness transfer curve. For proper operation,
this curve should be reasonably linear and constant from one usage to the next. With per-
manent displays involving a film recorder followed by deveTopment and enlargement, care-
ful quality control is required for reproducible results.
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Fortunately, the human eye is not a very accurate photometer. Slight nonlinearities in
the transfer curve, as well as 10- to 20-percent intensity shading across the image, are hardly
noticed. If the transfer curve has a definite shoulder or toe at one end or the other, however,
information may be lost or degraded in the light or the dark areas.

3.2.4 Display Calibration

On volatile displays using television monitors, the transfer curve depends in part on the
brightness and contrast contro! settings on the monitor. Hard-copy printers often have one
or more adjustments on the front or rear panels as well. Sometimes these include a gamma
setting that affects the shape of the nonlinear transfer curve. Thus, itis possible for the user
to alter the transfer curve to suit his or her particular image and personal taste. In most cases,
however, it is most satisfactory to allow the processing to be done by the software and not
the display system, which should merely present the data to the operator without additional
“enhancement.”

A display calibration procedure can ensure that the displayed image properly renders
the digital image. A gray-scale test target, containing bars or squares of all different gray
levels, is displayed on the monitor or sent to the image recorder. Then the various adjust-
ments are set so that the full range of brightness is visible, but with no gray levels lost at
either end.

When an image-processing system is in proper calibration, a print from the hard-copy
recorder looks just like the image displayed on the screen, and this, in tum, is an accurate
rendering of the digital image data.

3.2.5 Low-Frequency Response

In this section, we consider the ability of a display system to reproduce large areas of con-
stant gray level, or flat fields. This ability depends primarily on the shape of the display spot,
the spacing between the spots, and the amplitude and position noise characteristics of the
display system. Since our goal is to minimize the visible effects of digital processing, we
prefer flat fields to be displayed with uniform intensity.

Pixel Polarity. A flat field can, of course, be displayed at any shade of gray
between black and white. On a cathode-ray tube display, for example, a high-intensity pixel
is displayed as a bright spot on an otherwise dark tube face. Zero-intensity pixels leave the
tube face in its intrinsic dark state. In a CRT film recorder, a high-intensity pixel leaves a
black spot on otherwise transparent film. Zero-i ity pixels leave the film transparent.
Thus, any display system has a characteristic pixe} polarity. No matter what the polarity,
however, zero-intensity fields are displayed uniformly flat. Therefore, flat field perfor-
mance becomes a problem only at intermediate- and high-intensity gray levels. These may
be either black or white, depending on the display system polarity.

Pixel Interaction. Flat field performance depends primarily upon how well the
pixels “fit” together. Certain-rotating drum film recorders image a rectangular aperture on
the sensitized film, producing sharp-edged rectangular pixels that fit together accurately,
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creating excellent field flatness. However, CRT devices, which are common for digital
image display, use a rectangular array of circular spots.

In the rest of this section, we examine the factors that affect field flatness with circular
spots. We model these circular display spots with the Gaussian function, which provides a
reasonable model for the study of display spot interaction. We address the problem of
selecting display spot spacing in terms of the spot radius.

3.2.5.1 The Gaussian Display Spot

Assume that the disnlay spot has a two-dimensional Gaussian intensity distribution of the
form

plx,y) = e = o 1)

where r is the radial distance measured from the center of the spot. If we define R as the
radius at which the intensity drops to one-half its maximum value, we can write the spot pro-
file function as

p(r) = e~(rIRIn(2) @
Rearranging the exponent yields
pir) = em@™™) 3)
which is simply
p(r) = 2—(rlk')Z )

as illustrated in Figure 3-2. The intensity distribution of a single spot then becomes

Cp(xy) = 2l )

which is depicted in Figure 3-3. We denote the display intensity by D(x, y), which reflects
the contributions of all the spots.

p(c/R)

riR —»
Figure 3-2  The Gaussian spot profile
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Py

Figure 3-3  The intensity distribution
of the Gaussian spot

3.2.5.2 Display Spot Interaction

Since the Gaussian spot does not fall below 1 percent of its peak amplitude until a distance
of about 21 radii from the center, display spots overlap unless they are rather widely spaced.
Figure 34 illustrates the density distribution along a line connecting two adjacent equal-
amplitude Gaussian spots separated by a distance d = 2R. Notice that there is a 12.5-percent
variation in intensity between the spot centers and the midway position. Thus, d =2R cannot
yield microscopically flat fields.

1125
Dir)
W)j

1
T
0 r—-» dr d = 2R

Figure 34  Overlap between adjacent Gaussian spots

In selecting display spot spacing for flat field performance, we are concerned with the
three “‘worst case” positions shown in Figure 3-5. These positions are the pixel center, mid-
pixel (midway between two pixels), and middiagonal (midway between four pixels). Ide-
ally, the pixel spacing would be chosen to make D(x, y) equal at all three positions. We can
write the display density at pixel center in a flat field of unit-amplitude spots as

D(0,0) =~ L + 4p(d) + 4p(+/2d) )
since only the eight nearest neighbor spots contribute 1 percent or more to the density for
d > 2R . Similarly, we can write

D(%.o)=2p(‘5’)+ 4p(ﬁg) )
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Figure 3-5  Critical positions for flat
. [ ] Y o field display

for the midpixel position, accounting for six neighbors. Finally,
11 d) ( d)
2 1lx4 a a
D(z’z) p(Jiz +8p| /105 ®
accounts for 12 spots surrounding the middiagonal position.
Figure 3-6 shows a plot of Eq. (6), (7), and (8) in the range 2R < d < 3R for the Gaus-
sian spot. Notice that no choice of d makes the density equal at all three points. The best
field flatness falls in the range 1.55R < d < 1.65R. At the intuitive choice of d = 2R, there is

a 26 percent variation in intensity. Atd = 3R, the pixels are clearly visible in high-intensity
areas of the displayed image.

3.2.6 HighFrequency Response

How well a display system can reproduce fine detail again depends on spot interaction. We
now consider the effect of spot spacing on the fidelity of reproduction of two “worst case”
images containing fine detail.

T T —T
D©,0)=D(172,12)=2.25
d=v2R
20} 4
D(1/2,0) =
S 41728 17))
Dix. v) d~ 1.63R
20k
D12, 112)
20 . 1 Lo a1
R 1L.5R 2R 2.5R 3R

Spot Spacing (d) —»
Figure 3-6  The cffect of spot overlap on field flatness
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3.2.6.1 The High-Frequency Line Pattern

A common high-frequency test pattern consists of alternating light and dark vertical (or hor-
izontal) lines spaced one pixel apart. These are sometimes referred to as line pairs, where a
pair consists of one dark and one adjacent light line. Every second column contains high-
intensity pixels, while the columns in between contain zero-intensity pixels. How well adis-
play system can reproduce a line pattern gives an indication about its performance on fine
image detail.

Figure 3-7 shows the positions of interest in a high-frequency vertical line pattern.
Bold dots represent pixels of unit amplitude, small dots pixels of zero amplitude. We can
write the pixel center density on the lines as

D(0,0)=1+2p(d) +2p(24d) (9)
and between the lines as
D(1,0)=2p(d) + 4p(J2d) (10)
Subtracting Eq. (10) from Eg. (9) yields
D(0,0) - D(1,0) = 1+ 2p(2d) - 4p(42d) (1)

which is the contrast of the displayed line pattern. The modulation factor
D(0,0) - D(1, 0}
D(0,0)

is shown in Figure 3-8 as a function of spot spacing. Notice that the modulation depth falls
off rapidly as spot spacing decreases below 2R. *

M = (12)

3.2.6.2 The Checkerboard Pattern

Another “worst case” high-frequency display pattern is the single-pixel checkerboard.
Here, pixel intensity alternates both horizontally and vertically. The critical positions for
this pattern are shown in Figure 3-9. The maximum density is given by

D(0,0) = 1 +4p(/2d) (13)
e d |
. Y . [} . L
. ® . ® . L ]

Figure 3-7 Critical positions for the
. [} . ) . ° vertical line pattern
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Figure 3-8 Spot spacing effect on the vertical line pattern

and the minimum density by

D(1,0) = 4p(d) + 8p(/5d) (14)

The modulation factor, again given by Eq. (12), is plotted in Figure 3-10. The loss of
modulation depth with decreasing spot spacing in the checkerboard pattern is even worse
than in the line pattern.

The Spot Spacing Compromise. The goals of field flatness and high-frequency
response place conflicting constraints upon the selection of spot spacing. The actual compro-
mise between the two depends on the relative importance of high- and low-frequency infor-
mation in each individual image. Spot spacing can be considered a display variable that must
be tailored to the image-processing application.

3.2.7 Sampling for Display Purposes

We show in Chapter 12 that displaying a digital image is actually a process of interpolation,
in that it reconstructs a continuous image from a set of discrete samples. We also see that the

I
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Figure 3-9 Critical positions for the

[ ] . [ . checkerboard pattern
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Figure 3-10  Spot spacing effect on the checkerboard pattern

proper interpolation function (i.e., the shape of the display spot) has the form sinc(ax) =
sin{ax)/ax, which is, in fact, quite different from the Gaussian.

Figure 3—11(a) shows, in one dimension, the example of a cosine function that is sam-
pled atarate of 3.3 sample points per cycle of the cosine. That is, the sample spacing is 30 per-
cent of the period of the cosine. In Chapter 12, we shall see that this sample spacing is small
enough to preserve the cosine and that proper interpolation will reconstruct the cosine from its
samples without error. When this sampled function is interpolated with the Gaussian, how-
ever, the distorted waveform in Figure 3—11(b) results. This illustrates that the display process
itself can degrade an image—even one that has survived digitization without damage.

The difficulties encountered in the foregoing sections illustrate that image display
using a Gaussian-shaped spot is a suboptimal process. While it is impractical to implement
display devices with sin(ax)/ax- shaped display spots, there are things that can be done to
improve the situation.
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Figure 3-11  Sampling and interpolation: (a) the cosine sampled at 3.3 samples per
cycle; (b) the sampled cosine interpolated with a Gaussian display spot
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3.2.7.1 Oversampling

The inappropriate shape of the Gaussian display spot has less effect when there are more
sample points per cycle of the cosine. Thus, one can improve the situation by arranging to
have many pixels that are small in relation to the detail in the image. This is called over-
sampling. It requires more expensive cameras and produces more image data than other sys-
tem design considerations would dictate.

3.2.7.2 Resampling

Another way to improve the appearance of an image displayed with a Gaussian spot is by
resampling. This is the process of increasing the size of the image by digitally implemented
interpolation prior to displaying it. For example, a 512-by-512 image might be interpolated
up to 1,024 by 1,024 and then displayed on a monitor with a Gaussian display spot. If the
interpolation is properly done, the displayed result will be more satistactory.

Figure 3—12 shows what happens when two extra sample points are inserted between
each pair in Figure 3—11(a). The value at each new sample point is determined by placing
asin(ax)/ax function at each of the original sample points and summing their values at each
new sample position. Here, = 71/1, where Tis the original sample spacing. This is digitally
implemented interpolation using the correct interpolation function. Figure 3—12(b) shows
that when the new (three times larger) sampled function is interpolated with a Gaussian
function, the result is more satisfactory.

Resampling a digital image by a factor of two or three increases its size by a factor of
four or nine, respectively. and this requires a display device that can accommodate the
resulting larger image size. It needs to be done only as the last step prior to display, however,
so the burden is not felt until that stage. Some high-quality display systems have resampling
built into them.
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Figure 3-12  Resampling with sinc interpolation: (a) resampling; (b) reconstruction by
Gaussian interpolation

3.2.8 Noise Cousiderations

Electronic noise in a display system produces variations in both the intensity and position of
the display spot.
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3.2.8.1 Amplitude Noise

Random noise in the intensity channel can produce a salt-and-pepper effect that is particu-
larly visible in flat fields. The previously stated rule of thumb indicates that the effective
quantizing level is roughly equal to the RMS noise amplitude. If the noise is periodic and of
reasonably high intensity, it can produce a herringbone pattern superimposed on the dis-
played image.

If the noise is periodic and synchronized with the horizontal or vertical deflection sig-
nals, it can produce a pattern of bars. The general display quality is adequate if all noise, ran-
dom and periodic, is kept at or below one gray level in amplitude. In many systems, it is
much worse than that.

3.2.8.2 Spot Position Noise

A more serious effect results from noise in the display spot deflection circuits: nonunifor-
mity in the display spot spacing. Display position noise, unless extremely severe, will not
have a noticeable geometric effect upon the image. However, the effects of spot interaction
combine with position noise to produce considerable variation in amplitude. Because spot
interaction effects amplify position noise, careful display design requires precise pixel posi-
tion control.

Recall from Figure 3-6 that variations in spot spacing cause considerable change in
the midpixel, pixel center, and middiagonal intensities of flat fields. As an example, sup-
pose that a |,000- by-1,000-pixel display uses a spot spacing equal to twice the spot radius.
Notice in the figure that, as spot spacing goes from 1.9R to 2.1R, middiagonal intensity
increases from about 0.87 to 1.16. This reflects a 29-percent change using 1.0 as an intensity
reference. However, a spot spacing variation of 0.2R is only 0.01 percent of full-scale
deflection. Thus 0.01-percent peak-to-peak noise in the deflection circuit produces a 29-
percent variation in the middiagonal amplitude. The pixel center and midpixel amplitudes
are also affected, but to a lesser degree. At spot spacings less than 2R, the effect of position
noise is even more pronounced.

When position noise is random, it produces a salt-and-pepper effect throughout the
displayed image. Position noise is most visible in high-intensity flat fields, where spot inter-
action is most obvious. Frequently, nonrandom position noise is introduced by inaccurate
digital-to-analog converters. The analog deflection signal is often produced by digitally
switching resistances into and out of a resistive voltage divider network. If these resistance
values are not precise, the conversion, and thus the deflection signal, will be inaccurate.
Digital-to-analog converter noise produces fine vertical and/or horizontal lines at regular
intervals throughout the image.

Numerous other techniques exist to improve the flat field and high-frequency
response of display systems. For example, a hexagonal sampling grid may be used for some
improvement of flat field response. In some cases, it is possible to control the pixel shape for
better overlap characteristics. In many systems, however, the pixel shape is beyond the
operator’s control. In Part 2, we develop analytical techniques to describe the effects of
pixel shape and spot spacing.
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3.3 VOLATILE DISPLAYS

The most common type of volatile display uses a cathode-ray tube, scanned in a raster fash-
ion, while the pixel spot intensity varies with position to produce the image [7-12]. An ordi-
nary television monitor can act as a digital image display if it is provided with a suitable
video signal. Since the display spot scans the image continuously, the display must be con-
tinually refreshed from a stored digital image. Volatile displays can be refreshed froma dig-
ital image stored in a dedicated random-access memory.

Laser displays can be built using moving mirrors or other means for beam deflection
and a Kerr cell for intensity modulation of the beam. Gas discharge displays are made by
sandwiching a fine mesh between two sheets of glass, leaving a rectangular array of cells
containing an ionizable gas. By using coincident horizontal and vertical addressing tech-
niques, the cells can be made to glow under the influence of a permanent sustaining elec-
trical potential.

Several new types of solid-state displays are on the horizon. These promise to be com-
pact and relatively inexpensive. using liquid crystal and light-emitting diode technology.

3.4 PERMANENT DISPLAYS

Devices that record a permanent image on paper or film are called image recorders or hard-
copy devices. This section addresses the various technologies upon which these units are
based.

Dithering. Some printing technologies are able to print each pixel withany desired
shade of gray, from white to black. Others, however, can print only a solid dot or nothing,
leaving the paper in its native {white) state.

" The halftone process used in newspaper printing simulates shades of gray by varying
the sizes of tiny black dots arranged in a regular pattern. In light areas of the picture, the dots
are quite small relative to their spacing. The dot diameter grows where the image takes on
darker shades, until the dots merge to form solid black.

The process of using a pattern of solid dots to simulate shades of gray is called dith-
ering or halftoning. Different shapes and patterns of dots have been employed in this pro-
cess, but the effect is the same. When viewed from a great enough distance that the dots
themselves are not discernible, the pattern appears as a solid shade of gray.

Color Printing. The human visual system can independently sense three spectral
bands of light: red, green, and blue. (See also Chapter 21.) These are called the primary col-
ors because any perceived color can be duplicated by a proper mixture of red, green, and
blue light. Color CRTs exploit this property by using thousands of tiny red, green, and blue
light-émitting dots to re-create a picture on the face of the tube.

A hard-copy print, however, is viewed in reflected light. Thus, the primary elements
for its image construction are three dyes, each of which absorbs red, green, or blue. Mixed
in the proper proportion, three such dyes can theoretically reproduce any visible color.

A dye that absorbs blue light appears yellow when viewed in white light. Likewise,
a green-absorbing dye appears magenta (purple), and a red-absorbing dye appears cyan
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(blue-green). Cyan, magenta, and yellow, called the secondary colors, are thus the three
basic colors used in color printing and constitute what is called the CMY system.

Theoretically, an equal mixture of cyan, magenta, and yellow dyes will appear black,
since red, green, and blue are each absorbed. A dilute mixture will appear gray. since it can
absorb only a portion of the incident light. The black that results from mixing the three sec-
ondaries is called composite black.

In practice, however, available dyes are often unable to produce visually pleasing
shades of gray. For this reason, color printing practice commonly uses a fourth ink, black,
to ensure that the gray scale is properly rendered. Sucha system is called the CMYK svstem,
or the four-color printing process.

3.4.1 CRT and Laser Image Recorders

A common permanent display technology is the CRT film recorder. This is basically a film
camera. mounted in tront of a CRT display. With the shutter open, the entire image is dis-
played, pixel by pixel, to expose the tilm. Since only one pass is needed, no refreshing is
required.

The pixel intensity can be modulated by controlling either the brightness of the spot
or the duration for which each pixel is displayed. The pixel exposure on the film is nomi-
nally proportional to the product of the exposure intensity and exposure time. If spot inten-
sity modulation is used, nonlinearities in the phosphor brightness versus beam current curve
must be compensated for.

Drum-feed display devices use a slowly rotating drum to pull paper or film pas! a lin-
ear scanning mechanism operating perpendicular to the direction of motion of the paper or
film. The linear scanning element can be a cathode-ray tube performing a single line scan.
The scan line is imaged on the paper to effect exposure. The scanning mechanism might
also be a laser beam exposing photosensitive paper or an electric current exposing electro-
lytic paper.

Electrolytic paper is sensitized so that a localized current through the paper causes the
portion atfected to darken. In general, the degree of darkening is proportional to the current,
and this provides a means of modulating the pixe! intensity. Better results are obtained by
dithering with solid black pixels. however, since the electrolytic process is considerably
more repeatable when carried to saturation.

Finally. an electrostatic charge image can be written on the paper and used to attract
a powdered toner. Heat is then used to fuse the toner permanently into the paper. This tech-
nology is similar to that commonly used in photocopy machines.

The rotating-drum film recorder uses a rotating drum and lead screw arrangement
similar to Figure 2-7 to expose a single sheet of film. It uses an objective lens to image the
aperture upon the unexposed film. The aperture is illuminated by a light source, typically a
light-emitting diode. The intensity of the light source is modulated by the gray level of the
digital image. Frequently, the size and shape of the aperture, as well as the horizontal and
vertical pixel spacing, are adjustable.
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3.4.2 Ink-Jet Printers

Whether monochrome or color, liquid ink-jet printers operate by spraying a stream of ink
through a set of fine noszles mounted in a disposable cartridge | 13]. When the ink (an
opaque dye dissolved in water) hits the medium (paper or film), it dries. leaving a smali
spot. Sometimes heat is applied to speed the drying process and prevent the ink from smear-
ing before it dries.

When ordinary paper is used, the ink spreads out through the paper before it dnes.
making the printed pixels somewhat larger and more diffuse than they would otherwise be.
Special (more expensiver paper controls this phenomenon. producing sharper images. Dol
densities commonly range fron: 300 to 600 dots per inch (dpi). Since the ink is opaque., dith-
ering is requised o reproduce shades of gray.

A liquid ink-jet color printer uses either three (CMY) or four (CMYK) colored inks.
Gradations of color are produced by dithering. The process can result in visible contour
lines in areas of an image that change color or brightness gradually.

Solid ink-jet color printers use three or four sticks of ink in solid form. Each ink 15 a
mixture of wax, adhesives, and non-water-soluble dye. It is melted by heat and sprayed onto
the recording medium the same as with a liquid ink-jet printer. The ink cools and solidities
quickly. however, minimizing absorption into the paper and ieaving a sharper image, The
colors are more brilliant. particularly on plain paper. Since the ink is not water soluble. the
prints are more water resistant. Transparencies are less successtul, however. since the beads
of ink that are deposited on the film scatter light. giving a washed-out appearance to the pro-
jected image.

Ink-jet printers are reasonably inexpensive to buy and operate, particularly if plain
paper is used. The costof ink cartridges can be substantial, however. particularly it the
images prinied have a large portion of their area covered with color. Compared te the other
technologies discussed here. the image quality of ink-jet printers is somewhat limited.

3.4.3 Thermal Wax Transfer Printers

The thermal wax transfer printing process uses a roll of plastic film that is coated with
pigment-impregnated wax [14]. This ribbon has rectangular panels, cach the size of a
printed sheet, that are coated with ink. The panels alternate through the colors cyun,
magenta. yellow, and black.

Ln operation, the colors are applied. one at a time, by placing the appropriate panel of
the ribbon in contact with the print medium and drawing this past the print head. The print
head has thousands of tiny heating elements that turn on as required to melt the wax and
transter it to the paper, leaving a dot. Dot densities go up to 300 dpi or more. As with the ink-
jet printer. dithering is required to produce shades of color.

Thermal wax prints are more vivid than ink-jet prints, particularly on projected trans-
parencies. They can use plain paper, but special (more expensive) thermal transfer paper
accepts the wax transfer more reliably. yielding better results. Prints appear glossy, except
in areas where no ink is applied. Dithering can produce visible contours where colors
change gradually.
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3.4.4 Dye Sublimation Printers

The construction of a dye sublimation printer is similar to that of a wax transfer printer, with
a ribbon of alternating CMYK ink panels and a thermal print head. The difference is in the
method of color transfer to the print medium [15].

Unlike inks, which are opaque and make a solid dot, dyes are transparent and merely
tint the print medium. Under the influence of the heat from the print head, the dye on the
ribbon sublimates; that is, it changes directly from the solid phase into a gas. It is then imme-
diately absorbed by the polyester coating of the medium, producing a small colored dot.

Varying the temperature of the print head element controls the intensity of the result-
ing dot. Since the dyes are transparent, overlying dots mix, forming intermediate colors.
Thus, there is no requirement for dithering to produce intermediate shades. This gives dye
sublimation prints aimost photographic quality. Diffusion of the gas gives the dots soft
edges, making flat areas appear quite smooth. However, it also reduces the printer’s ability
to reproduce sharp-edged graphics. Dot densities go up to 300 dpi.

Of the three most commeonly used printing technologies, dye sublimation printers are
the most expensive to buy and operate, but they deliver the best image quality. Thermal wax
printers are intermediate in price and image quality, except that they are particularly well
suited for transparencies. Ink-jet printers are lowest in price and image quality.

3.4.5 Other Printing Technologies

Other display technologies can be combined to produce systems not enumerated here. We
have, however, covered the most important digital image display technologies at the current
state of the art. This should provide a basis upon which to evaluate the adequacy of indi-
vidual systems for particular image display tasks.

Continuing development in the rapidly expanding field of solid-state electronics and
color printing technology promises to improve display quality and reduce cost in the future.
We can ook forward to more compact and efficient, high-quality digital image display
devices at reduced cost.

3.5 SUMMARY OF IMPORTANT POINTS

1. The quality of an image-processing solution is usually judged by the subjective qual-
ity of its displayed images.

2. A poorly designed, adjusted, or maintained display system can degrade, in the final
step, an image that has been otherwise properly digitized and processed.

3. Smaller display spot spacing produces better flatness of uniform fields, while larger
spot spacing better reproduces the contrast of fine detail.

4. Displaying a digital image is an interpolation process that reconstructs a continuous
function from a set of discrete samples.

S. The proper form for the interpolation function s sin{ax) ax, where @ = 7/7, and Tis
the sample spacing.
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6. Most display devices have a display spot that is approximately Gaussian in shape and
is thus less than ideal for the interpolation process.

7. Image degradation due to spot shape can be reduced by oversampling the image when
digitizing, or by digital resampling to increase the number of pixels, prior to display.
Digital resampling should be done with the sin(ax)/ax function.

Some high-quality display systems have resampling built in.

© ®

PROBLEMS

1. A particular display system has its Gaussian spot spacing adjusted to 1.6R for good flat field ren-
dition. What will be the modulation factor of a horizontal pattern of one-pixel-wide black-and-
white lines displayed on that system? Of 4 one-pixel checkerboard? Sketch the profile of dis-
played brightness across four pixels.

14

If you adjust the spot spacing of a display system with a Guassian spot so that a one-pixel-wide
line pattern has no less than 85-percent modulation and a one-pixel checkerboard has no less than
75-percent modulation. what is the least variation in intensity you can get in a flat field? What
pixel spacing (in terms of spot radius) should you use? Plot what the profile of a flat field will
look like.

3. Suppose you have a rotating-drum of type film recorder that lays down a square display spot with
steep sides. Plot the profile of the flat field that would result from using spot spacing values of
(a) 0.85, (b) 1.0, and (c) 1.15 times the width of the spot. What instructions would you give the
operator regarding adjustment of the spot spacing prior to printing your images?

PROJECTS

1. Resample a digital image, making it larger by a factor of two using (a) pixel replication (nearest
neighbor interpolation), (b) bilinear interpolation (see Chapter 8). and (¢) sinc interpolation (see
also Chapter 12). Display all three images. and survey 10 people from other departments on what
they like and dislike about each. Write a report comparing the computational complexity of and
image quality produced by the three methods. In particular, discuss how the type of image (i.e.,
graphics vs. natural scene, etc.) and the display hardware used contribute to the result.

2. Generate a testimage having flat field. line, and checkerboard patterns. and use it, in combination
with a magnifying glass, 10 estimate the spot spacing (in units of spot radtus) of at least two color
and at least two black-and-white CRT display systems.

ol

Generate a test image that shades linearly from white o black and use it to evaluate the dither
patterns produced by at least two gray-scale or color printers. Using a magnifying glass, deter-
mine what the dithering scheme is, and explain why the best scheme is better and the worst
scheme is worse.
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CHAPTER 4

Image-Processing Software

4.1 INTRODUCTION

Other sections of this book address the algorithms used in digital image processing and the
hardware components upon which these techniques are implemented. In this chapter. we
address the organization of the computer programs that implement the operations. In par-
ticular, we consider how the software is designed. developed. and presented to the user. A
knowledge of this process is useful to image-processing software developers and users
alike. For developers. it can save wasted effort and disappointing performance. For users. it
can aid software evaluation and project execution.

The chapter provides an overview of these vital topics. We note the importance of
those issues that are particularly relevant to digital imaging and point to the substantial body
of literature on the subject.

[n its most complete form, as with a commercially available software product. the
software development process involves severat stages. The conceptual design phase estab-
lishes the basic functional and operational characteristics, and then an algorithm research
activity identifies and qualifies workable techniques. Next, the coding phase produces the
first version of the complete software package. In the testing and revision phase. bugs are
fixed and new ideas are incorporated into the program. User documentation describing how
to operate the system and technical documentation explaining its physical and logical struc-
ture come next. Finally, the software is released and supported in the field. The latter activ-
ity includes customer training, technical support, and ongoing maintenance of the software.

An applications project is different from a development project in that one uses exist-
ing hardware and software to solve a particular problem. This begins with the selection of
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the hardware platform and software packages to be used. There is again a conceptual design
phase, followed by the collection of a set of images for use in development and testing. The
actual algorithm development is followed by performance testing, and then the technique
goes into routine use. This might involve demonstrating and publishing the technique,
conducting a research study of finite duration, or installing the system in some
production-oriented activity.

4.2 IMAGE-PROCESSING SYSTEMS

The computer systems that are most commonly used for digital image processing fall into
four categories: (1) the Apple Macintosh, with its built-in operating system software and user
interface; (2) IBM PC-compatible computers, using a disk operating system (DOS, PS/2,
etc.) and frequently Microsoft Windows™ or IBM OS/2™ as well; (3) graphics worksta-
tions, typically using the UNIX operating system and often the XWINDOWS environment;
and (4) mainframe computer systems, with vast resources shared by multiple users located at
remote workstatums. Groups of nearby systems often share resources and data through a
local area network (LAN). They frequently have access 1o a wide-area network as well.

4.2.1 Image Data File Format

As an activity, digital image processing generally creates large numbers of relatively large
data files containing digital images. These must be archived, and often they need to be
exchanged between different users and systems. This calls for some standard format for the
storage and transfer of digital image files.

Many digital image file formats have been defined and used [1]. A few have gained
wide enough usage to become more or less de facto standards. (See Table 4—1 for exam-
ples.) Most commercially available image-processing programs can read and write several
of the popular image file formats. Other programs exist simply to read and display images
stored in a variety of file formats and convert them from one format to another. Such pro-
grams automatically sense the format of the specified input file, either from its filename
extension or from identifying information in the file itself. When saving a displayed image
to a file, the user can specify the desired file format.

TABLE 4-1 IMAGE DATA FILE FORMATS

Name Type Usage
Tagged image file format TIF  DOS, UNIX, and Macintosh images
Encapsulated PostScript *EPS  Publishing industry format
Graphical interchange format  *.GIF ~ CompuServe graphics format
Bit-mapped format *BMP Microsoft Windows format
Presentation manager *BMP IBM 08S/2 bit-mapped format
Macintosh *PICT Apple Macintosh images

Most image file formats store 1abel annotation in addition to the image data. This can
include data about the creation and format of the image, as well as annotation supplied by
the user.
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Monochrome display devices commonly employ an eight-bit digital-to-analog con-
verter circuit to generate the video signal that controls the brightness of the displayed pixels
on the screen. This provides the capability for 256 shades of gray. Color display devices use
three eight-bit digital-to-analog converters to generate the three video signals that control
the brightness of the red. green, and blue components of the displayed image. Thus. these
have the inherent ability to display 2%, or over 16 million, different colors. Given the imper-
fections common in display tubes and the limitations of the human eye. the actual number
of discernible colors is considerably less.

Digital images occur not only in both monochrome and color format, but in different
degrees of photometric resolution (numbers of colors or shades of gray) as well. For
monochrome images. the number of shades of gray in the gray scale is most commonly
either 2. 16, 0r 256, corresponding to 1, 4, and 8 bits per pixel, respectively. These particular
resolutions are easily packed into eight-bit bytes in memory and disk files. Different reso-
lutions are also used in certain applications.

The palette is a look-up table that relates each pixel value in the image (o the corre-
sponding displayed color. A four-bit colorimage, then. is displayed using 16 specific colors
selected by the palette from the 16 million of which the display is ideally capable.

For color images, a fixed number of colors is represented by the different pixel values.
A 4-bit color image can show only 16 distinct colors on the display. A palette defines the
mapping from the 16 possible pixel values to the much larger number of display colors. The
choice of the 16 particular colors is at the discretion of the programmer and is often passed
on 1o the user. Eight-bit color images are displayed with 256 separate colors, and 24-bit
color images have a range thatincludes 16 million colors. The palette that specifies the map-
ping for a particular image is commonly included in the image data file, and it controls the
display device when the image is being viewed or printed.

4.3 THE USER INTERFACE

In the early days of computing, the user’s primary interface with the sysiem was the man-
ufacturer’s operating system software. Although flexible, these packages were necessarily
cumbersome in routine use. More recently, the trend has been toward making the sofiware
interface quite user friendly. This affords the operator a convenient and comfortable envi-
ronment in which to develop and use digital image-processing software, Such a user inter-
face makes the required tools conveniently available, with a minimum of burden. Modern
software packages for digital image processing put processing power and flexibility in the
hands of the user quickly and easily. Their design caters to the user’s intuition, and this
makes them easy to learn and to use. Although usually well documented, they approach the
ideal of being self-explanatory.

4.3.1 Command-Line Interpreter

The oldest and simplest type of user interface is the command-line interpreter (Figure 4-1).
Using textual language exclusively, it requires the user to know the available options, either
from memory or from documentatior open on the desk. It greets the user with an on-screen
prompting character indicating that it is ready to proceed, but it offers no assistance
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Figure -1 A command-line interpreter interface

regarding what is possible or advisable. This requires a heavy reliance on the written doc-
umentation, particularly in the learning phase. The situation is improved significantly by the
use of batch files or script files, which specify a series of processing steps and can be
invoked with a single command. A rich set of script files can make a command-line inter-
preter bearable to deal with.

4.3.2 Menu-Driven Interface

The second generation, the menu-driven interface, offers an on-screen list of choices, the
selection of which can be accomplished by one or two keystrokes (Figure 4-2). This greatly
reduces the operator’s memorization burden and reliance on written documentation, as well
as the effort required to Yaunch a particular process into action.

In its more advanced incarnation, the menu-driven user interface operates in response
to a graphical pointer device (mouse, trackball, etc.). This is the point-and-click interface.
with which the user moves the on-screen pointer to an appropriately labeled area and
presses a button on the device. The user can pull down one of several menus from a menu
bar at the top of the display as needed, thus reducing clutter on the screen. The user then
clicks on the option chosen, and the menu disappears.

Menus can exist in a hierarchical structure. Selecting an item in one menu displays a
submenu of more specific choices. Each menu or menu item may also have an associated
help message explaining the option and its use. This aiso pops up on the screen at the oper-
ator’s request.
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Figure 4-2 A menu-driven interface in a window environment

4.3.3 Graphical User Interface

The third generation is the graphical user interface (GUI, pronounced “gooey”). The oper-
ator controls the system in part via a visual language rather than a strictly textual language,
as with the command-line interpreter. The GUI represents the available options not with
text, as in a menu, but with graphical symbols displayed on the screen. These icons can rep-
resent not only processes, but also data (such as digital images) and hardware devices (disk
drives, printers, etc.).

With a GUI implementation, one can initiate an action—for example, the printing of
a stored image—by the drag-and-drop technique. Using the pointer device, the operator
picks up the icon representing the image, moves it to another icon representing the printer,
and releases it, and the printing process begins. This is not only faster than typing a com-
mand line. but more entertaining as well,

4.3.4 Data Flow Interface

Another type of GUI uses a graphical network, or data-flow diagram, symbology (Figure 4—
3) [2]. Here, visual language is used almost exclusively. One again has available a menu of
symbols (glyphs) representing devices, data, and processes. In this case, however, by drag-
ging glyphs with the pointer. one composes an on-screen flowchart describing the intended
series of processing steps. Each glyph has ope or more input and/or output pads (connection
points), as appropriate. The user specifies the processing flow by interconnecting the pads
with lines drawn using the pointer device.
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Figure 4-3 Example of a data-flow diagram GUI

Each glyph also has control pads which, when selected by the pointer, either initiate
execution of the process or cause menus to pop up, thereby allowing the user to define the
specifics of the process. Each glyph typically displays a state indicator that shows whether
it (1) is incompletely defined, (2) is ready to be activated, or (3) has already completed its
action.

4.3.5 Windows

In the early days of image processing, well-funded users discovered that having multiple
display monitors available on the system greatly increased its usability. It is convenient to
use separate displays for the user interface and for image display, for example. A modern
(and less expensive) alternative is to use a single large-format display for several functions
at once.

A window-oriented environment is a software package that uses the display screen
efficiently to show several independent objects at the same time. The user can open (i.e.,
establish or define) several display windows on the screen and use each for a different dis-
play purpose, much as one might use maltiple display screens. Each window can be relo-
cated and resized at will on the screen, typically by dragging its borders with the pointer
device. Where windows overlap, one (the active window) hides part or all of the window or
windows “beneath” it, as with overlapping photographs on a desktop.

The trend in user interface design is toward more use of visual language, at the
expense of textual language. The feeling is that a visual interface is easier for the beginner
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to learn and faster for the expert to use than one that requires typing text at a keyboard.
Veice input is also a useful adjunct to the mouse and keyboard. Synthesized speech allows
the system to respond in kind to the operator. Such a verbal interface is particularly useful
“when the operator’s attention is divided between the display and other tasks. In some cases,
digitized video sequences can supply valuable on-line help when needed.

4.4 THE SOFTWARE DEVELOPMENT PROCESS

In the pioneering days of computer programming in general, and digital image processing
in particular, the software development process was, in today’s parlance, unstructured.
Computer programmers were not only rare, but, like other types of pioneers, individualistic
as well.

Perhaps having only a vague concept of what the new software was required to do,
the programmer simply started writing code, synthesizing a complex whole from simpler
parts in the process. The overall design, then, developed in parallel with the implementa-
tion. Major design decisions were made all along the way. The modules commonly devel-
oped from the bottom up, with the most basic routines written first and higher level routines
then built upon those. Early programmers creatively exploited the richness of the
high-level languages of the day by writing code that was fast, compact, and essentially
undecipherable.

By 1970, several problems with this approach had become apparent. First, the com-
plexity of software projects advanced to the point that it was difficult for the programmer to
keep all aspects of the program in mind at once. Research in psychology suggests that a
human is uncomfortable trying to keep track of more than five to nine different pieces of
information at one time [31. This limitation repeatedly ook its toll on the cost and budget of
large software development projects.

Second, on projects involving groups of programmers, coordination of effort became
a major problem. Modules written by different individuals failed to mesh together
smoothly. Third, as personnel changes occurred, it became quite wasteful for new program-
mers to decipher existing source code in the absence of some commonly agreed-upon struc-
ture, particularly when accompanied by a lack of written documentation. In a university
setting, for example, the 'depanure of one student or staff programmer could render unus-
able all the software he or she had developed while working on research projects.

Modern commercial software development projects require considerable interaction
among many individuals to ensure that the final product meets all the (often competing)
requirements. Figure 44 is an example of a flowchart used in a commercial software devel-
opment project.

The major steps in the software development cycle are listed in Table 4-2. These can
be done sequentially, with overlap, or iteratively. By definition, anafysis is the process of
studying the problem and specifying the operational characteristics of the solution in terms
of its externally observed behavior. The result is a functional specification of the software
that is to be written. Design is taking this specification and adding the details required for
implementation on a particular platform. Programming, of course, is writing, testing,
debugging, and documenting computer programs.
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TABLE 4-2 THE SOFTWARE DEVELOPMENT CYCLE

|. Requirements analysis
2. Preliminary design

3. Prototyping (if required)
4, Derailed design

S. Implementation {coding)
6. Testing

7. Maintenance

While this approach may appear overly compiex, experience has shown that it is less
expensive to do the job right the first time than to spend extra time modifying and debug-
ging a program because it was done poorly the first time.

4.4.1 Program Operation

An application program can operate in one of three modes, depending on what role time
plays in the computation. In batch mode, the program'is placed in a queue and executed
whenever the computer becomes free of prior tasks. While the instructions must be exe-
cuted in sequence, it makes no ditference whether nanoseconds or minutes pass between
instruction executions. Some image-processing programs fall into this category.

An event-driven program sits in an event loop, waiting for something to happen. Nor-
mally. an action by the operator (pressing a key, clicking the mouse, etc.) constitutes an
event. The program continually polls the input devices and detects and identifies each event
when it occurs. Then it executes the appropriate routine and returns 1o the event loop. Inter-
active image-processing programs normally fall into this category.

A real-time program monitors an ongoing process, such as a manufacturing opera-
tion. Time itself plays an important role in the computations. Often, the program is moni-
toring the output of a process while adjusting the parameters that control the process. This
can involve image processing.

4.4.2 Top-Down Design

In the early 1970s. the concepts of structured programming and top-down design arose in
response to the problems created by unstructured programming. Top-down design calls for
writing and debugging the highest level of software (typically the user interface) first and
then progressively adding lower level routines, with hardware driver routines usually writ-
ten last. This contrasts with botrom-up design, wherein one writes the most basic routines
first and then builds progressively upon them, sometimes only to discover that a needed
function has been omitted from the lower level routines.

Top-down design has two significant advantages. One concerns the interfaces
between modules. The top level is designed directly from the functional specifications of
the system. Then each interface between modules is worked out using stubs (dummy rou-
tines that simply return control to the upper-level routine without taking any action). Jtthen
becomes much less likely that some critical variable will be left out of the interface.

The second advantage is that the system becomes partially demonstrable very early in
the development process. The user interface can be shown and evaluated early on, giving
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potential users a preview of things to come. Stubs stand in for the unwritten lower level
routines. Functional routines gradually replace the stubs, from the top down, as the project
unfolds

4.4.3 Structured Development

The structured approach to software development became prominent in the 1970s. [t was an
effort to make the process more efficient by formalizing it, imposing discipline on it, and
using design tools that tend to prevent the problems that otherwise plague the process.
Structured development primarily decomposes the problem along functional lines. It is well
suited for batch-mode programs.

4.4.3.1 Structured Analysis

Structured analysis decomposes the problem that is to be solved along functional lines. It
results in a structured specification. This consists of (1) data flow diagrams (DFDs) show -
ing the decomposition of the overall function into processes and the data flow andinterfaces
between the processes; (2) a data dictionary that documents the data and interfaces in the
DFDs; and (3) transform descriptions that document the function of each process on the
DFDs. The structured specification, then, shows the various structural components of the
system and how information flows between, and is transformed by, each of them. {4,5].

4.4.3.2 Structured Design

The goal of structured design is an organized methodology that distinguishes between good
and bad designs and proceeds to an optimal solution. It is a collection of strategies and tech-
niques that lead to designs that satisfy the technical objectives and constraints that are com-
mon to commercial and scientific computing environments. Structured design develops a
design consisting of black-box components whose function is specified, but whose internal
workings are not. It shares several principles with the techniques that are used to develop
organization charts for corporations [6].

4.4.3.3 Structured Programming

Structured programming establishes standardized coding techniques and removes from the
programming languages certain commands that tend to encourage poor programming
habits. Structured programs conform to a flowchart that is built up from a restricted set of
single-entry, single-exit subfunctions. Programming then becomes a much r.ore disci-
plined endeavor, avoiding cleverly creative constructs in favor of adherence to standards.
The resulting code is much easier to read, test, modify, document, and debug (7-9].

Structured programming languages, such as Pascal, Ada, and C, emerged to compete
with unstructured languages, such as FORTRAN and BASIC. Structured languages provide
capabilities that encourage and support the discipline of structured programming, while
avoiding those that encourage poor programming practice. Mare recent versions of the ear-
lier languages now incorporate some of the concepts of structure as well.

In an unstructured language, the thread of control is free to jump about throughout the
entire program. An example is the infamous computed GOTO statement in FORTRAN.
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Control is transferred to one of several different locations in the code, depending upon the
value of a specified vanable at the time the statement is executed. A listing of a routine con-
taining these constructs can be extremely difficult to read and understand—even by the
author of the routine—if the code is more than 60 days old.

In a structured language. the flow of control is restricted to a single-thread construc-
tion, and code and data are easily compartmentalized. Subroutines using only local (tem-
porary) variables cannot create inadvertent side effects in other parts of the program.

4.4.4 Object-Oriented Development

The object-oriented approach 1o software development decomposes the problem along
data-related lines. Conceptually, a program is decomposed into objects, each of which is a
combination of the data that relate to a particular aspect of the problem and the correspond-
ing code that performs a set of well-defined functions using those data. Data and program
code are encapsulated into a seamless package whose inner workings are concealed from
the outside world. This approach is particularly well suited to event-driven applications.

Each object behaves like a black box, performing predefined functions on demand.
but revealing little about its inner workings. It is activated by receiving a message, and,
when finished, it responds with a message. Each object is self-contained and handles pro-
gram control and data flow simultaneously while it is active. This makes the program
exceedingly modular and avoids a situation wherein changes made in one routine create
unexpected effects in other parts of the program.

4.4.4.1 Object-Oriented Analysis

An object-oriented analysis of a problem results in a list of the objects that will work
together to solve the problem. This includes a specification of the data (attributes) and func-
tions {services) of each object. Object-oriented analysis is done without regard to the hard-
ware, operating system, or software development tools that will be employed in the
implementation [10].

4.4.4.2 Object-Oriented Design

The object-oriented design phase works out how the logical design that resulted from the
analysis will be implemented on a particular platform—that is, a combination of hardware,
operating system, and software development tools (compiler, etc.). Often, considerable mod-
ification of the initial design is necessitated by the realities of the platform [11].

4.4.43 Object-Oriented Programming

In object-oriented programming, the programmer often starts with an application frame-
work. This is a program that already has many generic functions that are common to most
programs. It serves as a skeleton upon which 1o build a complete unit. The application
framework normally handles the event loop and event identification. The programmer then
has only to add the objects that are required for the application at hand. Each object is writ-
ten with data and program control encapsulated into an independent, more or less sealed
unit [12].
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New objects need not be designed and written from scratch; they can inkerit the prop-
erties of existing objects. Thus, if, for example, one type of display window object already
exists, it needs only to be modified to form a different type of display window.

4.4.5 CASE Tools

In practice, a considerable portion of a programmer’s time is spent performing noncreative
work—tasks that, strictly speaking. are mechanical and require no creative input of knowl-
edge. Software tools have arisen to take over much of this part of the development activity.
These are commonly called computer-aided software engineering (CASE) tools. They take
over many documentation and error-checking functions.

It is, of course, necessary for the programmer or software designer to contribute
design-related information into the system at the outset, but considerable human effort can
be avoided by programs that compile and format that information in specific ways. Effec-
tive use of CASE tools requires additional discipline in the software design and program-
ming effort. such as the inclusion of standardized descriptive headers at the beginning of
each code module.

An example of a CASE tool is a program that combines the header information from
all the source code modules to produce a software documentation manual. Other programs
can read the source code files, compiling a Jinkage map of dependencies and communica-
tion among the modules, and pointing out potential problems along the way.

In the past, only the conceptual design was completed at the beginning of the project,
with many details of the design filled in as coding progressed. Now the trend is toward con-
centrating the entire design effort at the beginning of the project. This means that the actual
programming effort is targely a mechanical process, working from a completely specific
design document.

The ramifications of this new trend are twofold. First, software development teams
tend to subdivide into software designers and programmers. Second, the actual code gen-
eration part of the effort can be taken over by CASE tools. A software designer, sitting at a
workstation, can develop a complete specification for a software package. CASE tools can
then use this specification to produce both source code (that is free of coding errors) and
technical documentation (though not user documentation).

A potential drawback of this approach is the risk that the design effort, done in the
sterile preimplementation environment, will not be as creative as it would be if it had been
done on the fly. Ideas that might have occurred during implementation are lost, or at least
delayed until the system is put into use.

4.4.6 Platform Independence

The development of complex digital image-processing software packages is an expensive
and time-consuming task. There are several different computer systems that lend them-
selves to digital image processing. Different platforms have relative advantages and disad-
vantages in performance and cost. Hardware advances occur so rapidly that obsolescence is
never distant. Thus, there is a need to avoid partial or total rewriting of software for each
new peripheral device or hardware platform.
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Today’s trend is toward software development methodologies that are, in the main,
independent of the particular hardware they are to run on. A portability tool kit is a software
interface that sits between the platform-independent application program and the native sys-
tem (Figure 4--5). The application program is written according to standard rules as if the
tool kit were the platform. The tool kit provides the interface between the application pro-
gram and the native system’s operating system, GUI, and memory resources. It translates
communications between the application and the native system.

Graphical
user
interface

Piatfoim
independent
application

Portupiity
toolkit

Figure -5 Platform-independent software organization

Each different native system (e.g., UNIX workstation, Macintosh, etc.) has a different
version of the portability tool kit, but each version looks the same to the application pro-
gram. That way, an application program developed on one native system will run (theoret-
ically) without modification on another native system. In most cases, only a checkout of
functionality is required after porting an application program to a different native system.

A well-designed portability tool kit will give the programmer direct access (through
athin software interface) to most, if not all, of the features and resources of the native sys-
tem. Those features that do not exist on the native system, but do exist on other native sys-
tems in the supported set, are emulated in software by the tool kit. A good portability tool
kit will give the programmer access to essentially all the features available on all the sup-
ported native systems and, frequently, additional features as well.

When a platform-independent program is ported to a different native system, its func-
tionality is unchanged on the second system. Its “look and feel,” however, will be that of its
new host. Running on a Macintosh, it will look like it was written for that machine, and like-
wise for other platforms.

Platform-independent programming makes it casier for programmers to move
between platforms. They don’t have to learn a new set of features and resources each time
they make the switch, provided the same portability tool kit is used.
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4.4.7 Software Documentation

The documentation that should accompany the development and use of an image-processing
software package falls into five categories. First is the design documentation, which speci-
fies what the package is intended to do. Next is the documentation of the code itself. includ-
ing the algorithms and the details of the modular structure. Third is the operator’s manual,
which may include tutorial exercises for beginning users. Fourth is a reference manual,
which concisely organizes specific information for the experienced operator’s occasional
use. Fifth 1s on-line help, which the user can cail up on the screen (often in a separate help
window) while the program is running.

Sometimes the documentation effort suffers in the haste that precedes completion and
release of the software. The delayed cost, in time and money, of inadequate documentation
is often quite high. Trying to decipher the operation of poorly documented software can be
so frustrating that the new user may give up before becoming competent. Upgrading poorly
documented code is likewise time consuming and expensive.

The ideal is a software package with so clear and intuitive a user interface that its
complete and well-written documentation package is seldom used. After a brief introduc-
tion to the program, the user requires only occasional assistance from on-line help and the
reference manual.

4.5 SUMMARY OF IMPORTANT POINTS

1. A convenient user interface and good user docurnentation are as important as function-
ality and accuracy in the acceptance of software.

2. For most users, the menu-driven graphical user interface is easier to learn and-to oper-
ate than a textval interface.

3. The trend in user interfaces is from textual toward verbal and visual interfaces.

ts

A program can run in batch mode, be event driven, or operate in real time.

5. Structured software development decomposes a problem along functional lines and
emphasizes data flow and the interfaces between components.

Structured programs are built up of single-entry, single-exit subfunctions and avoid
constructs that make the sequence of program control difficult to follow.

Object-oriented development encapsulates the data and functions related to each
component of the system into objects that communicate via messages.

a

b

®

Platform-independent programming permits software developed on one type of sys-
temn to be moved easily to other types of system.

PROBLEMS

1. Develop a two-level menu structure for a program designed to import, process, and export
images taken from spacecraft. The program must be able to import images from satellite down-
link, the Internet, modems, and optical disk, and export images to the Internet, modems, optical
disk, and hard-copy printers. For processing, choose six processes from Part | of the book.
Explain how your chosen number of menu levels is optimal for user convenience.
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2. Develop a software development flowchart for a project to produce a commerctal interactive
image-processing program for the integrated circuit chip-inspection industry. The program will
enhance digitized microscope images of chips and display stored images of good chips for
comparison. Include in your plan adequate allowance for input from potential users, salesper-
sons, and marketing and financial people, as well as for alpha and beta testing prior to release for
manufacturing.

PROJECTS

1. Design a graphical user interface for a specific type of image processing (e.g.. astronomy, med-
ical, mapping) complete with menus, icons, etc.

2. Implement a prototype (nonfunctional) graphical user interface for a specific type of image pro-
cessing, and have it reviewed by potential users.

3. Using a paint program, develop a suitable 16-color palette, and use it to color a digitized line
drawing. Document the palette, giving the hue, saturation, and intensity of each color and what
the color is used for in the image.

4. Prepare a detailed outline for a technical documentation package for an existing software package.
. Prepare a detailed outline for a user documentation package for an existing software package.

6. Write a program to read images stored in one file format and display them and store them in
another format (see Ref. 1).
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CHAPTER 5 HD) = lim ARIZADLAD) _d M

Thus, the histogram of a continuous image is the negative of the derivative of its area function.
The minus sign results from the fact that A(D) decreases with increasing D. If the image is
considered a random variable of two dimensions, the area function is proportional to its cumu-
lative distribution function and the gray level histogram to its probability density function.

The Gray-Level Histogram

5.1 INTRODUCTION

One of the simplest and most useful tools in digital image processing is the gray-level his-
togram. This function summarizes the gray-level content of an image. While the histogram
of any image contains considerable information, certain types of images are completely
specified by their histograms. Computation of the histogram is simple and may be done at
little apparent cost when an image is copied from one place to another.

5.1.1 Definition Figure -1 An imnge and its gray-lesel hisogram
The gray-level histogram is a function showing, for each gray level, the number of pixels in I et L —an
the image that have that gray level. The abscissa is gray level and the ordinate is frequency By = 0y v Al

of occurrence (number of pixels). Figure 5-1 shows an example.

There is another way to défine the gray-level histogram [1], and the following exer-
cise yields insight into the usefulness of this function. Suppose we have a continuous image, |
defined by the function D(x, y), that varies smoothly from high gray level at the center to
low gray level at the borders. We can select some gray level D, and define a set of contour
lines connecting all points in the image with value D;. The resulting contour lines form ¥
closed curves that surround regions in which the gray level is greater than or equal to D,. “

Figure 5-2 shows an image containing one contour line at the gray level D;. A second
contour line has been drawn at a higher gray level D,. A, is the area of the region inside the
first contour line, and similarly, A, is the area inside the second line.

The threshold area function A(D) of a continuous image is the area enclosed by all
contour lines of gray level D. Now the histogram may be defined as

IAl

[ - Figure 5.3  Comtiir |imes is &0 e
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For the case of discrete functions, we fix AD at unity, and E. (1) becomes
H(D) = A(D)-A(D+1) )

The area function of a digital image is merely the number of pixels having gray level greater
than or equal to D for any gray level D.

5.1.2 The Two-Dimensional Histogram

Frequently, one finds it useful to construct histograms of higher dimension than one. This
is particularly useful for color images [2], as discussed in Chapter 21. Figure 5-3 shows
images digitized from a microscope field containing a white blood cell and several red
blood cells. The field was digitized in white light and, through colored filters, in red and
blue light. At the lower right is the two-dimensional red-versus-blue histogram of the latter
two images.

The two-dimensional histogram is a function of two variables: gray level in the red
image and gray level in the blue image. Its value at the coordinate (Dpg, Dj) is the number of
corresponding pixel pairs having gray level Dy inthe red image and gray level Dy in the blue
image. Recall that a multispectral digital image such as this can be thought of as having a
single pixel at each sample point, but each pixel has multiple values—in this case, two. The
two-dimensional histogram shows how the pixels are distributed among combinations of
two gray levels. If the red and blue component images were identical, the histogram would
have zero value except on the 45° diagonal. Pixels having higher red than blue gray level,
and vice versa, contribute to the histogram above and below the diagonal line, respectively.

In white light, the microscope field of Figure 5-3 shows considerable information in
color. The red blood cells appear pinkish, while the white blood cell is gray with a dark blue
nucleus due to the staining treatment. Thus, the red cells appear dark in blue light, which
they absorb, and light in red light, which they transmit. Similarly, the nucleus is much denser
in red light. The red-versus-blue histogram therefore has four distinct peaks, one each due to
the background (B), the red blood cells (R}, and the nucleus (V) and cytoplasm (C) of the
white cell. The analysis of two-dimensional histograms is discussed further.in Chapter 21.

5.1.3 Properties of the Histogram

When an image is condensed into a histogram, all spatial information is discarded. The his-
togram specifies the number of pixels having each gray level, but gives no hint as to where
those pixels are located within the image. Thus, the histogram is unique for any particular
image, but the reverse is not true: Vastly different images could have identical histograms.
Such operations as moving objects around within an image typically have no effect on the
histogram. The histogram does. nevertheless, possess some useful properties.

If we change variables in Eq. (1) and integrate both sides from D to infinity, we find that

'rH(P)dP = AP = AD) 3
12

the area function. If we then set D = 0, assuming nonnegative gray levels, we obtain

H(P)dP = area of image 4)
0
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If an image contains a single uniformly gray object on a contrasting background, and
we stipulate that the boundary of that object is the contour line defined by gray level Dy,
then

H(D)dD = area of object (6)
D,
If the image contains multiple objects, all of whose boundaries are contour lines at gray
level D, then Eq. (6) gives the aggregate area of all the objects.

Normalizing the gray-level histogram by dividing by the area of the image produces
the probability density function (PDF) of the image. A similar normalization of the area func-
tion produces the cumulative distribution function (CDF) of the image. These functions are
useful in the statistical treatment of images, as illustrated in Chapter 6.

The histogram has another useful property, which follows directly from its definition
as the number of pixels having each gray level: If an image consists of two disjoint regions,
and the histogram of each region is known, then the histogram of the entire image is the sum
of the two regional histograms. Clearly. this can be extended to any aumber of disjoint
regions.

5.2 USES OF THE HISTOGRAM

5.2.1 Digitizing Parameters

The histogram gives a simple visual indication as 1o whether or not an image is properly
scaled within the available range of gray levels. Ordinarily. a digital image should make use
of all or almost all of the available gray levels, as in Figure 5-1. Failure to do so increases
the effective quantizing interval. Once the image has been digitized to fewer than 256 gray
levels, the lost information cannot be restored without redigitizing.

Likewise. if the image has a greater brightness range than the digitizer is set to handle,
then the gray levels will be clipped at O and/or 255, producing spikes at one or both ends of
the histogram. Tt is a good practice routinely to review the histogram when digitizing. A
quick check of the histogram can bring digitizing problems into the open before much time
has been wasted.

5.2.2 Boundary Threshold Selection

As mentioned earlier, contour lines provide an effective way to establish the boundary of a
simple object within an image. The technique of using contour lines as boundaries is called
thresholding. The use of optimal techniques for selecting threshold gray levels is a subject
of considerable discussion in the literature and is treated in Chapter 18.

Suppose an image contains a dark object on a light background. Figure 5-4 illustrates
the appearance of the histogram of such an image. The dark pixels inside the object produce
the rightmost peak in the histogram. The leftmost peak is due 1o the large number of gray
levels in the background. The relatively few midlevel gray pixels around the edge of the
object produce the dip between the two peaks. A threshold gray level chosen in the area of
the dip will produce a reasonable boundary for the object [3,4].
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Frequency |

" L

0 00T 200 225
Gray level ——» Figure 54 A bimodal histogram

In one sense, the gray level corresponding to the minimum between the two peaks is
optimal for defining the boundary. Recall from Eq. (1) that the histogram is the derivative of
the area function. In the vicinity of the dip. the histogram takes on relatively small values,
implying that the area function changes slowly with threshold gray level. If we place the
threshold gray level at the dip, we minimize its effect upon the boundary of the object. If we
are concerned with measuring the object’s area, selecting a threshold at the dip in the histo-
gram minimizes the sensitivity of the area measurement to variations in threshold gray level.

5.2.3 Integrated Optical Density

Given the histogram in Figure 5-4, we could determine an optimal threshold gray level for
the object and compute its area {Eq. (6)] without ever seeing the image. Another measure-
ment that can be computed directly from the histogram of simple images is the integrated
optical density (10D). A useful measure of the “mass” of an image, it is defined as

a ab
0D =J j D(x, y)dxdy %)
0v0

where a and b delimit the region of the image. When the image consists of a dark object sit-
uated on a background of zero gray level, the IOD reflects a combination of the area and
density of that object.
For a digital image
NL NS
100 =Y ¥ DG, j) (8)

i=1j=1
where D(i, j) is the gray level of the pixel at line i, sample j. Let N, be the number of pixels
in the image with gray level equal to k. Then Eq. (8) can be written as

255
10D = ¥ kN, 9)
k=0
since, clearly, this adds up the gray levels of all pixels within the image. However, N, is
merely the histogram evaluated at gray level k. Thus Eq. (9) can be written as

258
10D =Y kH(k) (10)

k=0
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that is, a gray-level-weighted summation of the histogram. By equating Egs. (8) and (10}
and taking a limit as the increment between gray levels approaches zero, we derive similar
expressions for continuous images:
10D = j DH(D)dD (n
0
and

u pob o
J' D(x, y)dx dv = j DH(D)dD (12)
Q O

If an object within the image is delineated by a threshold boundary at gray level 7, the IOD
within the object boundary is given by

10D(T) = I DH(D)dD (13)
T
The mean interior gray level is the ratio of 10D to area:

rDH(D)dD
) _Jr

= (14
J. H(D)dD
T

5.3 RELATIONSHIP BETWEEN HISTOGRAM AND IMAGE

Since the histogram of a particular image is unique, it js possible to derive the histogram of
simple images whose functional form is known. While this technique is perhaps seldom
used, it does yield insight into the histogram, and it establishes a basis for further study of
threshold selection in Chapter 18.

Suppose we have an image of given functional form, and we desire to compute its his-
togram. We know that this is the negative of the derivative with respect to gray level of the
area function {Eq. (1)]. Thus, we may derive the histogram if we firstderive the area function
from the expression for the image itself. Sometimes this can be done simply by observation.

5.3.1 One Dimension

For simplicity, we first address the one-dimensional case. Here the “area’ is actuatly a
length, but it demonstrates the relationship between a histogram and its image.
Consider the one-dimensional Gaussian pulse (Figure 5-5) given by

Dx) =¥ —ee<x<e as)
Notice that for nonnegative x, the function is monotonic. Furthermore, the area is merely the
inverse of the image function. Thus, for nonnegative values of x, we may solve Eq. (15) for
x as a function of gray level to yield

x(D) = J-In(D) x20 (16)

which is the area function for the right half of the image. Since the two halves of the image
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Figure 5-5 The Gaussian pulse

are symmelrical. the overall area function is twice that of Eq. (16). The histogram is given
by

dry |
HiD) = ———12J-In(D)| = ——— [R¥)]
dDL ] D.J-In(D)
and is shown in Figure 5-6. The histogram builds up to a spike at D = 0 because of the large
areas of low gray level at large positive and negative values of x. The small spike at D = |
results from the image having zero slope at x =0 (i.e., the Gaussian is locally “flat” at the
very top).

154
10
H(D)
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0 ettt —————+—+ . .
0 05 1 Figure 5-6 Histogram of the
D—» Gray level  Gaussian pulse

5.3.2 Two Dimensions

The same procedure may be extended to two-dimensional images by judicious use of
symmetry within the image. For example, suppose that the one-dimensionul Gaussian
pulse of Eq. (15) is actually one line of a two-dimensional image. Then if all lines are
identical, the histogram will have the same shape as that in Figure 5-6, differing only in
ordinate scale.

One may take advantage of circular symmetry in the following way. Suppose the
image is a circularly symmetric Gaussian ‘pulse centered on the origin (Figure 5-7). The
image function in polar coordinates is given by

D(r,8) = e 0<r<oo,0<8<2n (18)
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N 5.4 SUMMARY OF IMPORTANT POINTS
2]
1. The gray-level histogram is the negative of the derivative of the threshold area function.
2. The histogram shows how many pixels occur at each gray level.
3. Inspection of the histogram points out improper digitization.
Pl¢—riP) 4. The area and IOD of a simple object can be computed from the histogram of its image.
§. The histogram of an image of specified functional form can be derived with the aid of
v 2 the area function.
X~
PROBLEMS
V4 Figure 5-7 The circular Gaussian 1. A film image shows a dark-colored barn with a light colored roof against a bright sky. Sketch
e spot what its histogram might lock like if it were (a) properly digitized, (b) digitized with gain set 100

low. (c) digitized with gain set too high, (d) digitized with too much offset, (¢) digitized with too
. . . little offset, and (f) digitized with too much gain and offset. Assume that O is dark and 255 is light.
A contour of constant gray level P is a circle of radius . S ) .
2. Atelevision cameru is pointed at a news anchor man wearing a dark jacket and standing in front

r(P) = A/jln'(F) (19) of a gray background. Sketch what the histogram ot a digitized frame might look like if it were (a)
properly digitized, (b) digitized with gain set too low, (¢) digitized with gain set too high,

(d) digitized with too much (positive ) offset (from zero), () digitized with too little offset, and (1)

AP) = 1| r(P)]: = ~7ln(P) ) digitized »wilh 100 much gain and offset. Make reasonable assumptions about the coloring of the

man’s hair and skin.

Such a contour encloses an area

The area function of Eq. (20) may now be difterentiated to yield the histogram [1]

3. An cight-bit image of a bright object on a dark background has a histogram given by
H(P) = lA(p) = 2 H(D) = 100660, 5. D) + 20G(180, 20, D) G(Y, 0,x) = ¢ It #rad
dP P where zero is black and the pixel spacing is 0.2 mm. Where would you put the threshold gray
shown in Figure 5-8. Notice that the point of zero slope at the origin is not powerful enough level? What are the area and the IOD of the object?
to produce a spike at D = 1, as it did in the one-dimensjonal case. 4. Below is the histogram of an image of a black-and-white soccer ball on a gray background. This
For more complex images, the histogram may be derived by first partitioning the soccer ball is 230 mm in diameter. What is the pixel spacing?
image into disjoint regions over which the area function may be determined. The histogram [0:520 920 490 30 20 5910 24040 6050 80 20 80 440 960 420 0]
of the complete image is then the sum of the histograms of all the disjoint regions.
PROJECTS
10 - 1. Deselop a program to display histogram plots of digital images. Test the program on suitable
images

2. Develop a program to determine the minimum. maximum, and modal gray level from the gray-
level histogram of an image. Test the program on suitable images.

3. Develop a program that can display an input image and its histogram, allow interactive seiection
of a threshold gray level. and generate a binary output image by thresholding the input mage.
Test the program on suitable images

HPey [

4. Develop a program that can compute the histogram of an input image. automatically locate the
. F dip in the histogram and threshold the image to produce a binary output image. Test the program
on suitable images.

5 §. Develop a program that can display the histogram of a television camera image in real time .nd
0 0.1 1 g play g 13
P> Gray level use the histogram to assist in the focusing of a camera, telescope, or microscope.
) ] 6. Develop a program that can calculate the histogram of an image of an object on a contrasting
Figure 5-8 Histogram of the circular Gaussian spot background and. from that, the area and IOD of the object. Test the program on suitable objects.
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CHAPTER 6

Point Operations

6.1 INTRODUCTION

Point operations constitute a simple but important class of image-processing technigues.
They allow the user to modify the way in which the image data fills the available range of
gray levels. This particularly affects how the image will appear when displayed.

A point operation \akes a single input image into a single output image in such a way
that each output pixel’s gray level depends only upon the gray level of the corresponding
input pixel. This contrasts with local operations, in which a neighborhood of input pixels
determines the gray level of each output pixel. Furthermore, in a point operation, each out-
put pixel corresponds directly to the input pjxel having the same coordinates. Thus, a point
operation cannot modify the spatial relationships within an image.

Point operations are sometimes called by other names, including contrast enhance-
ment, contrast stretching, and gray-scale transformations. They are often built in as an inte-
gral part of image digitizing and image display software.

Point operations modify the gray-level histogram of an image in a predictable way.
They may be viewed as pixel-by-pixel copying operations, except that the gray levels are
modified according to the specified gray-scale transformation function. A point operation
that takes an input image A(x, y) into an output image B(x, y) may be expressed as

B(x,y) = flA(x, )] (N

The point operation is completely specified by the gray-scale transformation (GST) func-
tion, f(D), which specifies the mapping of input gray level to output gray level.
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6.1.1 Applications of Point Operations

Point operations are sometimes used to overcome image digitizer limitations before the
actual processing begins. Equally important are point operations used to improve the image
display process.

Photometric Calibration. 1 is often desirable 1o have the gray levels of a dig-
itized image reflect some physical property, such as light intensity or optical density. Point
operations can do this by removing the effects of image sensor nonlinearity. As an example,
suppose an image has been digitized by an instrument with a nonlinear response to light
intensity. A point operation can transform the gray scale so that the gray levels represent
equal increments in light intensity. This is an example of photometric calibration.

Another use for the point operation is to transform the units of the gray scale. Suppose
a microscope image has been digitized by an instrument that produces gray-level values that
are linear with the specimen’s transmittance. A point operation can be used to create an
image in which the gray levels represent equal steps in optical density. We can consider
photometric calibration as the software side of image digitizing.

Contrast Enhancement. [n some digital images, the features of interest occupy
only arelatively narrow range of the gray scale. One might use a point operation to expand
the contrast of the features of interest so that they occupy a larger portion of the displayed
gray-level range. This is sometimes called contrast enhancement, or contrast stretching.

Display Calibration. Some display devices have a preferred range of gray lev-
els over which they make image features most visible. Darker and lighter features, having
the same contrast in the digital image, do not show up as well on such a display. In this case,
the user may employ a point operation to ensure that the features of interest fall into the
maximum-visibility runge of the d.isplayA

Many display devices do not maintain a linear relationship between the gray level of
a pixel in the digital image and the brightness of the corresponding point on the display
screen. Similarly, many film recorders are unable to transform gray levels linearly into opti-
cal density. These shortcomings may be overcome by a suitably designed point operation
prior to displaying the image. Taken together, the point operation and the display nonlin-
earities combine to cancel each other, and this preserves linearity in the displayed image.
The procedure is called display calibration.

Sometimes a particular nonlinear display relationship is desired for proper presenta-
tion of the image. This deliberate nonlinearity is specified by the gamma of television and
CRT monitors. Point operations can correct or adjust the gamma of image displays.

Point operations are sometimes viewed as image-processing steps that bring out detail
or increase the contrast of components of an image. What is really being done, however, is
matching the gray levels of interesting portions of the image to the contrast range of the display
device, since that information was present in the digital image all along. Thus, we can consider
display calibration and contrast enhancement as the software side of digital image display.

Contour Lines. A point operation can add contour lines to an image. One can also
accomplish thresholding with a point operation that divides an image into disjoint regions
on the basis of gray level. This is useful for defining boundaries or for making masks for
subsequent operations,



Sec.6.1  Introduction 85

Clipping. Since digital images are commonly stored in integer (often byte) format,
the range of available gray levels is necessarily limited. For eight-bit images, the output
gray level must be clipped to the range 0-255 before each pixel value is stored. In this chap-
ter, we assume that each polnt operation is followed by a step that sets negative values to
zero and limits positive values to D, the maximum gray level.

6.1.2 Types of Point Operations

1t is convenient to divide point operations into different categories.

6.1.2.1 Linear Point Operations

We first consider point operations in which the output gray level is a linear function of the
input gray level. In this case. the gray scale transformation function of Eq. (1) takes the
form

Dy = f(Dy) = aDsy+b (2)
where Dy is the gray level of the output point corresponding to an input point having gray
level D4 (Figure 6-1). Obviously, if a = 1 and b = 0, we have the identity operation that
merely copies A(x, v} into B(x. v). If u s greater than 1, the contrast will be increased in the
output image. For a < 1. the contrist is reduced. If @ = | and b is nonzero, the operation
merely shifts the gray level values of all pixels up or down. The effect of this is to make the
entire image appear darker or lighter when displayed. If a is negative, dark areas become
light. light areas become dark. and the image is complemented by the operation.

255

D)= aDy+ b

|
255
0, Figure 6-1 The linear point operation

6.1.2.2 Nonlinear Monotonic Point Operations

We next consider nondecreasing gray-scale transformation functions—those that have a
finite positive siope everywhere. These functions preserve the basic appearance of an
image, but are not as constrained as the linear operation.

Nonlinear point operations can be classified by what they do 1o the midrange gray lev-
els. Figure 6-2 shows a gray-scale transformation function that boosts the gray level of
midrange pixels while leaving dark and light pixels little changed. An example of such a
gray-scale transformation function is

f(x) = x+Cx(D, - x) 3)
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where D, is the maximum gray level and the parameter C determines the amount of increase
(C > 0j or decrease (C < 0) in the midlevel gray range.

A second type of nonlinear monotonic point operation increases the contrast within
midrange objects at the expense of light and dark objects. Such a sigmoid (S-shaped) gray-
scale transformation function has slope greater than 1 in the midrange and less than 1 toward
the ends. An example based on the sine function is

_ﬂr 1 . x 1
f) =5 1+—" ( ”)sm[an(D—m—iﬂ O<ac<l )
sin (15

where zero to D,, is the gray-level range over which the histogram is nonzero. The larger the
parameter o is, the more seriously the midrange is affected.

A third type of nonlinear monotonic point operation decreases the contrast in the
midrange and increases it within light and dark objects. Such a gray scale transformation
function has slope less than 1 in the midrange and greater than 1 near the ends. An example
based on the tangent function is

_ &n 1 x 1
fix)y = 3 I+—( ”)tan[aﬂ(D—m—in O<a<l (5
tan| o

Again, the parameter « determines how serious the effect of the point operation will be.

6.2 POINT OPERATIONS AND THE HISTOGRAM

The foregoing discussion suggests that a point operation modifies the gray-level histogram
in a predictable way. We now address the question of predicting the output image histogram,
given the input image histogram and the functional form of the gray-scale transformation.

Having this capability is useful for two reasons. First, one may wish to design a point
operation to scale the output gray levels into a predetermined range or to produce an output
histogram of a particular form. Second, this exercise develops one’s insight into the effects
that point operations can have on an image. Such an understanding proves useful when one
is designing point operations.
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6.2.1 The Output Histogram

Suppose a point operation defined by a gray-scale transformation function f(D) takes an
input image A (x, y) into an output image B(x, y). Given H, (D), the histogram of the input
image, we wish to derive an expression for the output image histogram. The gray level of an
arbitrary output pixel is given by

Dy = f(Dy) (®)

where D, is the gray level of the corresponding input pixel. For the present, let us assume
that f(D) is a nondecreasing function with finite slope. Thus, its inverse function exists, and
we can write

Da = f'(Dp) M

We shall later find ways around this restriction.

Figure 6-3 illustrates the relationship between the input histogram, the gray-scale trans-
formation function, and the output histogram. The gray level D, transforms to Dg; similarly,
the gray level D, + AD, transforms to Dg + ADp. Furthermore, all pixels with gray levels
between D, and D4 + AD, will transform to gray levels between D and Dy + ADp. Thus, the
number of output pixels having gray levels between Dy and Dy + ADjg equals the number of
input pixels with gray levels between D4 and D, + AD,. This implies that the area under Hy(D)
between Dy and Dy + ADp is the same as that under H, (D) between D4 and D4 + AD,. or

Dg+ 4Dy Dy +AD,
I Hg(D)ydD = J H,(DYdD (8)
Dy Dy
255 [
|
AD)
Dyt ADy 4
v %7 ADg
Y,
D —+AD, [
k)
[l 0 D, 255
+— Hy(h) D—»
Hy(D) /
7
ol Dy Dy ¥ 8D, 255

D—

Figure 6-3 Effect of a point operation on the histogram
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If we make AD, suitably small. ADg will also be small. and we can write a rectangular
approximation to the integral:

Hy(Dp)ADy = H(Da)AD, 9)
We now solve for the value of the output histogram to obtain

Hy(Dy)
ADIAD,

(1))

Hy(Dy) =
and take the limit as AD, approaches zero. Since f(12) has nonzero slope everywhere, ADy
also approaches zero. to yield

Hy(Dy)
dDyldD,

Hy(Dy) = i1

But since Dy is given by Eq. (6), we can substitute to find

HalDy)

Al (1)
(didDy)f(D,)

Hu(Dy) =
We now have a mixture of independent variables in this equation: Dy on the leftand D, on
the right. We can overcome this by substituting the inverse function given in Eq. (7). This
yields the general form

H, /(D)
He(D) = 4[-——_] (13)
o]
where
f' = dfldD (14)

and the subscript has been dropped.

6.2.2 Examples '
6.2.2.1 Linear Point Operation

Consider the linear point operation given by Eq. (2). We note that its derivative is a and its
inverse is

Dy = f(Dy) = (Dg-b)la (15)
Substituting into Eq. (13) yields

(16)

be)
a

Ha(D) = L
Notice that > 0 shifts the histogram to the right, while b < O shifts it left. Also, a> 1 broad-
ens the histogram while reducing its amplitude, to keep the area under the histogram con-
stant. The effect of @ < 1 is the opposite.
To illustrate the effect of a linear point operation, let us assume that the input histo-
gram has a Gaussian form, given by
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H(D) = e®- (17)
and shown in Figure 6-4. Substituting into Eq. (16) yields
Hy(D) = ‘lle-(l)&a—(ﬁ bia)? (8)
as shown in the figure. The output histogram is also Gaussian, but the peak is moved to
¢ + bla. Also, the width (at the 1/¢ point) goes from unity to a, while the height goes from
unity to 1/a.

Hy (D) Hy (D)

R]|=8|—

a
o L_ c o]
> s

D—»> D—>
Input histogram Cutput histogram

Figure 64 Effect of a linear point operation on a Gaussian histogram

6.2.2.2 Second-Order Point Operation
As a second example, consider a square-law point operation
Dy = f(Dy) = D} (19)
operating upon an image whose histogram
Hy(Dy) = & (20)
is the right-hand half of 4 Gaussian pulse. Both of these appear in Figure 6-5.

Figure 6-5 A square-law point operation

Using Eq. (13), we obtain the output histogram

e
Hp(Dg) =
2

@n
Dy
which is shown in Figure 6-6.
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1 e~ 0
Hg(Dg) 2e 2 /Dy

1 2 3 Figure6-6 Output histogram from
Dy—> square-law point operation
6.2.2.3 A Sigmoid Transformation

As a third example, consider the sine stretch of Eq. (4) operating on an image with the bimo-
dal histogram

Hy(Dy) = G(0y, ), Dy) + G(6y, 1y, Dy) (22)

shown in Figure 6-7b. This is typical of images of high-gray-level objects on a low-gray-
level background.

256 10 T T
192 -
fiD) HyD)
128 - B S
b4 b .
0 L . 0
0 o4 128 192 256 0 64 128 192 256
(a) (b)
256 10 T T T
192
FiD) Hy( D)
128 s
64
o L 1 ) 0 ]
0 64 128 192 256 0 64 128 192 256
(© (d)

Figure 6-7 Sine stretch example: (a) transformation; (b) input histogram;
(c) inverse transformation; (d) output histogram
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Solving Egq. (4) for its inverse leads to

- Dy Dn . r(2D (o7
D) = ?'+asm ‘U‘—D—m-l)sm(aiﬂ (23)
while the derivative of the transformation tunction is
ar | __om cos aﬂ(i~l) (24)
dx . ( n] D, 2
2sin ai

Substituting these into Eq. (13) produces the output histogram shown in Figure 6--7d.
Notice that the separation between the peaks is increased by this point operation.

6.2.3 The General Case

In the derivation that led to Eq. (13), we assumed that f(D) had finite, nonzero slope every-
where. If, instead, f(D) has zero slope over some interval, then the finite area under H, will
be forced into a strip of infinitesimal width in H,. producing a spike, as Eq. (13) suggests.
If, on the other hand, f(D) has infinite slope, the opposite is the case: An infinitesimally
wide strip under H, is expanded throughout a finite interval in Hp, producing a vanishingly
small value for the output histogram there. Thus, the construction of Figure 6-3 is valid in
these two extreme cases, and the output histograms behave as Eq. (13) suggests.

If the gray-scale transformation £(D) is not a monotonic function, its inverse does not
exist, and Eq. (13) cannot be used directly. The input gray-level range may be divided into
disjoint intervals, however, over which the previously developed technique can be used.
This partitions the input image into contiguous disjoint regions, and the output histogram is
the sum of the transformed regional histograms.

6.3 APPLICATIONS OF POINT OPERATIONS

6.3.1 Histogram Equalization

Suppose we desire a point operation to take a given input image into an output image with
equally many pixels at every gray level (a flat histogram). This can be useful for putting
images into a consistent format prior to comparison or segmentation. The number of pixels
at each gray level will be D,,/A,,, where D, is the maximum gray level and A, is the area of
the image. Figure 6-8 shows three images with their normalized histograms and normalized
area functions. The left and center images illustrate histogram flattening.

Notice from Eq. (13) that the output histogram is the ratio of two functions of the same
argument. Clearly, this will be a constant if the numerator and denominator are the same
function, scaled by a constant—that is, if

D
(D) = A—’"H(D) 25)

Integrating both sides of Eq. (25), we find this condition to be satisfied if
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a(x,y) bx,y) c(x.y)

pita) b 1 Py(©)
\S P
0 D, 0 D, 0 D,
a— b — . c—»
I 1 1
Pi(a) Pyb) Py(c)
J J )
1] D, 0 D, 0 D,
a—> b—> c—>
bxy) = flatxy)] ey = g [bxy)

Figure 6-8 Histogram equalization and histogram matching
D
Dm
f(D) = = | H(u)du (26)
AD
0

Recall from Chapter 5 that the probability density function (PDF) of an image is its histo-
gram normalized to unit area; that is.

p(D) = +-H(D) @7

where H(D) s the histogram and A, is the area of the image. Recall also that the cumulative
distribution function (CDF) of an image is its area-normalized threshold area function:

D D
P(D) = J.p(u)du = Aijn(u)du 28)
0 0
Thus, the CDF is the point operation that flattens the histogram, i.e.,
f(D) = D,P(D) 29
and the histogram equalization GST function for Figure 6-8 is
B(x,y) = ftA(x, y)] = D,P||A(x, )] (30)

The CDF is a particularly well-behaved function, since it is always nonnegative with finite,
nonnegative slope.

After ahistogram equalization point operation, the actual histogram will usually take on
arather ragged appearance due to the finite number of available gray levels. Some gray levels
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will be unoccupied and others highly populated. On the average, however, the histogram will
be approximately flat. Figure 6 9 shows an example of histogram equalization.

6.3.2 Histogram Matching

Sometimes it is desirable 1o transtorm an image so that its histogram matches that of another
image or & specitied functional form. This could be used. for example, before comparing two
mmages of the same scene when they have been digitized under different lighting conditions.

In Figure 6-8, suppose we desire to transform A (x, ¥) into C(x, y) with histogram
Hy(Dispecified. We cando this in two steps. firstusing f(D) to transform A(x, y) into B(x, v)
with « flat histogram as before. and then taking B(x, y) through a second point operation.
¢/, to produce Cux, v). that is

Cix.vy = gl B(xy)] a1
We know from Hq. (30) what is required to produce B(x. v). Furthermore, we know that the
point operation
Bix,yi = DuP3|Clx) )] (32)
would take C(x, y) into an image with a flat histogram and is thus the opposite of what we
require.
Expressing B(x, y)as in Eq. (32), we can write the second point operation, Eq. (31), as
Clx. ) = g{D,P31C(x,5)]} 33)
This says that the sequential application of D,,P+(D) followed by g(D) produces no net
effect. Thus, g(D) is the inverse function of D,,Py(D); that is,
g(D) = P;'(DID,,) (34)
Now, if we desire to take A (x,3) 10 C(x, y) in one step, we can concatenate the two point
operations, and then,
Cuy) = g{fTAG I} = P{PAG W1 (35)
Notice that in substituting Egs. (30) and (34) into Eq. (35), the D,,’s cancel.

6.3.3 Photometric Calibration

Historically, one of the most important uses of point operations has been the removal of
digitizer-induced photometric nonlinearity. Suppose a certain film digitizer has a nonlinear
relationship between its input film density and output gray level. We may think of this as an
ideal digitizer followed by a nonlinear point operation. We wish to design a second point
operation that will restore linearity by reproducing the image as it would have come from
the ideal digitizer. This process is shown in Figure 6-10. The gray-scale transformation of
the digitizer either is known in functional form or can be measured. We wish to select g(D)
so that the net effect of the two cascaded point operations is zero; that is,

Clxy) = g{/1A NI} = A(x,¥) (36)
This is satisfied by

g(D) = fH(D) (37
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Figure 6-10 Photometric calibration

since the effect of a point operation is undone by its inverse function.

The digitizer’s gray-scale transfer curve f(D) can be measured by digitizing a linear
gray-wedge test image. This function is normally nondecreasing and easily inverted numer-
ically to produce the required gray-scale transformation. Difficulty may be encountered if
digitizer saturation drives the slope of f(D) to zero.

As an example of photometric calibration, consider the digitizer transfer curve

Dy = f(Dy) = aDi+b (38)

We can solve Eq. (38) for Dy, and the required transformation is

Dg—-b '
§Dp) = |2 (39)

Substituting Eq. (38) into Eq. (39) produces
D¢ = g(Dy) = Dy (40)

as expected.

Spatial Variation. Digitizers that measure each pixel with the same sensing
device generally have a gray-scale sensitivity funiction that is constant throughout the
image. Other digitizers. such as the vidicon or CCD, may have spatially variant sensitivity,
different from one pixel to the next. In this case. a simple point operation is not sufficient,
and an algebraic operation may be required. as discussed in the next chapter. It may be nec-
essary to use a spatially variant point operation, implemented by dividing the image into
regions and performing a separate point operation in each region. It might be practical to
specify the functional form of a spatially variant gray-scale transformation. While a spa-
tially variant point operation does not fit the definition offered at the beginning of this chap-
ter, we may consider it a generalization of the original concept.

In extreme cases, it may be necessary to specify a unique point operation for each pic-
ture element. For the Mariner Venus/Mercury 1973 mission, for example. nine different flat
field calibration images were taken at different illumination levels before the cameras were
flown. This defined. for each pixel. a nine-point piecewise-linear digitizer transfer curve.
These were inverted to form individual piecewise-linear gray-level transformations for
each pixel. While the method required storing a considerable amount of data, it produced
previously unattained photometric accuracy.

Figure 6-11(a) shows a flat-field image taken by the B camera of Mariner 10, after
contrast enhancement by a factor of ten. The shading pattern occupies about 25 of the 256
gray levels. After calibration the shading pattern occupies only about 5 gray levels. Figure
6-11ib) shows the calibrated flat field after a contrast enhancement by a factor of 50.
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Figure 6-11 MVM'73 photometric calibration example: (a) flat field image before
calibration, contrast x 10 (b) after calibration, contrast x 50 (Courtesy NASA/JPL)

6.3.4 Display Calibration

One can use an approach similar to the preceding to design a point operation that compen-
sates for display nonlinearity. In this case. one would model the imperfect display as an
ideal display preceded by a nonlinear point operation, as shown in Figure 6-12. The trans-
formation g(D) would be given, and f(D) would have to be determined. Since we wish to
undo g(D) in advance, the desired gray-scale transformation is given by

Digital
image

[CAwy

f(D) = g7 (D) (41

Predisplay
image

Display
trans-
formation

Point
operation

Ideal
display

Figure 6-12 Display calibration

6.4 SUMMARY QF IMPORTANT POINTS

1. Point operations transform the gray scale of an image.

2. Point operations are useful for photometric calibration, display calibration, enhance-
ment, and histogram modification.

3. A point operation is specified by the gray-scale transformation function that
expresses the mapping between input and output gray-level values.
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4. The histogram of an image following a specified point operation can be computed
from Eq. (13).

5. A linear point operation can only stretch or compress the histogram and shift it right

or left.

The cumulative distribution function (normalized area function) is the point operation

that flattens the histogram.

7. The histogram of an image can be brought into a desired form by the concatenation of

a point operation that flattens the original histogram, followed by the inverse of one

that flattens the desired histogram (Eq. 35).

Photometric calibration of a digitized image is accomplished by a gray-scale trans-

formation that is the inverse of the digitizer’s nonlinear sensitivity curve (Eq. 37).

Display calibration for adigital image is accomplished by a gray-scale transformation

that is the inverse of the display device’s nonlinear response curve (Eq. 41).

*
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PROBLEMS

. What values of @ and b in a linear stretch will move the two peaks of a bimodal histogram from
23 and 155 to 16 and 240, respectively? Sketch the gray-scale transformation (GST) function and
the two histograms.

. What values of a and & in a linear stretch will move A and B, where 0 < A < B <255, to zero and
D, respectively? Sketch the GST function for A = 32, B = 200, and D, = 255.

. Develop a function based on the hyperbolic tangent function. Express it in a form similar to
Egq. (4). Assume that D,,,, = 63. If the histogram of the input image is 5G(2,20,D] + G(5,35.D),
sketch the histogram of the output image when o= 0.5. What does this point operation do to the
midrange?

. Developa GST function based on the hyperbolic sine function. Express it in a form similar to Eq.
(4). Assume that D,,,, = 255. If the histogram of the input image is 5G{2,20,D} + G(5.35.D],
sketch the histogram of the output image when a = 0.5. What does this point operation do to the
midrange?

. An eight-bit image has a histogram given by H(D) = 1,704sin(7x/255). Derive an expression for the
GST function that will flatten that histogram. Sketch the histogram and the GST function. Use Eq.
(13) 10 show that the GST function derived in this problem actually produces a flat output histo-
gram.

. I H,(D)= 124,(D/D,) - (DID,,)’), sketch the GST function that will flatten H,.

. Suppose you have two photographs of a building taken by different persons standing in the same
spot four hours apart on the same day. During the time between the photos, three shats were fired
from one of the windows. Detectives investigating the shooting do not know which office was
used. Visual examination of the film failed to show whether any of the windows was either
opened or closed during the time in question. The detectives want to know, however, whether the
position of any of the windows may have changed slightly during that period.

You carefully digitized. aligned, and subtracted the two images (more on that in Chapter 7). Dif-
ferences in cameras, film, and lighting, however, rendered your difference image inconciusive.
To a good approximation, the histograms of the two images are given by the beta distribution
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D\ DY (a+ B+1)

no = ac( g (-5 o= 5g
where D,, =63, a=1 and §= | for the firstimage, and o= 2 and = 1 for the second image.
What GST function would: (a) flatten the histogram of the first image? Sketch the function. (b)
flatten the histogram of the second image? Sketch the function. (c) make the histogram of the sec-
ond image match that of the first? Sketch the function. (d) make the histogram of the first image
match that of the second? Sketch the function. If the result were conclusive, how much do you
think the FBI would pay you for your work? If the result were inconclusive, how much do you
think one of the supermarket tabloids would pay you for your processed image?

. Suppose you have two X-ray films taken immediately before and after injection of contrast

medium (dye) into the arteries of a patient’s heart. Radiologists are studying the films to deter-
mine whether coronary bypass surgery or heart valve replacement is required. Normally they use
digita! image subtraction to visualize the dye as it fills the arterial passageways. In this case, how-
ever, problems in exposure and development of the two films make a direct comparison incon-
clusive. The patient is 100 weak to undergo the angiography procedure again. Only digital
subtraction (Chapter 7) of the two images will reveal the extent of coronary disease.

To a good approximation, the histograms of the two images are given by the Rayleigh distribution
IS
H(D) = 2’3—’"? 2@
&
where D, = 63, o= 16 for the first image, and & = 24 for the second image. What GST function
would: (a) flatten the histogram of the preisijection image? Sketch the function. (b) flatten the his-
togram of the postinjection image? Sketch the function. (c) make the histogram of the postinjec-
tion image match that of the preinjection image? Sketch the function. (d) make the histogram of
the preinjection image match that of the postinjection image? Sketch the function.

. Suppose you have two aerial reconnaissance photos taken immediately before and after an air

strike against a surface-to-air missile site. The generals are studying the films to determine the
extent of damage to the enemy’s radar control facilities. Cloud movement over the battlefield,
combined with an accidental exposure of the film to light in the darkroom, make a direct com-
parison inconclusive. It is dangerous to risk another reconnaissance flight because the missiles
may not have been knocked out. Only digital subtraction (Chapter 7) of the two images will
reveal the extent of the damage.

To a good approximation, the histograms of the two images are given by the gamma distribution

2
H(D) = DD

2

where D,, = 63, =8 for the first image. and 8 = 12 for the second image. What GST function
would: (a) flatten the histogram of the preattack image? Sketch the function. (b) flatien the his-
togram of the postattack image? Sketch the function. (c) make the histogram of the postatiack
image match that of the preattack image? Sketch the function. (d) make the histogram of the pre-
attack image match that of the postattack image? Sketch the function.

A digitizer produces gray levels that are related to the brightness of a scene by

o= 1o ]

Derive an expression for the GST function of a point operation that will linearize the relation
between brightness and gray level.
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11.

12.

13.

PROJECTS
1.

A CCD camera mounted on a microscope produces, in digitized images, gray levels that are
proportional to image brightness. Derive an expression for the GST function of a point
operation that will linearize the relation between gray level and the optical density (Sec. 2.7.1) of
the specimen.

An image display monitor has a gamma of 0.8. Derive an expression for the GST function of a
point operation that will display images (on that same monitor) so that it appears to have a gamma
of 1.4.

"I H (D) = 5G(2,10,D) + G(5,45.D), D,, = 63 and f(D) is given by Eq. (5), sketch H, (D), f(D).

fU(D), £, and the output histogram H,(D) for a=0.7. What value of & will move the left-hand
peak to a gray level of 157

Implement a computer program that, given an input histogram as an array, will show, in real time.
agraph of what the output histogram of a linear stretch will be, as you adjust the parameters A and
B. (See Problem 2.)

. Implement a computer program that, given an input histogram as an array, will show, in real time,

agraph of what the output histogram of a nonlinear stretch will be as you adjust the parameter .
Base the GST function on either the sine, arc sine, tangent, arc tangent, hyperbolic sin (sinh). or
hyperbolic tangent (tanh) function.

. Implement a computer program that (1) allows you to design a GST function graphically, (2) per-

forms the point operation, and (3) displays the input and output images and histograms simulta-
neously. Use a monotonic functional form (linear, sine, tanh, etc.) for the transformation, leaving
at least one adjustable parameter.

. Implement a point operation program for histogram flattening and test the program on several

images. Use numerical methods rather than assuming a functional form for the input histogram.

. Implement a point operation program that will output an image with a Gaussian histogram with

specified it and o, and test the program on several images. Use numerical methods on the actual
input histogram rather than assuming a functional form.

. Implement a point operation program that will stretch one image to match the histogram of

another, and test the program on several images. Use numerical methods based on the actual his-
tograms rather than assuming a functional form for the two histograms.
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Algebraic Operations

7.1 INTRODUCTION

Algebraic operations are operations that produce an output image which is the pixel-by-
pixel sum, difference, product, or quotient of two input images. In the case of sums and
products, more than two input images may be involved. In general, one of the input images
may be a constant. However, addition, subtraction, muitiplication, and division by a con-
stant can be treated as a linear point operation, as discussed in Chapter 6. The same is true
for cases where the input images are identical.

7.1.1 Definitions

The four algebraic image-processing operations are expressed mathematically as

Clx,y) = A(x, )+ B(x, ) ()
Clx,y) = A(x, y) - B(x, ) (2)
Clx,y) = A(x, y) X B(x, y) (3)
Clx,y) = A(x, y)+ B(x, y) 4)

where A(x, y) and B(x, y) are the input images and C(x, y) is the output image. By making
suitable combinations, one may form complex algebraic equations involving several
images.
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7.1.2 Uses of Algebraic Operations

An important application of image addition is averaging together multiple images of the
same scene. This is used frequently and successfully to reduce the effects of additive ran-
dom noise. Image addition may also be used to superimpose the contents of one image upon
another, producing a double-exposure effect.

Image subtraction can be used to remove an undesired additive pattern from an image.
This may be a slowly varying background shading pattern, a periodic noise pattern, or any
other additive contamination that is known at every point in the image. Subtraction is also
useful in detecting changes between two images of the same scene. For example, one could
detect motion by subtracting sequential images of a scene. Image subtraction is also
required to compute the gradient, a useful function for locating edges.

Muttiplication and division find less application in digital image processing, but they
do have important uses. Both can be used to correct for the effects of a digitizer in which the
sensitivity of the light sensor varies from point to point within the image. Division can pro-
duce ratio images that are important in color and multispectral image analysis (Chapter 21 ).
Multiplication by a mask image can blot out certain portions of an image, leaving only the
objects of interest.

7.2 ALGEBRAIC OPERATIONS AND THE HISTOGRAM

In this section, we examine the output histogram of sum and difference operations. This
yields insight into the operations and the scaling necessary to keep the output gray levels
within range. We also present a technique for determining the integrated optical density
(10D) of an image contaminated by additive random noise.

7.2.1 Histograms of Sum Images

Suppose, for the operation in Eq. (1), that the input images A(x, y) and B(x, y) have gray-
level histograms H,(D) and Hy(D), respectively. We wish to determine the output histo-
gram H{(D). If the input images are identical, or if one is constant, the process reduces to a
point operation, and the results of Chapter 6 apply. In this section, we address the case
where the images are uncorrelated.

The two input images are uncorrelated if their joint two-dimensional histogram is

Hap(Dy, D) = Hy(Dy)Hy(Dg) (5)

the product of the two individual image histograms. In practical terms, this means that the
images are unrelated.

Note that Eq. () is not satisfied if the input images are identical. but it is satisfied if
at least one image is random and statistically independent of the other.

We can reduce a two-dimensional histogram to a one-dimensional marginal histo-
gram by integrating over one of the independent variables; that is,

H(D,) = j' Hyp(Dy. Dy)dDy )

Thus, given Eq. (5), we may produce a one-dimensional histogram by



Sec. 7.2 Algebraic Operations and the Histogram 103

H(D) = | Hy(Dy)Hy(Dy)dDy %

Eq. (1) implies, however, that at every point,
Dy =D -Dy (8)
Substituting this into the right side of Eq. (7) yields

H(D) =j Hy(De — Dy) Hy(Dg)dD,, 9)

This one-dimensional histogram is a function of output gray level and thus is the output his-
togram. We may now write the output histogram of an operation that sums uncorrelated
Images as

Hi(De) = HyDy) * Hyg(Dy) [§L0)]

where the * indicates the convolution operation defined by the integral in Eq. (9).

The convolution integral is discussed in more detail in Chapter 9, but the following
development illustrates its operation. Suppose we wish to convolve two identical Gaussian
functions. each given by ¢™*. Then

c"'xe""z.‘. e e T dy (n
Expanding the exponent and collecting terms produces

¢ Cre :J PR 1“':‘:’51)' (12)
We now insert a product that is unity, yielding
e we = Jm o et "v’zdy (13)
which may be rearranged as
et w et = J'm o A i) oy (14)
This may be factored in the exponent ;0 yield
et ket = I e “2’:e"':’3dy (15
which may be rearranged to produce

N 2 2 * . 2
eV et = ot aj ety AU g (16)

We now use a property of the Gaussian function, namely, that
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and Eq. (16) becomes

efwer = 21:(14)(*’” (18)
A similar but more general development shows that
Aje IRy poe - uRA = p\ A, [IR0 Gpe T H S (19
where
My = iy + 0
and
o3 = o} + 0} [®1))

This means that convolving two Gaussians produces a third Gaussian that is shifted and
broader, as Eq. (21) indicates.

In general, convolution “smears™ a function. Since adding uncorrelated images con-
volves their histograms, we can expect the sum of uncorrelated images to occupy a broader
gray level range than that of its component images. Further discussion of the convolution
operation is reserved for Chapter 9.

7.2.2 Histograms of Difference Images

For subtraction of uncorrelated images. Eq. (10) holds after redefinition of one image as its
negative. Thus, addition and subtraction of uncorrelated images behave similarly. There is,
however. one case of image subtraction that bears further consideration: the subtraction of
near-identical images that are slightly misaligned. This situation arises when sequential
images of a scene are subtracted to detect motion or other change, and exact registration is
not maintained.

Suppose the difference image is given by

Clx,¥) = Alx, y) — Alx + Ax)'y) (22)
which may be approximated by

N v — a 1 "
Clx,v) = —aIA(X, y)Ax (23)
if Ax is small.

Notice that dA/dx is itself an image with a histogram we may denote by H;(D).
Thus, the histogram of the displaced difference image is

1,
He(D) = 3= Hi(DIAx) (24)

(Recall, from Chapter 6, the effect of a multiplicative constant.) Hence, subtracting slightly
misaligned copies of an image produces a partial derivative image. The direction of the par-
tial derivative is the same as that of the displacement.
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7.2.3 10D of a Noisy Image

Suppose we have an image containing a spot on a uniform, contrasting background. Sup-
pose also that the image has been contaminated by additive random noise, and we wish to
determine the 10D of the spot. We model the situation as follows: Let S(x, y) represent the
noise-free image of the spot and N(x, ¥} the noise image defined on the same region. Then
the observed image is

M(x,v) = S(x, ¥)+ N(x,¥) (25)
The histograms of the three images are shown in Figure 7-1. We assume that the noise has

a symmetrical histogram centered on the unknown mean value A, and that the spot histo-
gram has a sharp spike at the origin due to the uniform background surrounding the spot.

— ']\ B ’[ M
il i

D—> N, D—* N, D—*
Spot histogram Noise histogram Noisy spot Figure 7-1 Histogram of a noisy
histogram spot image

We wish to determine

u ph < ab d pb
10D, =J S(x vydxdy = J' Mx, _\')dxd_v—J. _[ N(x, ydxdy  (26)
(IR 41} 0Y0

G Y0

Substituting the property of Chapter 5, Eq. (12}, produces
10D = _[ DHy(D)dD - NoA 2n
o

where A 1s the area of the region of definition. Now, recalling Eq. (4) of Chapter 5, we can
write

A=| Hyu DD (28)
i}

since the total areas of the noise and observed images are the same. Now
0D, = J' DH,(D)dD - NUJ‘MHM(D)dD 29)
0 0
and rearrangement yields
10D = J{jw- No)Hy(D)dD 30)
This is a simple expression for IOD, provided that N, can be determined. One could esti-
mate N, by averaging the gray level of a small area distant from the spot.

Under a set of reasonable assumptions. however, we can argue that the leftmost peak of
the histogram /1,(D) occurs at N, Assume that the noise histogram Hy(D) is symmetrical, so
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that its peak occurs at the mean value N,. Since N(x, y) is random, the two images are uncor-
related. Eq. (10) states that the sum of uncorrelated images has a histogram that is the con-
volution of the histograms of the two original images. Furthermore, Hg(D) is dominated by
the spike at D = 0.

We show in Chapter 9 that the spike (impulse) is the identity function under convo-
lution [Chapter 9, Eq. (67)). Thus, the histogram Hy/(D) will be dominated by a peak at N,
as shown in Figure 7-1. The asymmetry of Hy(D) will skew the peak slightly to the right, but
the location of the peak remains a good estimate of N if the spot is surrounded by a rea-
sonable amount of background. Thus, the histogram of a noisy spot image yields an easily
computed estimate of the noise-free 10D,

7.3 APPLICATIONS OF ALGEBRAIC OPERATIONS

In this section, we illustrate several situations in which algebraic operations are useful.

7.3.1 Averaging for Noise Reduction

In many applications, it is possible to obtain multiple images of a stationary scene. If these
images are contaminated by an additive random noise source, the multiple images may be
averaged to reduce the noise. In the averaging process, the stationary component of the
image is unchanged, whereas the noise pattern, different from one image to the next, builds
up more slowly in the summation,

Suppose we have a set of M images of the form

Di(x,y) = S(x, y) + N(x, y) (3n

where S(x. y) is the image of interest and the N(x, y) are noise images such as those intro-
duced by film grain or electronic noise in a digitizing system. Each image in the set is
degraded by a different noise image. While we-do not know these noise images exactly, we
assume that each comes from an ensemble of uncorrelated random noise images, all having
zero mean value. This means that

e{N(x,»} =0 32)
E{N(x, )+ Nj(x, 1Y = (N )} +e{Ni(x, )} (i#)) 33)

and
E(Ni(x yINj(x, )} = elM(x MYE(N(x )} (i) (34)

where g{ } indicates the expectation operator; that is, £{ N(x, y)} is the average of the points
atx, y of all the noise images in the ith ensemble. Expectation and random variables are dis-
cussed in more detail in Chapter 1 1.

For any point in the image, we may define the signal-to-noise power ratio as

P(x, y) Sx ) 35
X, B e
Y NG 09

If we average M images to form
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M
D(x,y = “142 [S(x, y) + Ni(x, )] (36)

i=1

the signal-to-noise power ratio becomes

o Sz,
P(x,y) = ——(L—- 37
1) 2
)2 s
The numerator is unchanged because averaging does not affect the signal component.
We may factor 1/M out of the denominator to obtain
_ S2(x,
P(x. }’) = —M—Y)—* (38)
1
,‘75{ 3 Ni(x, .v)z}
i=1
or
_ M2S%(x, y)
Px,y) = 39)

M M
6{ > Y N yIN(, y)}

i=1j=1
Using the property of Eq. (33), we may separate the denominator into two terms, producing

_ M2§%(x,
Plx,y) = M M(X 1:)
e{ > NHx, y)} +€) Y Y Ni(x, )IN;(x, y)} (40)
i=) i=)j=1
iz

The second term may be factored according to Eq. (34) while the first term may be written
as a sum of expectations, yielding

M2S52(x, y)

Px, vy = - i
T eV 1+ Y, Y e Nl y)e{ Nyx, )} 1)
izl izl j=1
i#j
Now, Eq. (32) implies that the second term in the denominator is zero. Furthermore, since

the M noise samples come from the same ensemble, all terms in the first summation are
identical. Therefore,

= M2S%(x, y)
P(x,y) = ———"— = MP(x,
(x,y) Me(Ne(x )] (%, ¥) 2

Thus, averaging M images increases the signal-to-noise power ratio by the factor Mat all points
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in the image. The signal-to-noise amplitude ratio is the square root of the power ratio, i.e..

SNR = JP(x,y) = /M[P(x.) @3
ana it goes up by the square root of the number of images averaged.

Figure 7-2 illustrates the effect of image averaging. Part (a) shows a telescope photo-
graph of a star cluster, and the image is contaminated by film grain noise. The images in parts
(b). (c¢), and (d) are the averages of two, four, and eight consecutive photographs of the star
cluster, respectively. The improvement in the image results because the film grain pattern
builds up in the summation more slowly than does the image of the stationary star cluster.

Figure 7-2  Image sveniging b e Gilm graim i (Counesy NASA-ITL)
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7.3.2 Image Subtraction
7.3.2.1 Background Subtraction

The technique of subtracting a superimposed noise pattern is illustrated in Figure 7-3. Part
(a) shows a digitized light microscope image containing two human metaphase chromo-
some spreads. The image is contaminated by a slowly varying background shading pattern.
In part (b), the microscope stage is moved to bring an empty field beneath the objective lens.
Thus, (b) contains only the background shading pattern. In part (c), the background is sub-
tracted from the original image of part (a), thus removing the shading. A constant value of
64 is added to each pixel after the subtraction. Below each image appears its gray-level his-
togram. Notice the complexity of the background histogram, how it affects the histogram of
part (a), and how the histogram of part (c) resembles the ideal histogram of dark objects on
a uniform, white background.

The background subtraction technique works well in Figure 7-3 because the image
comes from an optical density digitizer used in a case in which the background is superimposed.
If some parameter other than optical density had been digitized, the subtraction would have
been mathematically invalid and the removal of the background probably less effective.

The histogram in part (c) departs slightly from the ideal histogram. In particular, it has
some pixels with gray leve!l less than 64, which is the theoretical minimum. This results
from noise in the digitizing process. Digitizer noise prevents background pixels in parts (a)
and (b) from having identical gray level values.

7.3.2.2 Motion Detection

Figure 7-4 illustrates subtraction for motion detection. Parts (a) and (b) show sequential
aerial photographs of a freeway. Part (c) is the difference image. The freeway and stationary

of pmiges | b) Bockgronmd, (¢ defferonce
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Figure 7-4  Motion detection in an aerial photograph (Courtesy NASA-JPL)

vehicles subtract out, while movement of the vehicles is apparent in the difference image.

Part (c) is considerably easier to analyze for the detection of moving vehicles than are parts
(a) and (b). Imperfect registration between the two frames causes some of the stationary
structures to produce low-contrast, residual derivative edges in the difference image.
{Recall Eq. (23).]

7.3.2.3 Gradient Magnitude

Image subtraction can also be used to produce an important deri vative of the image, the gra-
dient magnitude function. The gradient is defined as follows: Given a scalar function flx.v)
and a coordinate system with unit vectors i in the x-direction and Jinthe y-direction, the gr'a-
dient is the vector function

If(xy) O (xy)
Vf(ey) =i R +JafT (44)
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where V indicates the vector gradient operator. The vector Vf(x. ¥) points in the direction of
maximum upward slope, and its magnitude (length) is equal to the value of the slope. An
important scalar function is the gradient magnitude, given by

IVFx vl = (3—{ )z+ (3—{) 45)

This represents the steepness of the slope at every point, but directional information is lost.
Also, since the square root operation is computationally expensive, Eq. (45) is often approx-
imated by the form
VF, 0 = max [ £(xy) - Fle+ Ll fy)y - fle v+ DI (46)
that is, the maximum of the absolute vertical and horizontal neighboring pixel differences.
The gradient magnitude takes on large values in areas of steep slope. such as at the
edges of objects. Figure 7-5 illustrates the gradient magnitude of a microscope image of a
muscle biopsy specimen. The gradient magnitude is high at the edges and low in the interior
of the uniformly gray fibers.

. \ .
P e et i e e Y

=

at Bl
Figure 7-5 A gradient magnitude image: (a) muscle fibers: (b) gradient image

7.3.3 Multiplication and Division

The multiplication operation can be used for masking portions of an image. The mask image
is unity in areas to be left intact and zero in areas where the image content is to be suppressed.
Multiplying an image by the mask will blot vut, or drive to zero, the specified arca. One may
then produce a complementary mask for a second image that will blot out those areas retained
in the first image. The two masked images may be added to compose the final product.
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Division may be used to remove effects of a spatially varying digitizer sensitivity
function. Division also can be used to generate ratio images that are useful in multispectral
analysis. This technique is discussed in Chapter 21.

7.4 SUMMARY OF IMPORTANT POINTS

1. The histogram of the sum of two uncorrelated images is given by the convolution of
the two input histograms.

~

Averaging N images of a stationary scene contaminated by random noise increases
the signal-to-noise amplitude ratio by JN.

. Subtracting slightly displaced identical images produces a partial derivative image.
. The convolution of two Gaussian functions produces another, broader Gaussian.

. In the convolution of two Gaussians, their means and variances add.

. The 10D of a noisy image can be computed from the histogram of the image [Eq. (30)].
. Image subtraction is useful for background removal and motion detection.

. Image multiplication is usetul for masking out a portion of an image.

N2 BN T - N R N

. Image division is useful for generating ratio images to extract colorand spectral infor-
mation from, and identify regions of different color in, an image.

PROBLEMS

1. Suppose you have two chest X rays from a patient taken eight months apart. Both films show a
nodule that may or muy not be malignant. Both the size and density of the nodule have changed
during the period, but radiologists are unsure, after visual examination. if the nodule is getting
better or worse. Below are histograms from a small region of each image containing the nodule.
Low gray level represents dark on the film. Compute the area, IOD, and mean density of the nod-
ule from each film. Is the nodule getting larger or smaller? Is it getting more or less dense? Rec-
ommend (but do not prescribe, unless you are licensed to practice medicine) the proper
treatment—either surgecy or a low-fat dict. Remember that the X ray is a negative image; that is.
denser objects appear lighter.

FEBRUARY:
[0 500 8000 500 100 100 200300 200 1000000 00)

OCTOBER:

[0 500 8000 500 100 0 0 100 200 300 200 10000 0 0]
Suppose you have another patient with the following histograms:

4

APRIL:
[0 0500 5000 500 200 100 100 200 300 200 100 00 0)

NOVEMBER: ¢
[(-0 0 500 5250 500 200 100 100 150 200 150 50 0.0 04

Repeat the exercise in Problem | for this patient.
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3.

PROJECTS

1.

Below are the histograms of two 100- by 100-pixel. 16-gray level (0—15) images. What will be
the histogram of their sum image?

[000100600000000000000f

(600 1000 1800 2500 1900 1100 800 2000000000 0)

. Suppose you have two diskettes, each containing a four-bit digitized image of a billiard table.

(White ts 15.) Both images were taken from the sume camera position, one just prior to the final.
game-winning shot iwhich sank the fast three white balls) and the other immediately after the
table had been cleared. Each diskette is accompanied by a histogram of its image. (See below.)
Which image has balls in it” Sketch the two histograms and what the difference image histogram
will took like it you subtract the image of the table only from the other image to produce an
unshaded picture of the setups prior to the last shot.

DISKETTE 1:
{0100 400 700 800 600 500 600 500 400 400 600 400 100 0 0}

DISKETTE 2:
[0 100 300 700 700 600 S00 60 500 400 400 600 500 2000 0]

. Plot the two 16-level histograms below. Which one corresponds to a gradient magnitude image

(possibly with a constant added)?
[0:0°0 100 200 300 500 800 S00 300 200 1000 0 0 0]
[0:00 100 300 500 400 200 300 500 300 200 100 100 0 0}

Digitize an image of 4 street scene with and without cars in it. Subtract the image without cars
from the image with cars to show the cars floating in space.

. Digitize un image of & group of your friends and the same scene without the people. Subtract the

latter image from the former image to show your friends floating in space.

- Repeat Project 1 or 2, but shift the camera position slightly between images and compare the result,
. Repeat Project | or 2, but change the lighting conditions slightly (e.g., take the picture after the

sun goes behind a cloud. don’t use a flash, etc.) and compare the result.

. Subtract digital images of two frames of movie film or videotape, and use the subtracted image

to count the number of moving objects there are

. Subtract digital images of two frames of movie film or videotape. and use the subtracted image

to determine the velocity of a moving object that 1s shown. Specify how the pixel spacing and
time interval were determined.

. Digitize successive movie or videc trames of a predominantly stationary scene, and use image

averaging to cut the noise level in halt. Point out the result of any movement in the images.

. Develop (or obtain) a program that can compute the gradient magnitude image, and use the pro-

gram to convert a photograph of a friend into a cartoon (black-on-white line drawing).

. Digitize a scene through first a red und then a green filter, and use image division to produce

ratio images that will isolate the different colored objects (e.g.. fruil. flowers. Loys, cars, etc.).
Include a test target with black. white. ang gray in the scene. Compule gray-level histograms of
the test target in both images, and use the histograms for any photometric calibration required
prior to generating the ratios. Comment on the effects of photometric calibration and motion of
the camera.




CHAPTER 8

Geometric Operations

8.1 INTRODUCTION

Geometric operations change the spatial relationships among the objects in an image. Such
operations may be thought of as moving things around within the mage. The effect is the
same as printing the image on a rubber sheet, stretching the rubber sheet, and tacking it
down at various points. Actually, a geometric operation is much more general than that,
since any point in the input image may move to any position in the output image. Such an
unconstrained geometric operation would almost certainly scramble the image content, so
geometric operations are generally constrained to preserve some semblance of order.

Two separate algorithms are required for a geometric operation. First, there must be an
algorithm that defines the spatial transformation itself. This specifies the “motion” of each
pixel as it “moves” from'its initial to its final position in the image. Also required is an algo-
rithm for gray-level interpolation. This is necessary because, in general, integer x, y positions
in the input image map to fractional (noninteger) positions in the output image and conversely.

8.1.1 The Spatial Transformation

In most applications, it is desirable to preserve the continuity of curvilinear features and the
connectivity of objects within the image. A less constrained spatial transformation algo-
rithm would break up lines and objects and tend to “splatter” the contents of the image.
One could exhaustively specify the motion of each pixel in the image, but this
would quickly become unwieldy, even for small images. It is more convenient to specify
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mathematically the spatial relationship between points in the input image and points in the
output image. The general definition for a geometric operation is

gix.y) = f(x'.y) = flalx, y), b(x ¥ ()
where f(x, v} is the input image and g (x, y) is the output image. The functions a(x, v) and
b(x, ¥) uniquely specify the spatial transformation. If they are continuous. connectivity will
be preserved within the image.

8.1.2 Gray-Level Interpolation

The second requirement for a geometric operation is an algorithm for the interpolation of
gray-level values. In the input image f(x, y). the gray-level values are defined only at inte-
gral values of x and v. Eq. (1), however, will in general dictate that the gray-level value for
£(x, y) be taken from f(x, v) at fractional (nonintegral) coordinate positions. If the geometric
operation is considered a mapping from fto g, pixels in f can map to positions between pix-
els in g and vice versa. For the purposes of this discussion, we stipulate that pixels be located
exactly at integral coordinates of the sampling grid.

Armed with a spatial transformation and an algorithm for gray-level interpolation. we
are prepared to perform a geometric operation. Usually. the gray-level interpolation algo-
rithm is permanently established in the computer program. The algorithm defining the spa-
tial transformation, however, is specified uniquely for the task at hand. Since the gray-level
interpolation algorithm is always the same, or one of several options, it is the spatial trans-
formation that defines a particular geometric operation.

8.1.3 Impiementation

One can adopt either of two approaches when implementing a geometric operation. One can
think of the operation as transferring the gray levels from the input image to the output
image, pixel by pixel. If an input pixe} maps to a position between four output pixels, then
its gray level is divided among the four output pixels according to the interpolation rule. We
call this the pixel carry-over or forward-mapping approach. (See Figure 8-1.)

An alternative, and more effective, implementation is achieved by the pixel-filling or
backward-mapping algorithm. In this case, the output pixels are mapped back into the input
image, one at a time, to establish their gray levels. If an output pixel falls between four input
pixels, its gray level is determined by gray-level interpolation (Figure 8-1). The backward
spatial transformation is the inverse of the forward transformation.

The forward-mapping algorithm is somewhat wasteful, since many input pixcls
might map to positions outside the border of the output image. Furthermore, each cutput
pixel might be addressed several times. with many input pixels contributing to its final gray-
level value. If the spatial transtormation involves demagnification, more than four input
pixels would contribute. If magnification were involved. certain of the output pixels might
be missed when no input pixels mapped to positions near their location.

The backward-mapping algorithm, however, generates the output image pixel by
pixel, line by line. The gray level of each pixel is uniquely determined by one interpolation
step between, at most, four input pixels. The input image, of course. must be accessed ran-
domly in 4 manner defined by the spatial transformation, and this can be quite complex.
Nevertheless, the pixel-tilling approach is the more practical algorithm for general use.
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Figure 8-2 Comparison of zero-order and first-order gray level int lati
Figure 8-1 Pixel transfer g p: gray interpolation

point inside the square (Figure 8-3). We can do so by fitting a hyperbolic paraboloid,

8.2 GRAY-LEVEL INTERPOLATION defined by the bilinear equation
Since output pixels map to fractional positions in the input image, they generally fall into flx,y) = ax+by+cxy+d (2)
the space between four input pixels. Interpolation is then necessary to determine what gray through the four known values.

level corresponds to that position. The four coefficients, a through d, are to be chosen so that f (x, y) fits the known values

. at the four corners. There is a simple algorithm that produces a bili ints lation functi
2.1 Ne Nelghbor Interpolation ple alg: produces a bilinear interpolation function

S0

The simplest interpolation scheme is the so-called zero-order, or nearest neighbor, interpo-
lation. [n this case, the gray level of the output pixel is taken to be that of the input pixel
nearest the location to which the output pixel maps. This is computationally simple and pro-
duces acceptable results in many cases. However, nearest neighbor interpolation can intro-
duce artifacts in images containing fine structure whose gray level changes significantly 700
from one pixel to the next. Figure 8-2 shows an example of rotating images with nearest
neighbor interpolation, with the resulting sawtooth effect at some of the edges.

fO.1

8.2.2 Bilinear Interpolation

First-order, or bilinear, interpolation produces more desirable results than does zero-order
interpolation, with only a slight increase in programming complexity and execution time.
Since fitting a plane through four points is an overconstrained problem, first-order interpo-
lation on a rectangular grid requires the bilinear function.

Let f(x, y) be a function of two variables that is known at the vertices of the unit
square. Suppase we desire to establish by interpolation the value of f(x, y) at an arbitrary

0.0

Figure 8-3 Bilinear interpolation
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which fits f(x, v) at the corners. First, we linearly interpolate between the upper two points to
establish the value of

fx.0) = J(0,0) +x [ f(1.0)~ (0, 0)] 3)
Similarly, for the two lower points,

flx, D) = fO. D+ x[fQ, D~ f(0,1)] (4)
Finally, we linearly interpolate vertically to determine the value of

flxy) = fx,0)+y [ f(x D= f(x 0)] (5)

Substituting £qgs. (3) and (4) into Eq. (5), expanding, and collecting terms produces
Sy = [f(L0)=f(0.0)] x+ [ f(0, 1) - f(0.O)] ¥
+ (L D+ £10.0) - £(0. 1) = f(1, O)} xy + £(0,0)
which is in the form of Eq. (2) and is thus bilinear. Upon inspection, it is clear that Eq. (6)
fits the four known values of f(x. v) at the corners of the unit square.

Notice that if we hold either x or y constant, Eq. (2) becomes linear in the other vari-
able. This illustrates that the hyperbolic paraboloid is a two-way ruled surface: that is, it
intersects all planes parallel to the xz-plane and all planes parallel to the yz-plane in a
straight line.

Bilinear interpolation can be implemented either directly, by Eq. (6). or by perform-
ing the triple linear interpolation given by Eqs. (3). (4), and (5). Since Eq. (6) involves four
multiplications and eight additions or subtractions, geometric transformation programs
typically do the latter, which requires only three multiplications and six additions or
subtractions.

Although the foregouing development was performed on the unit square. it is casily
generalized by an integer translation, after which x and y represent the fractional pixel posi-
tion. Figure 8-2 compares bilinear with nearest neighbor interpolation.

When adjacent four-pixe] neighborhoods are interpolated with the bilinear equation,
the resulting surfaces match in amplitude at the neighborhood boundaries, but do not match
in slope. Thus. a surface generated by piecewise bilinear interpolation is continuous, but its
derivatives, in general, are discontinuous at the neighborhood boundaries.

(6)

8.2.3 Higher Order Interpolation

[n geometric operations, the smoothing effect of bilinear gray level interpolation may
degrade fine detail in the image. particularly if magnification is involved. In other applica-
tions, the slope discontinuities of bilinear interpolation may produce undesirable effects. In
either of these cases, the extra computational efforts of higher order interpolation may be
justified. A function similar to. but more complex than, Eq. (2) and having more than four
coefficients is made to fit through a neighborhood of more than four potats.

If the number of coefficients equals the number of points, the interpolating surface
can be made to fit at every point. If the points outnumber the coefficients, a curve-fitting or
error-minimizing procedure can be used. Examples of higher order interpolating functions
are cubic splines, Legendre centered functions, and the function sin(ax)/ox. The latier is
discussed in later chapters. Higher order interpolation is usually implemented by convolu-
tion. A discussion of this 1s reserved for Part 2 of the text.
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8.3 THE SPATIAL TRANSFORMATION

Eq. (1) gives the general expression for the spatial transformation. It is instructive to con-
sider some less complex special cases before going on to general geometric operations.

8.3.1 Simple Transformations
If we let
a(x,y) = x bix.y)=y 7N

in Eq. (1), we have the identity operation, which merely copies finto g without modification.
It we let

a(x,y) = X+ x;, blx.¥) =y+y, (8)

we have the translation operation. in which the point xy,¥, is translated to the origin, and fea-
. . ] . .

tures within the image are moved by an amount /x§ + y§ . Using the formulation called

homogeneous coordinates [1-9] we can consider the x~y plane to be the z = 1 plane of three-
dimensional x, v, 2 space and write Eq. (8) compactly in matrix form as

a(x, y) FOx, || x
b, y)| =101 y,||¥ (9)
1 00 1{|1]
Letting
a(x,v) = x/c b(x,v) =vld (10)

will magnify the image by the factors ¢ in the x-direction and din the y-direction. The origin
of the image (typically the upper left-hand corner) remains stationary as the image
“expands.” In homogeneous coordinates Eq. (10) is written as
a(x, yﬂ; [1 00; x‘[
hiy vil = 1 )
e 0? O. '\J
I 001 [1

Letting ¢ = ~1 produces a reflection about the y-axis,

(1

a(x,y) = ~x b(x,¥) =¥ (12)
and similarly for d and the r-axis.
Finally, letting
afx,y) = xcos(6) -y sin(8) (13)
and
(x,¥) = xsin ((6) +y cos(6) (14)

produces a rotation through an angle 8 about the origin. This equation can be written in
homogeneous coordinates as
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a(x, v) Vcos(f)) ~-sin(6) 0| x
b(x,y)| = | sin(8) cos(8) 0|y (15)
1 0 0 1[]1

Clearly, we can combine translation with magnification to cause the image to “grow” about
a point other than the origin. Likewise, we can combine translation with rotation to produce
rotation about an arbitrary point,

Homogeneous coordinates provide a simple way to determine the formulas for coni-
pound transformations. For example, rotation about the point xo,y, is accomplished by

a(x,y) 10 xp|} cos(B) ~sin(8) 0|10 —xy|}x
b, ¥) 1 = 101 yy|l sin(@) cos(@) O[{01 —yy{|y (16)
1 001 0 0 1[{00 1 1

The image is first translated so that the point xg, is at the origin, then rotated through the
angle 6, and then translated back to its origin. Multiplying out Eq. 16 yields the appropriate
transformation equations. Other compound transformations can be constructed similarly. In
the construction of the right-hand side of the equation, the sequence of operations is from
left to right.

Separable Implementations. If an image is subjected to translation [Eq. (8)}
or magnification {Eq. (11)), the output pixel addresses, a(x, y) and b(x, y), depend only on
xand y, respectively. Thus, it is possible, and sometimes more efficient, to perform the oper-
ation in two steps. First it is done, for example, in the horizontal direction, producing an
intermediate image. Then the vertical part of the operation proceeds, using the intermediate
image as its input and producing the final result.

Catmull and Smith-{10] have shown that it is possible to perform a rotation in the
same type of two-step procedure. Solving for x in Eq. (13) yields

_ a(x, y)+y sin(0)
cos(8)
and substituting this into Eq. (14) leads to

a7

a(x,v)sin(0) +y
b(x,y) = T (@ (18)
Thus, we can use Eq. (13), which is linear in x along any scan line, in combination with
b(x, y) = v in the first (horizontal-only) part of the operation. Then we can use Eq. (18),
which is linear in y along any column, along with a(x, y) = x in the second (vertical-only)
part of the operation.

In this type of rotation, image features are “compressed” in the x-direction by the fac-
tor cos(8) in the first step. and then “expanded” in the y-direction in the second step. The
technique fails at multiples of 90 degrees, where the cosine goes through zero, and inaccu-
racy restricts it to smaller angles.

For image registration applications, the required rotation angles are normally small.
Even if this is not the case, rotation through multiples of 90 degrees can be done with simple
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row and column swapping. Thus, it is possible to rotate an image through any angle while
keeping the actual rotation angle between plus and minus 45 degrees and the compression
factor no less than 0.707. With this restriction, then, translation, magnification and rotation
have one-dimensional implementations.

8.3.2 General Transformations

For relatively simple spatial transformations, it may be practical to use an analytic expres-
sion for Eq. (1). In many image-processing applications, however, the desired spatial trans-
formation is relatively complex and not amenable to convenient mathematical expression.
Furthermore, the desired pixel translations are frequently obtained from measurement of
actual images, and it is desirable to specify the geometric transformation in these terms
rather than in functional form.

An example of this is the geometric calibration of an image taken with a camera having
geometric distortion. First, a rectangular grid target is digitized and displayed. Because of
geometric distortion in the camera, the displayed grid pattern will not be exactly rectangular.
(See Figure 8-4.) The desired spatial transformation is that which makes the grid pattern
rectangular again, thereby correcting the distortion introduced by the camera. This same spa-
tial transformation can then be used on subsequent images digitized by the same camera
(assuming that the distortion is not scene dependent), thereby producing undistorted images.
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Figure 8—4 Geometric calibration of an early Ranger spacecraft camera: (a) before,
(b) after (Courtesy NASA-JPL, from [19])

8.3.3 Specification by Control Points

It is convenient to specify the spatial transformation as a series of displacement values for
selected control points in the image. Since only’a small fraction of the pixels are actually
specified, the displacements of noncontrol points must be determined by interpolation.
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One way to do this is to develop functional expressions for a(x. ¥) and b(x, ¥) in Eq.
(1). Commonly, a polynomial is used as the general form of the transformation expression.
Its parameters are selected to make it fit the control points and their specified displacements.
This is called polynomial warping. It is practical to use polynomials up to the fifth order for
the transformation function {11}.

In many cases, the limitations of polynomial warping will not accommodate the com-
plex transformation required. Thus, some programs for geometric operations break the image
up into polygonal regions and use piecewise bilinear mapping functions. The user specifies an
input control grid made up of control points that form the vertices of contiguous quadrilaterals
in the input image {11~16]. The input control grid maps to a grid of contiguous, horizontally
oriented rectangles in the output image (Figure 8-5). The vertices (input control points) of the
quadrilateral map directly to the corresponding vertices of the rectangle. Similarly, points
inside an input quadrilateral map to points within the corresponding output rectangle.

Input Output

Figure 8-5  Spatial mapping of

——] control points

8.3.4 Polynomial Warping

If the number of terms in the polynomial matches the number of control points, then the
transformation can be designed to map the control points exactly as specified. Solving for
the coefficients of the polynomial becomes an exercise in simultaneous linear equations,
and a matrix inversion will normally produce the required result. (See Sec. 19.5.2.)

If there are more control points than terms in the polynomial, however, a fitting pro-
cedure must be used to determine the coefficients of the polynomial. In this case, the spatial
transformation is a best fit to the control point spegifications, and the mapping of individual
control points does not occur exactly as specified.

Techniques for fitting one- and two-dimensional functions to a set of given data
points are discussed in Section 19.5. The pseudoinverse technique (Sec. 19.5.2, Appendix
3) for determining the coefficients of the best fitting function is commonly used for poly-
nomial warping. Other numerical methods, such as singular value decomposition ([17],
Appendix 3} and orthonormal decomposition {1 1] may prove superior in practice.

Once the coefficients of the polynomial have been determined, the implementation is
the same as before. There are numerical methods, however, such as Horner’s nesting
scheme [11,18], that can reduce the required number of computational steps. Even so, the
task can be formidable when performing higher order warps on large images.

8.3.5 Control Grid Interpolation

If polynomial warping is impractical, the image must be warped in pieces. In the most com-
mon implementation, the input control points form a grid that maps to a grid of contiguous,
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horizontally ortented rectangles in the output image, as in Figure 8-5. The input control
points map to the vertices of the corresponding rectangles, while points inside cach input
polygon map to points within the corresponding outpui rectangle.

Bilinear interpolation is a common choice for control grid interpolation, because it is
computationally simple and produces a smooth mapping that preserves continuity and con-
nectivity. The general expression for the bilinear spatial transformation is

Gloov) = FOO V) = Flav+ by +cxv+d,ex+ fyr+gxv+ h) (19)

The bilinear transformation is defined by the values of the eight coetficients a through 2. By
specifying that the four vertices of a quadrilateral map to the four vertices of the correspond-
ing rectangle, we create two sets of four linear equations in four unknowns. The mapping
from x'to x generates four equations in a, b, ¢, and d. and likewise for the mapping from y’
to v and the coefficients ¢. f. g, and k. These sets of equations may be solved for a through
h [recall Eq. (6)] to specify the bilinear spatial transformation algorithm that applies to all
output points falling inside the rectangle.

While the spatial runsformation algorithm could be implemented as Eq. (19), there 1s
amore convenient and computationally efficient way of implementing it. By redefining the
coefficients a and e, we can write Eq. (19) as

Gl y) = Flx+dx(x, v).y+dy(x v)) {20)
where dx(x, y) and dv(x. v) are pixel displacements that are bilinear functions of x and v.
Figure 8-6 shows these displacements with the input quadrilateral superimposed upon the
output rectangle to which it maps. The problem now reduces to specifying dx and dy for all
points inside the rectangle. Since dx(x, v) and dv(x. v) are bilinear in x and v, they become
linear in x along each output line. Thus. for each line, we can define an increment, Ax. such
that, assuming unit pixel spacing,

dx(x+1,y) = dx(x,¥) +Ax 2h

and similarly for dv. The increment Ax changes from line to line, but is easily computed
from the displacement values at the ends of the output rectangle. These can be interpolated
between the given displacements at the vertices. Implementing Eq. (21) requires only two
additions. one for dx and one for dv, at each output pixel to compute the coordinates of the
corresponding input point.

The foregoing procedure specifies the spatial transformation for points falling inside
the output rectangle. Frequently. a single quadrilateral-to-rectangle mapping is inadequate
to specify the desired spatial transformations, and one can designate contiguous sels of
quadrilaterals in the input image that map into contiguous sets of rectangles in the output
image. [t is not necessary, however, for the rectangles to cover the output image completely.
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Figure 8—7 shows an output image in which six contiguous rectangles are defined.
Inside each of the rectangles, the spatial transformation is defined as described above. The
figure also shows how the spatial transformation can be extrapolated outside the rectangles
by which it is defined. The numbers inside the unspecified (dotted) rectangles indicate the
control rectangles from which the bilinear coefficients are used [12]. For example, the spat-
ial transformation used in the upper left-hand rectangle of the output image uses the bilinear
coefficients for rectangle 1.

It is clear from the previous discussion that the bilinear transformation is continuous
and unique at the vertices and boundaries of output rectangles. At each boundary, bilinear
interpolation degenerates into linear interpolation between the two end points.

When specifying adjacent rectangles in the output image. one must make their vertices
coincident. Similarly, adjacent quadrilaterals in the input image must have coincident vertices.
Nonadjacent quadrilaterals, however, are not so constrained and may even overlap. Objects
inside areas where input quadrilaterals overlap become duplicated in the output image.
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8.4 APPLICATIONS OF GEOMETRIC OPERATIONS

8.4.1 Geometric Calibration

An important application of geomelric operations is the removal of camera-induced geo-
metric distortion from digital images [ 13-16,19]. An example appears in Figure 8-4. Geo-
metric calibration has proved important in extracting quantitative spatial measurements
from a wide variety of digitized images. Certain images, such as those from satellites and
airborne side-looking radar, are subject to rather severe geometric distortions. These images
often require geometric correction prior to interpretation.

8.4.2 Image Rectification

Some imaging systems use non-rectangular pixel coordinates. Before images digitized with
such a system can be viewed properly on ordinary display systems, they must be rectified,
that is, transformed into rectangular pixel coordinates.

The Viking Lander spacecraft, for example, used an angle-scanning camera designed
for digitizing Martian panoramas. It used a spherical coordinate system with scan lines
spaced at equal angles of elevation, and its pixel spacing represented equal increments of
azimuth angle. Figure 8-8(a) shows the distortion this design produced on rectangular dis-
plays, particularly for objects located near the camera.
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(b)

Figure 8-8 Viking Lander camera
correction: (a) before, (b) after
(Courtesy NASA-JPL)

Rectification of angle-scanned images for rectangular display involves the projection
of a spherical surface onto a tangent plane. The projection lines emanate from the center of the
sphere and carry points on its surface out to the plane. The relationship between input and 05'“_
put pixel location is derived in [ 14]. Figure 8-8(a) was rectified for rectangular display in Fig-
ure 8-8(b). Notice that the table edges appear straight, as they should, in the rectified image.

A free-roaming robot, like a human, requires wide-angle stereoscopic vision in order
to navigate among obstacles, such as passing through doorways. A fish-eye lens can image
a field of view approximately 180 degrees wide, but it does so with considerable distortion
(Figure 8-9a,b). A properly designed geometric operation can rectify such an image inu? a
rectangular coordinate system (Figure 8-9¢.d) so that stereoscopic ranging techniques (dis-
cussed in Chapter 22) can locate the surrounding objects in three dimensions. In this exam-
ple, a fifth-order polynomial warp, implemented in a polar coordinate system, rectified the
images [20,21].
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Figure 8-9 Geometric rectification of an image taken with a fish-eye lens: (a) test
target, (b) fisheye image; (c) original, (d) rectified hallway image (Courtesy Shishir
Shah. The University of Texas at Austin, from | 20))

8.4.3 Image Registration

Another application of geometric operations is registering similar images for purposes of
comparison. This is typified by image subtraction to detect motion or change. As pointed
out in Chapter 7, if similar images are displaced slightly and subtracted, the difference
image has a strong partial derivative component. This could easily mask the image differ-
ences of interest. If images of a stationary object can be digitized from a fixed camera posi-
tion, they can be obtained in register. If this is not the case, however, it is likely that the
images will have to be registered prior to subtraction.

While simple translation is easily accomplished. rotation or more complex distortion
requires a geometric operation. Registration of film scan images is likely to involve
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translation and rotation. Serial sections of biological tissue, sliced on a microtome .and.pho—
tographed through a microscope, for example, are subju?ct to rather severe geometric (!lstor-
tion. In such cases, simple translation and rotation are inadequate. lnsteaq. one such image
can be taken as a standard of reference and the others distorted to match it. Small features
are located throughout the images and used to define cor‘nrol p(?ims. Chapter 7 shows exam-
ples of image subtraction in which careful registration is required.

8.4.4 Image Format Conversion

Geometric operations are sometimes useful simply for placing images into a format more
convenient for interpretation. Figure 8-10(a) shows a photographic map of the chromo-
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Figure 8-10 Drosophila
chromosome map: (a) original, (b)
e straightened (Courtesy NASA-JPL)
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somes of one species of the fruit fly Drosophila. The map is made by, pasting up photographs
of chromosomes taken through a microscope. Geneticists anatyze the pattern of bands on the
chromosomes to deduce patterns of evolution. The areas are numbered for reference.

Figure 8-10(b) shows the result of using a geometric operation to produce a map in
which the chromosomes appear straight. In the input image, each chromosome was overlaid
with a control grid of quadrilaterals, each with two sides parallel to the chromosome axis.
These were mapped into horizontal strings of rectangles in the output image. In order to pre-
vent axial distortion of the chromosome, the horizontal length of each rectangle was made
equal to the mean of the two axial sides of the corresponding quadrilateral.

The numbers below chromosome 3 suffered less distortion than the others because a
second row of quadrilaterals was defined below this chromosome. These were actually paral-
lelograms with vertical ends and sides parallel to the chromasome axis. They mapped into a
second row of rectangles falling beneath those that defined the straightened chromosome.

8.4.5 Map Projection

Another major application of geometric operations is projecting images for purposes of
mapping. For example, it is necessary to produce photomosaic maps of the Earth, moon, and
planets using images transmitted back from spacecrafi. The borders of the spacecraft cam-
era image project onto the planet’s surface, forming a “footprint” with four curvilinear sides
[Figure 8—11(a)]. The spherical surface of the planet is projected onto a flat surface to make
amap [Figure 8-11(b)]. The “footprint™ also projects onto the map. producing a further dis-
torted four-sided figure.

A geometric operation can transform the spacecraft camera image into the form it
should assume on the map. Multiple images processed in this way can be combined into a
mosaic to form a photographic map of the planet. The task of determining the control points
for projecting a given image is somewhat involved. The program must take the spacecraft
viewing geometry and the desired cartographic projection parameters and generate input
and output contro] grids.

Determining the spatial transformation between the input and the projected image is
a two-step process. Sofiware used in the space program solves this problem by working
backward from the output image to the input image. The specified cartographic projection
technique defines the relationship between points in the output image and points on the
planet’s surface. The spacecraft viewing geometry determines the spatial relationship
between points on the surface of the planet and pixel positions in the camera image. The
program overlays a rectangular control grid on the output image and maps it back through
the cartographic projection and the spacecraft viewing geometry to overlay it on the input
image. The following section outlines this technique.

Cartography. The science of cartography is concerned with producing tw o-
dimensional maps of spherical or ellipsoidal bodies. This is not a simple matter, because
spherica) surfaces cannot be flattened without distortion. Cartographers solve the problem
by projecting the spherical surface onto a plane or onto a cylinder or cone that can be
“unrolled™ to form a flat surface [22,23].

Map Properties. There are three important properties that a particular map may
or may not have, depending on its method of generation. A map is said to be equidistant it
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Mercator Lamben conformal conic  Figure 8-12  Cartographic projections

scale is preserved along certain lines. This means distances along those lines are propoi-
tional to the distance between corresponding points on the planet. A map has the property
of equivalence if the area of aregion is preserved in the projection. Such maps may be used
for comparing the areas of different features. A map is conformal or orthomorphic if angles
are preserved in the projection—that is, if lines on the surface intersect at the same angle as
their projections on the map. A conformal map also preserves shape at a point. This means
that the shape of small features is distorted only very slightly. The distortion of shapes
becomes progressively more significant as the size of the features increases.

Cartographic Projections. There are three types of surfaces onto which sur-
face features may be projected to form a two-dimensional map: the plane, the cylinder. und
the cone. The last two must be cut along a line parallel to the axis and “unrotled™ to form «
flat map. The cone may be considered the general case, since the plane can be thought of as
a cone with apex angle 180° and the cylinder a cone with apex angle 0°.

While many types of projections have been defined and used throughout cartographic
history. four of the most important are the orthographic, the stereographic, the Mercator,
and the Lambert conformal conic projections [24]. These projections differ in the tech-
niques by which they are generated and in their properties. They are described next, with
reference to Figure 8-12.

In the orthographic projection, surface features are projected onto a plane tangent to
the sphere at a point called the center of projection. Features are projected along parallel
lines normal to the plane. When the center of projection is a pole, the scale along parallels
of latitude is constant. By contrast, the radial scale decreases away from the center of pro-
jection. There is little distortion of features near the center of projection. Parallels of latitude
project as concentric circles centered on the pole, and meridians project as straight lines
intersecting at the pole.
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The orthographic projection is useful because it approximates viewing the planet
from a large distance. and the eye is able to visualize the spherical shape of the planet
Because scale and shape are distorted. however. orthographic maps are of restricted quan:
titative use, except for small features near the center of projection.

The stereographic projection is similar to the orthographic projection, except that the
projection rays emanate from a perspective point located directly opposite the center of pro-
jection. In the polar case, parallels of latitude project as concentric circles centered on the
pole, and meridians project as radial lines intersecting at the pole. The scale along parallels
and that along meridians increase away from the pole. They increase proportionately, how-
ever. so that at any point the longitude and latitude scales are the same. This makes the ste-
reographic projection conformal. and shape is preserved locally. There is little distortion of
features near the center of projection. Coupled with conformality, this property makes the
stereographic projection quite useful.

The Mercator projection maps surface features onto a right circular cylinder that is
tangent to the sphere at the equator. The cylinder axis is colinear with the polar axis of the
sphere. Meridians map to equidistant vertical lines, and parallels map to circles on the cyl-
inder, which open up to form horizontal lines on the map. Scale along latitude lines
increases with distance from the equator. The projection is designed so that the perspectival
point moves up the axis with increasing latitude, keeping the latitude and longitude scales
equal and thus making the map conformal. Scale is exaggerated away from the equator, and
features near the poles become quite large. The poles themselves cannot be mapped.

The vertical position of latitude lines is given by

y=Rln [(an(45+gn Q)

where R is the planet’s radius on the map and ¢ is latitude.

Historically, the Mercator projection has been used for navigation because a course of
constant compass heading projects to a straight line on the map.

In the Lambert conformal conic projection, surface features are projected onto a cone
having the same axis as the planet. The cone intersects the sphere at two parallels called the
standard parallels. Meridians map to straight lines, and parallels map to circles inside the
cone. When the cone is unrolled. the parallels become arcs and the meridians merge at the
pole. The spacing of the parallels is adjusted to achieve conformality. The two standard par-
allels project at true scale: Scale decreases between them and is exaggerated outside of them.

8.4.5.1 Implementation

The steps necessary to project a spacecraft image for mapping purposes are the following:

1. Establish the spacecraft camera viewing geometry.

2. Determine an expression giving camera position as a function of the latitude and lon-
gitude of the corresponding point on the planet’s surface.

3. Select the map projection parameters (type of projection. center of projection, etc.).
and establish the borders of the output image on the map.

4. Determine an expression giving the latitude and longitude of a point on the planet s
surface in terms of the pixel coordinates of the corresponding point on the map.
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"

. Combine the results of steps 2 and 4 to yield an expression giving camera pixel posi-
tion as a function of position on the output map.

Ea

Overlay a rectilinear control grid on the output picture.

N

Use the expression of step 5 to map the output control points into the inputimage, thus
establishing the input control grid.
8. Use the results of step 7 in a geometric operation to effect the projection.

The spacecraft viewing geometry may be established with reference to Figure 8-13. In this
figure, the spacecraft is located at a distance R, from the center of the planet, directly above
the point at latitude ¢, and longitpde A,. Point C is the perspective point that represents the
nodal point (center) of the camera lens. Point p is in the camera image and corresponds to
point p’. which has longitude A and latitude ¢ on the surface. The distance f represents the
focal length of the lens and is exaggerated for clarity in the figure. The vector Q extends
from C to p". Notice that the vector

4

P=1y (23).

¥p
s

has components x, and y, which are the camera pixel position coordinates. Since P and Q

are colinear, they are related by a scale factor:

P= (é)o (24)

From Figure 813, we see that
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Figure 8-13 Spacecraft viewing geometry
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Q=R-S§ (25)

which we ¢can write in matrix notation as

Q; Rcos@eosA~ R cusg, cos A,
Q. = IM]I Rcosgsind - R, cos g, sinA, (26)
'Q. Rsing - R, sing,

where [M] is the three-by-three matrix that transforms from planet-centered to spacecraft
coordinates.
Finally. Eq. (24) implies that

X, <Q1)Q‘ and )',,:(ér)Q‘ (27)
Several cartography texts develop equations that give map position in terms of latitude and
longitude on the surface. Since we must work backward from map to planet. however.
inverse forms of the equations are required. These are developed in [24] for the four pro-
jections mentioned above.

Spacecraft images often require both geometric correction and map projection, sug-
gesting two sequential geometric operations. Pixel interpolation done twice. however,
would reduce detail in the image. so the two geometric operations are usually combined into
one execution that both corrects and projects the image.

8.4.5.2 Examples of Map Projection

Figure 8- 14 illustrates the steps used in producing a photographic map. Part (@) is a Mar-
iner 10 image of Mercury prior to correction for photometric and geometric distortion. In
(b). the image has been subjected to a geometric operation to produce an orthographic pro-
jection. In (¢). several neighboring orthographic projections have been combined to form
a mosaic. Finally. in (d). a tatitude and longitude grid has overlaid the orthographic
mosaic.

Figure 815 show: a polar orthographic projection of images of Mars taken from
Mariner 6 and Mariner 7 |25]. A mosaic of high-resolution, narrow-angle images has been
inserted into a mosaic of wide-angle, iow-resolution pictures of the entire polar arca. Figure
§-16 shows a four-toot-diameter globe covered with 2.000 orthographic projections of
Mariner 9 images of Mars (15].

8.4.6 Morphing

Several special eftects that have become popular in the motion picture and television indus-
tries are based on geomelric operations. Merphing 1s a technigue that aows one object to
transform gradually into another [26].

Suppose we have two images from which we wish to create a sequence af movie
frames. That sequence is 1o depict the transtormation of the object in the first scene into the
object in the second scene. An example would be transforming the face of a cat into the tace
of atiger. In adissolve. the firstimage gradually fades out as the second fades in. This tech-
nique rarely produces a realistic looking transformation. With a morph. however, during a
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L]

Figure 8-14 Example of Mariner 10 map projection: (a) original image; (b) ortho-
graphic projection; (¢) mosaic of several projections: (d) map grid overlay (Courtesy
NASA-JPL)
dissolve points on the object are incrementally warped from their initial position to their
final position, creating a more impressive result.

Figure 8-17 shows four frames from a morph sequence. Figures 8—17a and 8-17d are
the initial and final images, respectively. Figure 8-17b and 8—17c represent the 40% and
70% points, respectively, in the sequence.

At each step in the sequence, both the initial and final images are warped so that their
control points map to positions intermediate between their initial and final positions. This
produces two sequences in which the marked features move gradually from their initial to
their final positions. A dissolve between these two sequences completes the morph operation.

Morphing can also be done between two movie sequences. Here, since the objects are
moving, the corresponding control points must be designated in each frame of each
sequence. Most commonly, the control points are specified for only a few of the frames. and
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Figure 8-15 Polar orthographic map of Mars (Courtesy NASA-JPL, from [23])

spatial interpolation supplies the rest. At each frame in the sequence, the two images are
warped so that their control points align. The position to which a pair of control points is
mapped starts near the initial image position and gradually moves toward the final image
position as the sequence progresses.

In practice, it is often only one object in the scene that is actually transformed, with
the background remaining stationary. The object of interest is filmed against a black back-
ground. The finished morph sequence is then inserted into a scene containing the appropri-
ate background.
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8.5 SUMMARY OF IMPORTANT POINTS

o

[- IS - Y ]

. A geometric operation requires a means for specifying its spatial transformatton and

un algorithm for gray-level interpolation.

. A geometric operation can be thought of as mapping each output image pixel into the

input image, where the ouput gray-level value is determined by interpolation.

. Bilinear gray-level interpolation is generally superior to nearest neighbor interpola-

tion. and it produces only a modest increase in program complexity and execution
time.

. A spatial transformation can be specified by a pair of control grids, one defined in the

input image and one in the output image.

. The input control points map to the corresponding output control points.

. Between control points, a spatial transformation is obtained by interpolation.

. Bilinear interpolation is useful for non-control-point interpolation.

. Geometric operations are useful for digitizer calibration, display rectification, image

registration, map projection, image reformatting for display, and visual special effects.

PROBLEMS

ad

Let £(221.396) = 18, F(221.397) = 45, F(222,396) = 52, and F(222.397) = 36. What is
F(221.3.396.7), obtained by nearest neighbor interpolation? By bilinear interpolation? Write the
bilirear equation (Eq. 2). showing the values of the coefficients. Draw a graph similar to
Figure 8-3.

Let F(109.775) = 113, (109,776) = 109, F(110,775) = 105, and F(110,776) = 103. What is
F(110.27,776.44). obtained by nearest neighbor interpolation? By bilinear interpolation? Write
the bilinear equation (Eq. 2), showing the values of the coefticients. Draw a graph similar to
Figure 8-3.

. Write the geometric transtormation required 1o rotate an image 33° counterclockwise about the
8 eq

point x. y = 207,421, Assume that 0,0 is at the upper left.

. Suppose you have two digitized images of a canyon wall 1aken 100 years apan and you wish to

detect changes due to erosion by image subtraction. You find a rock that is located at 303,467 in
the first image and at 316,440 in the second image, and a stump that is located at 298,227 in the
firstimage and at 311,200 in the second image. Has there been any (a) translation? (b) rotation” (¢)
change in scale? How much? Write the geometric transformation required to register the second
image with the first prior to subtraction. Assume that there has been no geometric distoriion
beyond translation, rotation. and change in scale.

. Suppose you have two digitized images of a section of a city taken from the top of a tall building

25 years apart and you wish to display changes by projecting an overlay of the two images. You
find a corner of a building that is located at 103,84 in the first image and at 107,94 in the second
image. and a window that is located at 433,504 in the first image and at 377,439 in the second
image. Has there been any (a) translation? (b) rotation? (c) change in scale? How much? Write
the geometric transformation réquired to register the second image with the first. Assume that
there has been no geometric distortion beyond translation, rotation, and change in scale.

Suppose you have two digitized images of a movie star’s face taken 30 years apart and you wish
to include a fade between the two portraits in an upcoming documentary. You find that the cen-
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ters of the film idol"s pupils are located at 83,231 and 437,244 in the first image and at 64,281 and
479,370 in the second image. Has there been any (a) translation? (b) rotation? (¢) change in scale?
How much? Write the geometric transformation required to register the second image with the
first. Assume that there has been no geometric distortion beyond translation, rotation, and change
in scale.

7. Suppose you have a digitized photograph of the ground taken at an angle from behind the window
ofan airplane. You want to rectify the image so that it appears as if you are looking straight down.
A square cotton field has corners at pixel coordinates (62, 85), (77, 128), (125, 134), and (140,
106). Derive the geometric transformation that will rectify the image. Plot the cotton field in the
image before and after rectification.

8. Suppose you have film that was taken by a security camera during a daring daylight holdup of a
bank. Atone point in the series of images, one of the bandits ducks behind a counter and briefly
removes his mask. Beside him is a chrome-plated vertical column 24 inches in diameter. The
reflection of his face is visible in the shiny column, but is too distorted for identification. Derive
the equation for a geometric transformation that will rectify the image of the bad guy. Assume
that the column is paralle] to the y-axis in the digitized image and the pixel spacing corresponds
to 10 pixels per inch at the column. You may also assume that the radius of the column is negli-
gible compared to its distance from the camera and from the villain.

.

The police have a photograph taken during the commission of a crime. Unfortunately, the rob-
bery took place behind the tourist with the camera. You notice in the photo a large chrome-plated
sphere that appears to be acting like amirror. You use a film digitizer with 25-u pixel spacing and
find that the image of the ball measures 360 pixels in diameter. The actual bail is 3 feet in diam-
eter, and it was 27 feet from the camera position. Develop an equation for the geometric trans-
formation that will rectify the image of the robbers. You may assume that the radius of the ball
is negligible compared to its distance from the camera and from the crime.

10. Suppose you have a photograph of a bite mark on the arm of a murder victim. The photo was
taken at the autopsy of the victim. The body has since been cremated, but the district attorney
needs a rectified picture of the bite mark to match against the bite of the suspect in order to get
a conviction. Assume that the arm is a cylinder 80 mm in diameter lying parallel to the x-axis.
Develop the equation for a geometric transformation that will “unroll” the bite mark for compar-
ison with bites made on wax sheets by the suspect.

—

Develop the geometric transformation equations required to rotate an image 60 degrees counter-

clockwise about the point x, v= 120210.

12. Develop the geometric transformation equations required to scale an image by 130 percent about
the point x, ¥ = 64,120 along a line 30 degrees counterclockwise from the x-axis and by 85 per-
cent along a line 30 degrees counterclockwise from the y-axis.

13. Derive Eq. (18).

PROJECTS

These projects require access to an image-processing workstation with digitization and gen-
eral geometric transformation capabilities.

L. Digitize an image of a friend taken with a wide-angle “fish-eye” lens. Develop equations that
describe the distortion and use polynomial warping to correct it.

2. Digitize an image of a friend taken with a fish-eye lens. Use linear objects in the image as fiducial
marks. and use a geometric transformation to correct the image.
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Digitize an image of a friend taken with a fish-eye lens. Take a second image of a grid from the
same camera position. and use a geometric transformation to correct the image

. Digitize an image of aspherical hallway safety mirror, and use a geometric transformation to rec-

tify the image. Use linear objects in the image as fiducial marks.

Digitize an image of a person reflected in a fun house mirror and then a second image containing
alarge grid. Use the same camera position both times. Use a geometric transformation to rectify
the image of the person. Write a report, commenting on the accuracy of the results and any dit-
ficulties encountered. .

Digitize an image of a large grid in a fun house mirror. Digitize an ordinary image of a friend of
yours, and use a geometric operation to show what he or she would look like if seen in the mirror.
Digitize an image of a structure such as a house or building taken from an odd angle. Use a geo-
metric operation to develop elevation (90 degree) views of the structure.

Develop an image-processing program that can be used to predict the effects of cosmetic and
reconstructive surgery (a “nose job,” chin augmentation, etc.). Use the program to determine
what. if any, cosmetic surgery might improve your appearance or that of a friend or a celebrity.
Develop a geometric transformation program that will warp one facial photograph to match the
features in another. Digitize a picture of a famous personality, digitize a picture of yourself in the
same pose, and warp your picture to look iike the other person.

Use a geometric transtormation to “unroll™ a picture of a poster wrapped around a pole.
Develop a geometric transformation program that will rotate, translate, and scale an image by
specified amounts. Evaluate your implementation in terms of speed and accuracy.

Develop a geometric transformation program that will rotate, translate, and scale an image by
specified amounts when the rotation angle is small (say. € < 6°). Use approximations to make
execution of the program as fast as possible. Evaluate your implementation in terms of speed and
accuracy.

Develop an image sequence that morphs an image of your face into that of a famous person
View a movie containing morph operations (e.g.. Terminator 2) on a video player with stop-
motion capability. Examine the morp‘h sequences in slow motion. and estimate how many control
points were required and where they were located. Write a brief paper outlining your estimates,
along with the digitizing. processing and display requirements for this project, as well as on the
financial impact of these scenes on the producers
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Part Two

CHAPTER 9

Linear System Theory

9.1 INTRODUCTION

in preceding chapters, we examined some effects that certain image-processing operations
have on images. These effects can be explained by relatively simple mathematics. Thus far,
we have not discussed sampling effects, spatial resolution, or the operations commonly
referred to as image enhancement. In Part 2, we address questions of sampling, resolution,
and linear filtering, an approach commonly used for image enhancement. In this chapter and
the next, we develop the analytical tools required to approach these questions.

Linear system theory is a well-developed field commonly used to describe the behav-
ior of electrical circuits and optical systems [1-5]. It provides a firm mathematical basis
upon which to examine the effects of sampling, filtering, and spatial resolution. Linear sys-
tem theory is also helpful in a variety of other applications, and it makes a useful addition
to one’'s technical background.

9.1.1 Definitions

In the context of this book. we consider a svstem to be anything that accepts an input and
produces an output in response. Since we are concerned only with the relationship between
input and output, we have little interest in what is inside the system. The input and output
<an be one dimensional, iwo dimensional, or higher dimensional.

In the initial development, however, we restrict our examples to two cases: one-
dimensional functions of time and two-dimensional functions of two spatial variables. This
keeps the notation simpler and makes the analysis somewhat less abstract, since the
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development is tied to real physical processes. It also avoids a burden of excess generality.
The analysis can be easily generalized to higher dimensions when necessary. In the first part
of the chapter, the development is done for one-dimensional functions of time and gencr-
alized to two-dimensional images.

Figures 9-1 and 9-2 show the conventional notation for one- and two-dimensional lin-
ear systemns. In each case. the input to the system is a function of one or two variables, and it
produces a response from the system that is another function of the same variable or variables.

¥y

Output
Figure 9-1 Linear system notation

st

) F{E R
Figure 92 Two-dimensional linear system

Linearity. Lineur systems have a property that gives rise to their name. Suppose

that, for a particular system, an input x, () gives rise to an output y,(1):

xytt) = y(1) th
(The arrow is read as “produces.”) Suppose also that a second input x, (1) gives rise to an out-
put v, {1):

xa(t) = yo(1) (2)
The system is linear if and only if it has the property

X)) + 200 = 3 (1) + yi(1) 3

That is, a third input signal which is the sum of the first two produces an output signal that
is the sum of the original two output signals. Any system that does not obey this constraint
is nonlinear. Nonlinear system analysis has produced many useful results in a variety of
areas. However, the analysis of nonlinear systems 15 considerably more complex than that
of linear systems, and that additional complexity is not required for our purposes. There-
fore, we shall restrict our discussion to the analysis of linear systems.

The definition of a linear system states that an input which is the sum of two signals
produces an output which is the sum of the outputs produced by each of the individual input
signals acting alone. From this it follows that, if an input signal is multiplied by a rational
number, the output is increased or decreased by the same factor; that is,

ax, () = ay(1) (4)

We take 1t as an axiom that Eq. (4) also holds for irrational numbers.
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The property defined in Eqs. (1), (2), and (3), and its corollary in Eq. (4), serve to
define a linear system. When using linear system theory to analyze a process, it is impera-
tive that the process being modeled is, at least approximately, linear. If the system under
study does not satisfy the criteria for linearity, then it is nonlinear, and linear system theory
will produce inaccurate and possibly misleading results. If the system is only slightly non-
linear, it may be assumed linear for purposes of analysis. but the results of the analysis will
be only as good as the assumption.

Frequently, systems known to be slightly nonlinear are studied with linear system the-
ory because this approach is mathematically tractable. However, one must be cautious when
dealing with nonlinear systems because the protective canopy of linear system theory dis-
integrates as the assumpltion of linearity breaks down. The analyst has the responsibility not
only for the mathematics, but for the validity of the underlying assumptions as well.

Shift Invariance. A useful property that certain systems exhibit is called shift
invariance. It is illustrated by the following. Assume, for a particular linear system, that

x(t) > y(1) 5)
Suppose we now shift the input signai in time by an amount 7' The system is shift invariant if
x(t-Ty-> v(t-T) (6)

that is, the output is shifted by the same amount as the input, but is otherwise unchanged.
Thus, for a shift-invariant system, shifting the input merely shifts the output by the same
amount. The important point is that the nature of the output is not changed by a shift of the
input signal. Spatial shift invariance is the two-dimensional analog of time shiftinvariance:
If the input image is shifted relative to its origin, the output image is the same as before,
except for an identical shift.

Most of the analysis in the next few chapters is directed toward shift-invariant linear
systems. The assumptions of linearity and shift invariance are valid to a very good approx-
imation for electrical networks, well-designed linear electronic networks, and optical sys-
tems—the principal components of image-processing systems.

9.2 HARMONIC SIGNALS AND COMPLEX SIGNAL ANALYSIS

In ordinary usage, signals and images can be represented by real-valued functions of one
and two variables, respectively. The value of the function represents the magnitude of some
physical parameter, such as voltage, as a function of time or light intensity as a function of
two spatial coordinates. The development of linear system properties proceeds much more
smoothly, however, if we allow the inputs and outputs to be complex-valued functions.
Since real-valued functions can be considered a special case of complex-valued functions,
we lose nothing by this generalization. The advantages become clear during the course of
the development.

9.2.1 Harmonic Signals
Consider a complex-valued signal of the form

x(1) = e/ = cos(wt) + jsin{wt) (7
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where j* = ~1. This is called a harmonic signal. It is a complex-valued function of time that
can be viewed as a unit length vector rotating in the complex plane with an angular velocity
o (Figure 9-3). The angular frequency w, in radians per second, is related to f, the frequency
in revolutions or cycles per second (Hertz) by w = 2rxf.

imi)
4

Figure 9-3 Harmonic signal-
generating vector

9.2.2 Response to a Harmonic Input

Suppose a shift-invariant linear system is presented with a harmonic input

X (1) = e (8)
We can express the response of the system as
yitt) = K(w, e’ )
where
(r
Klw.1) = ye',—w,) (10)

is a complex function of @ and ¢ selected so that, when muitiplied by ¢/, it yields v, (f).
Thus, there is always a K{w, t) that will work.
Now suppose we generale a second input signal by time shifting x, (r). We then have

xp(1) = IO = 0TIl = giOTx (1) (1n

Notice that x, () is merely x, () multiplied by a complex constant. This results because x, ()
is a harmonic signal.
The linear system’s response to x,(f) is now

y2(t) = K(@,1-T)et-T! (12)
which is

y2(1) = K(@,1-T)e @ (13)
or

va(t) = K(w, 1= T)e /T x (1) 14)

Recalling Eq. (4), we can write

X(t) = 1T x (1) 5 9Ty (1) = e/OTK(w, t)e™ (15)
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From Eq. (8), we recognize the exponential factor on the right as x, (¢). Also, we know that
the response side of Eq. (15) has to be (1), since it is the system’s response 10 x,(?). There-
fore, we can write

¥o(1) = e OTK (@, 1)x, (1) (16)

which is a second expression for the system’s response to the shifted harmonic input.

Eq. (14) was obtained by inserting a time shift into Eq. (9). Eq. (16) resulted from the
linearity property of Eq. (4). Both equations, however, are expressions for the linear sys-
tem’s response to the time-shifted harmonic input; thus, they must be equal. Combining
Eqgs. (14) and (16) produces

K(w,1-T)e ®Tx, (1) = K(w, e 7*Tx,(¢) an
and it is clear that
K(w,t~T) = K(w, 1) (i8)

must be true for any amount of shift 7. Eq. (18) can be true, however\, only if K(@, 1) is inde-
pendent of 1. So Eq. (9) can be rewritten in general form as

y(1) = K{w)x(r) a9
The general function whose form was assumed in Eq. (10) turns out to be a function of only
the frequency variable, w. Eq. (19) states the important property that the response of a shift-
invariant linear system to a harmonic input is simply that input multiplied by a frequency-
dependent complex number. Notice that a harmonic input always produces a harmonic
output at the same frequency.

9.2.3 Harmonic Signals and Sinusoids

When we use a linear system to mode! the behavior of a physical (electronic or optical) sys-
tem, the inputs and outputs are conveniently represented by real-valued functions. Thus, we
can add another restriction to shift-invariant linear systems, namely, that they preserve real-
ness. By definition, this means that a real-valued input can produce only a real-valued out-
put. From this, it can be shown that such a system also preserves imaginariness and that
removing the imaginary part of a complex input merely removes the imaginary part of the
corresponding complex output; that is,
(1) 2 y(1) = Re{x(n)} - Re{y(n)} (20)

In a sense, the real and imaginary parts of a harmonic input go through the system indepen-
dently of each other.

The real-preserving restriction on linear systems allows us to simplify the analysis.
For example, if the input is a cosine, we can add an imaginary sine component to form a har-
monic signal frecall Eq. (7)}, determine the system's response to that harmonic input, and
then discard the imaginary part of the complex output. This indirect approach is justified by
a significant simplification of the analysis.

Any sinusoidal signal can be thought of as the real part of a (unique) harmonic signal.
This approach allows us to derive a linear system’s response to a sinusoid by (1) represent-
ing the input sinusoid by a harmonic signal, (2) deriving the linear system’s response to the
harmonic input, and (3) taking the real part of the harmonic output to yield the actual output.
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In so doing, we are using a transform method of solution; that is, we transform from sinu-
s0ids to harmonic signals, solve the problem in terms of harmonics, and then transform the
harmonic output back into a sinusoid.

The technique is analogous to using logarithms for multiplication: One transforms the
multiplier and multiplicand into logarithms, adds them to effect the multiplication, and then
transforms the result back from logarithms to ordinary numbers to obtain the desired prod-
uct. As with logarithms, the transformation to harmonic signals simplifies the analysis of
linear systems considerably.

9.2.4 The Transfer Function

The function K () is called the transfer function of the linear system and is sufficient to
specify the system completely. For ashift-invariant linear system, the transfer function con-
tains all the information that exists about the system.
We can convert K(®) to polar form to obtain
K(w) = A(w)e/*®) 2y

where A () is real-valued function of frequency and the complex exponential is a unit vec-
tor in the complex plane—that is, a complex number having unit magnitude.

The effect of the transfer function is illustrated by the following. Suppose the input is
a cosine, taken to be the real part of a harmonic signal:

x(t) = cos(wt) = Rele'} (22)
The system's response to the harmonic input is
K(w)e' = A(w)e'®e’™ = A(w)e/ @+ ¥ (23)
Finally, the actual output signal is

1) = Re{A(w)e/ @} = Re{A(w)|cos(wr + @) + jsin(wt + 0)}}
= A(w)cos(wi + ¢)

(24)

A(w)is a multiplicative gain factor and represents the degree to which the system amplifies
or attenuates the input signal. ¢ (w) is the phase shift angle. Its only effect s to shift the time
origin of the harmonic input function.

In the remainder of this book, the analysis will be done in terms of harmonic signals,
with the conversion to sinusoids left as a step of interpretation.

In sum, we have developed three important properties of shift-invariant linear sys-
tems: (1) A harmonic input always produces a harmonic output at the same frequency. (2)
The system is completely specified by its transfer function, a complex-valued function of
frequency alone. (3) The transfer function produces only two effects upon a harmonic
input—a change in amplitude and a phase shift (a shift of the time origin).

9.3 THE CONVOLUTION OPERATION

Consider again the linear system shown in Figure 9-1. It would be useful to have a general
expression that relates the output signal, y(z), to the input signal, x(r). We can obtain such a
relation in the following way. The linear functional expression (superposition integral)
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) =‘[ S nx(T)dT (25)

is general enough to express the relationship between x(r) and v(z) for any linear system.
A function f(¢,7) of two variables can be chosen to make Eq. (25) hold for any linear sys-
em; but we would prefer to characterize a linear system with a function of only one
variable.

We now impose the shift invariance constraint in an effort to simplify Eq. (25). Sub-
stituting Eq. (6) into Eq. (25) produces

yie-T) = j fl, xte-Tydr (26)
We make a change of variables by adding T to both r and 7. This produces
¥(1) = J f+T, t+ T)x(Ddrt 27)

If we compare Eqgs. (25) and (27). we see that

St = fu+T. 1+ 1) (28)
must be true for all values of 7. This means that f(7,7) does not change if we add the same
constant to both of its arguments. In other words, f(1,7) is constant as long as the difference

between ¢ and 7 is constant. Thus we can define a new function of only this difference,
namely,

gi-19) = f(1. 7 29
and Eq. (25) becomes

v = J. g(r— D)x(1)dT (30)

This is the familiar convolution integral. It states that the output of a shift-invariant linear
system is given by the convolution of the input signal with a function g(f) which is charac-
teristic of that system (Figure 9—4). This characteristic function is called the impulse
response of the system for reasons pointed out later. Notice that the system preserves real-
ness if and only if g(r) is a real-valued function.

We now have two ways to specify the relationship between the input and output of
a shift-invariant linear system: (1) Every such system has a complex transfer function
that, when multiplied by a harmonic input, yields the harmonic output; and (2) every such
system has a real impulse response that, when convolved with the input signal, yields the
output signal.

Figure 9—4 A linear system
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Since the transfer function and the impulse response of a shift-invariant linear system
are each unique and adequate to specify the system completely, we suspect that the two
functions may be related. This relationship is developed in the next chapter.

9.3.1 Convolution in One Dimension
The convolution integral in Eq. (30) may be abbreviated by the shorthand notation

Yy = grx (R}

where * is used to indicate the convolution of two functions. Figure 9-5 presents a graphic
illustration of the convolution operation. One point on the curve v(f) is obtained in the follow-
ing way. One function g is reflected about its origin and shifted by an amount  to the right. The
point-by-point product of x and the reflected, shifted g is formed, and that product is integrated
to produce the value of the output at «. This process is repeated for all values of ¢ to produce
other points on the output curve. As  is varied, the reflected function is shifted past the sta-
tionary function, and the value of y(¢) depends on the amount of overlap of the two functions.

The convolution operation has several useful properties. First, convolution is com-
mutative: that is,

frg=¢*f (32)
and we may reflect either function and obtain the same result. This can be shown by writing

f*g = j floglt-vde (33)

making the change of variables
X =1-1 T=1-X dx = -dt (34)

and rearranging to produce

f*g= J flt-x)g(x)dx = g* f (35)

In Eq. (35), the limits had to be interchanged, and this compensated for the minus sign on 1.
The convolution operation is also distributive over addition; that is,

frig+hy = fxg+f*h (36)
This can be shown by writing

rewen = [ fu-oixos i a7
and rearranging to yield

Frg4h :j - Dg(nde
- (38)
+J. f-Dh(DdTt = f*g+ f*xh
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Figure 9-5 Convolution

Convelution is also associative, which means that

Fx(g*h) = (f+g)*h (39
This equation may be verified by the reader. Under differentiation,

Lifegl =jvg= g (40)
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9.3.2 Discrete One-Dimensional Convolution

Discrete sequences can be convolved in a manner similar to the convolution of continuous
functions. The independent variable becomes an index, and the integral is replaced by a
sammation. Thus, for two sequences f(1) and g (/) of length /m and n, respectively, the analog
of Eq. (33) is

hiit = [ =gl = Y Fgti=)) (41)
1

which produces an output sequence of length N=m +n - 1.

While discrete and continuous convolution are quite different operations, they hold
many properties in common. It is our good fortune that discrete convolution. which we can
readily implement on digital images. closely parallels continuous convolution, which
describes many of the things that happen to our images before (and after) they are in digital
form. This is exploited in image restoration. which seeks to reverse the effects of degrading
influences that have aiready acted upon the image.

9.3.2.1 Matrix Formulation

It is convenient to represent discrete sequences as vectors and take advantage of the com-
pact notation and well-developed preperties afforded by linear algebra. Although Eq. (41)
is a summation of products. the convolution of two sequences cannot be effected by a sim-
ple vector multiplication. It can be described by a matrix multiplication, however, if the sit-
uaton is set up properly.

First we assume that £(/} 1s actually a portion of an infinite-length sequence that is
periodic with a period of at least N, the length of the convolution output sequence of Eq.
(41). Since f(i) is shorter than N, it is necessary to pad the additional elements with zeros.
The word pad was chosen to describe such a process probably because the process resem-
bles sewing padding into one’s clothing to make oneself look larger.

One period of the infinite sequence that results from this manipulation is given by

(
i flh)y 1<ism

I =
0 me<isN

42)
We repeat this construction with g(i) and 4 (i) as well. Now all three sequences have the
same length. While the benefits of this complication may not yet be apparent. at feast it can
be done without loss of generality.

Next we let f be an N-by-1 column vector whose elements are f, (1), one period of the
infinite sequence formed from (/). We also let G be a matrix whose first row is the zero-
padded sequence g,(i) stored in reverse order. Subsequent rows of G are formed by a cir-
cular right shift of the elements of the previous row. Now we can write

[ &N g [£,00
h=G f = %'p(z) g,.(l) gp(3) . fp(z) 43)
N M N ‘ N

| : ]
18y (V) € (N = 1) - g, ()] [fp(N)
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where h is an N-by-1 vector containing the output sequence. The discrete convolution is
now expressed as the product of an N-by-N matrix and an N-by-1 vector. Recall that Nis the
length of the output sequence that resuits from Eq. (41).

The matrix G in Eq. (43) is called a circulant matrix because each row is a circular,
right-shifted version of the previous row. It is this structure that allows us to write convo-
lution as a matrix product. Each row of G serves to generate one element of the output
sequence.

9.3.3 Convolution in Two Dimensions

The convolution of continuous functions of two variables is similar to one-dimensional
convolution. Note that as the discussion extends to the case of two dimensions, we shall
use x and y as the two independent variables. The equation for two-dimensional convolu-
tion is

h(x,y) = f*g = J J. f(u,v)g(x—u, y~v)dudv (44)

illustrated graphically in Figure 9-6. Notice that g(0 - u, 0 - v) is merely g(u, v) rotated
180° about its origin and that g(x —u, y — v) is translated so as to move the origin of the

‘l> r glx—uy~v)

>y

Sluv)glx —uy - v}

h(x,y) = volume

Figure 96 Two-dimensional convolution
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rotated g to the point x, 3. The functions are then multiplied pointwise, and the product func-
tion is integrated over two dimensions. As an example, suppose that

flx,y) = Ae ¥+ )20 (45)
and
-l xgl -1<v<
glx,y) = { boolsast ¥ (46)
0. elsewhere

as shown in Figure 9-6. In this case, a two-dimensional rectangular pulse is convolved with
a larger two-dimensional Gaussian. Since g(x, y) is symmetric about the origin, the 130°
rotation has no effect. The value of A(x, y) is merely the volume of the product function
when the rectangular pulse is shifted to the position x. y.

9.3.3.1 Example: Sampling with a Finite Spot

Suppose a particular image digitizer (e.g., a CCD sensor) samples an image with a square
sampling spot. At each pixel location, the digitized gray level is the local average of a small
square section of the image. In Figure 9-6, f(x, v) could represent the image and g (x, v) the
spatial sensitivity function of the sampling spot. Then A (x, ), the convolution of j(x, y)
with g(x, y), is the same local average that the digitizer “sees.” Thus, convolution is a valid
way to model the action of a sampling spot on an image. The function g (x. v) can be chosen
to model the spatial sensitivity function of whatever sampling aperture is used.

9.3.4 Discrete Two-Dimensional Convolution

The convolution of digital images is similar to that of continuous functions, except that the
variables take on integer values and the double integral becomes a double summation. Thus,
for a digital image,

H=F+G  H(ij) =Y Y FmmGi-mj-n) (47
Since both F and G are nonzero oaly over a finite domain, the summations need to be taken
only over the region of nonzero overlap.

Discrete convolution is illustrated in Figure 9-7. The array G is rotated 180°, and its
origin is shifted to the coordinates (i. j). The two arrays are multiplied together, element by
element, and the resulting products are summed to give the output value.

In the figure, a 3 x 3 array G (called the convolution kernel) is convolved with a larger
digital image, F. Clearly, the required number of multiplication and addition operations is
equal to the number of pixels in G times the number of pixels in F (ignoring effects near the
borders of the image). Unless the kernel is small (or has a relatively small nonzero domain
and thus can be trimmed), convolution becomes a computationally expensive operation.

Pixels near the border of the image lack a full set of neighbors, and convolution can-
not proceed smoothly through these areas. In implementing digital convolution. four
options are commonly used regarding pixels near the edge. One can (a) extend the input
inage by repeating the border rows and columns of the array to allow convolution to proceed
to the border of the output image, (b) wrap the input image (thereby making it periodic) by
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Figure 9-7 Digital convolution

assuming the first column comes immediately after the last, etc., (c) fill in a constant (e.g.,
zero) for output pixels too near the border; or (d) compute an output image of reduced size,
by eliminating output rows and columns that cannot be computed by convolution.

The first and third of these options are often the most workable solutions. The best
approach is to digitize the image in such a way that no important information falls closer to
the border than half the width of the kernel. Then the choice is not critical.

9.3.4.1 Matrix Formulation

As with one-dimensional discrete sequences. it is convenient to represent digital images as
matrices and exploit the benefits of linear algebra. Again, matrix multiplication will not
implement convolution directly. but a suitable construction can produce the desired effect
{6.7]. The process is illustrated in Figure 9-8.

As before, we assume that the arrays F and G are periodic in the x-direction with a
period of at least the sum of their horizontat extents, and similarty for the y-direction. Thus,
if F is m; by n; and G is m, by n,, we pad both with zeros to bring them up to a size M 2 m,
+my~1by N2n +ny—1. We call these new (larger) arrays F, and Gy, respectively. For
the remainder of this development, we assume the common case of M = N.

Next, we form an N*-by-1 column vector f, from the matrix F, by row stacking: The
first row of F,, transposed to the vertical, becomes the top N elements of £, and similarly as
subsequent rows are transposed and placed underneath.

Each row of G, is then used to form an N-by-N circulant matrix in the manner
described in Sec. 9.3.2. This produces a set of N such matrices G; (1 <i <N), one for each
row of G,.

A block matrix is a matrix, each element of which is itself a matrix. Thus, a block
matrix is a larger matrix that is actually an array of smaller matrices. A block circulant
matrix is a matrix, each element of which is a circulant matrix. We can use a block circulant
matrix to extend the approach used in Sec. 9.3.2 to two dimensions.

Fp=

=z
o
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=
il

«—— N————»
M 1T By Bao Bown T
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hp =Gy f,

- N2 >
(1 (G} [Gu] [Gayl -+ [Gy)] (1]
8 1G] 1G] [Gp) -+ 1Gy) | (1] T
5G]l (G} 1Gy -+ [Ga) |11 A2
[ 1Gul (Gl [Gyal - 1G] {(1 l
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Figure 9-8 The matrix formulation for two-dimensional convolution: F and G are
padded with zeros to form F, and G, Each row of Gy, gives rise to a circulant matrix,
G;, in the manner shown. Gy is a block circulant matrix formed from the G, matrices,
and f,, is a row-stacked column vector formed from Fy. hy is the convolution result in
row-stacked format.
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We form the N%-by-N? block circulant matrix Gy, as follows: Gy, is composed of N-by-
N blocks, each of which is one of the N-by-N circulant matrices G, formed from the ith row
of G,.. Thatis.

1G] 1[Gyl - (Gl
Gy = |G 16 Gl 48)
(Gyl [Gy |l 1G]

The upper left block. G, has as its first row the elements of the first row of Gy, transposed
and reversed, as in Sec. 9.3.2. Subsequent raws of G are formed by a circular right shift of
the previous row. The other blocks of Gy, are formed similarly from the other rows of G,
Thus, Gy, is an N-by-N circulant array of N-by-N circulant matrices, each of which computes
one pixel in the output image.

Now we are in a position to write the two-dimensional convolution of Eq. (47) simply
as the matrix product

hy, = Gy, fp (49)
where h, is the output image in padded, row-stacked, column vector form. This construct,
then, generalizes the matrix formulation of convolution to two dimensions.

Notice that Gy, has N* elements. If, for example, N = 1,000, then Gy, has 10'? (one tril-
lion) elements. Thus, the utility of the matrix formulation lies elsewhere than in efficiency
of implementation. What it does, in fact, is allow us to use the extremely compact notation
of linear algebra in image-restoration filter design. Also, by taking advantage of the signif-
icant amount of symmetry in these matrices, one can sometimes simplify the computations
into a manageable range.

An Example. Figure 9-9 shows a numerical example of using the matrix formu-
lation to convolve two 2-by-2 arrays.

A (120 O [t 1ol
F:‘1 N Fe|3 40 6=| ll G,,:‘—Z 20
looo lo 0o
SL 0 10 0 02 0 2 o -1
I -1 0f0o 0 0|2 =20 2 -1
0o 1 -1{0 0 0p¢ 2 -2 0 2
-0 2|10 1]¢ o 0 3 -5 a2
b=Gyof,=12 -2 0{1 -1 0[C 0 O 4 = |3 H=F*G=|-5 -3 3%
0 2 2|0 -1j0 0 0 0 & - -2
00 of20 2{-t 0 1 0 -5
0 0 0f2 201 -170 [0 -2
0 0 olo 2 -2l0 1 -1 ] 8

Figure 9-9 Two-by-two convolution example using the matrix formulation
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9.3.5 Applications of Convolution

Digitally implemented linear filtering is useful for three major classes of image-processing
applications:

1. Deconvolution. i.e., removing the effects of unwanted but previously applied lin-
ear systems that have operated on the image. An example of this is using convolution to
restore the detail lost by a lens system or by motion blur, both of which can be assumed to
be linear operations.

2. Noise removal. i.e, reducing the effects of undesirable, contaminative signals that
have been linearly added to the image. Examples are:

(a) Estimating what the signal was before the noise was added.

(b) Detecting the presence of known features embedded in a noisy background.

{c) Coherent (periodic) noise removal.

3. Feature enhancement, i.e., increasing the contrast of specific features (edges, spots,
etc.) at the expense of other objects in the scene.

9.4 SOME USEFUL FUNCTIONS

In the development of linear system theory and its application to image processing, we shall
make particular use of five functions. At this point, we introduce these five functions and
derive some of their properties. This will greatly simplify the development and examples in
the chapters that follow. In the remainder of this chapter, we continue to use x as an inde-
pendent variable, even for one-dimensional functions.

9.4.1 The Rectangular Puise

Following the notation of [1], we denote the rectangular pulse by

I, -—%<x<%
) = 1‘ x:il (50)
2 2

[ 0, elsewhere

The rectangular pulse of height A and width a is shown in Figure 9-10. This function is use-
ful for modeling rectangular sampling windows and smoothing functions.

ATHxlay

—an an Figure 9-10 The rectangular pulse
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9.4.2 The Triangular Pulse

3
We denote the triangylar pulse by

1-1xl, |xf g1
Alx) = 51
@ { 0, {x>1 eb
This function is shown in Figure 9-11. Its applications are similar to those of the rectangular
pulse. Convolving two identical rectangular pulses produces a triangular pulse.

BA(x/b)
b ' b Figure 9-11 The triangular pulse
9.4.3 The Gaussian Function
The Gaussian function is given by
e (52)

and is shown in Figure 9-12. The area under the Gaussian function is

J e* gy L (53)
oo J2rno?
In probability theory, the normal distribution with mean x;, is given by

plx) = i e—(.r7r0)2/20': (54)

5

2ro°
which is a Gaussian function adjusted 1o unit area. The term o is called the variance, and
oitself is known as the standard deviation. Table 9-1 lists the values of the Gaussian at sev-
eral points.
The Gaussian has a very useful property, mentioned in Chapter 7: The convolution of
two Gaussian functions always produces another Gaussian. In particular,

(1 -a)iic —(x-b)Ro: —(x-c) o
AU 90T g - 0R0T g p 020 (55)

—> Figure 9-12 The Gaussian function
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TABLE -1 VALUES OF THE
GAUSSIAN FUNCTIONg

vila

X 4
0 |
05c 0.8825
1.00 0.6065
1177¢ 0.5000
1.50 0.3247
117762 0.2500
200 0.1353
300 0.01H1

where
¢c=a+hand 61 = 03+ 03 (56)

Thus, the resulting Gaussian is broadened: Its standard deviation is the root mean square of the
two original standard deviations. and its offset from the origin is the sum of the two original
offsets. The amplitude of the peak is the product of the amplitudes of the two original peaks.

This convolution property of the Gaussian is quite useful for studying linear systems.
Furthermore, the smooth. unimodal shape of the Gaussian makes it appropriate for model-
ing sampling spots, display spots, and a variety of other entities encountered in digital image
processing and the analysis of optical systems. Several more useful properties of the Gaus-
sian are developed in subsequent chapters. Taken together. these properties explain the fre-
quent usage of the Gaussian function in linear system analysis.

9.4.4 The Impulse

The impulse, or Dirac delta function 6(x), is not a function by the traditional definition of
the tesm. Instead, it is a symbolic function defined by its integral property,

3 £
j S(x)dx = J- S(x)dx = 1 57
—oo -€

where £ is an arbitrarily small number greater than 0. Notice that & (x) = 0 for x # 0; the
impulse is undefined at the origin.

Since &(x) is not a function, its use as such somewhat undermines our level of math-
ematical rigor. There is a mathematically rigorous approach treating the impulse as a con-
cept in the theory of distributions [2-4], but its use here would only complicate the notation
while producing the same results. We shall adhere to common engineering practice and
treat 8(x) as if it were a function, but take note of its special properties.

The impulse can be modeled as the limit of a narrow rectangular pulse

. T | (r) .
6(x) = lim =11 = (58)
a-0d a
as shown in Figure 9-13. As a becomes smaller, the pulse becomes narrower, but taller. to
maintain unit area. In the limit, the pulse becomes infinitely tall with infinitesimal width.
The symbel for the shifted impulse of nonunit area is shown in Figure 9-14.
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Py Figure 9-13 Rectangular pulsc
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AS(x-xy)
0 T Figure 9-14 Notation for the shifted
X0 impulse
From Eq. (57), we can write
J Ad(x)dx = A (59)
and furthermore,
f f(x)yb(x)dx = f(0) (60)

since the impulse is zero for nonzero x. This more general integral property is commonly
taken as the definition of the impulse.

9.4.4.1 Properties of the Impulse

The impulse has a sifting property because of its ability to isolate a single point on a curve.
This 1s expressed by

J f{x)0(x~xp)dx = J- f(x+x0)8(x)dx = f(xo) (61)
When we multiply a function by a shifted impulse and integrate the product, we are left with

only the value of the function at the location of the impulse. We can prove Eq. (61) by sub-
stituting x - xu = 7, which implies dx = d7. Substituting these into Eq. (61) produces

J’ f(.x)&(x—x(,)d)c:J' flT+x0)8(T)dT (62)

which, from Eq. (60), becomes

J o f(texg)dr = f(T+xg)| = flxo) (63)

completing the proof.
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The delta function exhibits rather curious behavior under changes of scale of the
abscissa, namely,
dax) = i5()() (64)

lal

Eq. (64) says that a change in scale of the abscissa actually produces 4 change in scale of the
ordinate. This property must be kept in mind while performing algebraic manipulations
with the impulse. We can prove Eq. (64) by letting f(x) be an arbitrary function and writing

J Slaxif(x)dy = }l J-K(S(r)f[g)dr = %‘j'(()) 65)

where ax = 7,x = t/a, and dx = (1/a)dt. For a < 0. the required interchanging of the limits
counteracts the minus sign and, hence, requires the absolute-value bars. Now we can write

Stax)f(x)dx = —Lf(O) =1 8(x)f(x)dx = [Lﬁ(.r)}f(.x)dx {66)
. |al al _ Llal

which, since f(x) is an arbitrary function, can be true only if Eq. (64) is true. Notice that set-

ting ¢ = - [ proves that the delta function is symmetric about the origin.

9.4.4.2 Impulse Response of a Linear System

Notice that
S(x) * f(x) = j dnflx-ndr = fx-1) _, = f(x) (67)

which means that the impulse is the identity function under convolution. For this reason, the
characteristic function of the linear system [recall the discussion surrounding Eq. (30)] is
called the impulse response of the system. The impulse response is the system output that
results from an impulse at the input.

9.4.5 The Step Function

The step function is a symbolic function that is discontinuous at x = 0. It is given by

I, x>0
D
uix) = 5 X = 0 (68)
0, x <0
and its integral property by
J u(x) f(x)dx = J F(x)dx (69)
oo 4

where f(.x) is an arbitrary function. The shifted step function u(x — x,) is shown in Figure
9-15. Notice that the step function is the integral of the impulse:
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— Figure 9-15 The step function
S | I, x> 2
w(x- xp) = J 8(t- xp)dr = 2o (70
e L0, x < xy
Also. as one might expect, the impulse is the derivative of the step function:
w'(x) = dulx) _ 8(x) (7h
dx

We can prove Eq. (71) in the following way. First we integrate by parts the expression

I wix)flodx = u(x)f(.r)\:—J. u(x) f(x)dx (72)

where f(x)is an arbitrary function that goes to zero at x = eo. With this restriction, Eq. (72)
reduces to

J Wix) fldx = 7J' u(x) f (x)dy 73

Making use of the definition of the step function |Eq. (69)], we can write

J. u(x) f1x)dx = —J fiode = [f(e) = F(O)] = f(0) (74
—co 0

since f(o0) = 0. Now, using the definition of the impulse [Eq. (60)]. we can write

J W (x)f(x)dv = f(0) = j 8(x) f(x)dx (75

which must be true for arbitrarily selected f(x). But this can be the case only if Eq. (71)is true.

9.5 CONVOLUTION FILTERING

Convolution is commonly used to implement linear operations on signals and images. This
section illustrates the concept with a few examples.

9.5.1 Smoothing

Figure 916 shows the use of convolution for smoothing a noisy functionf(x). A rectangular
pulse g(x) is the impulse response of the smoothing filter. As the convolution proceeds. the
rectangular pulse moves from left to right, producing A (x), which is, at every point, a local
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gty =)

h(x) = fix}» glx}

0 . Figure 9-16 Smoothing a noisy
X —> ¢ function

average of f(x) over a unit width interval. The local averaging has the effect of suppressing
the high-frequency variations while preserving the basic shape of the input function. This
application is typical of the use of filters with nonnegative impulse responses to smooth
noisy data. We could equally well use the triangular pulse or the Gaussian pulse as the
smoothing function.

9.5.2 Edge Enhancement

Figure 9-17 illustrates another type of filtering, this time for edge enhancement. The edge
function f(x) is a rather slowly varying transition from low to high amplitude. The impulse
response g(x) is a positive peak with negative side lobes. As the convolution proceeds, g(x)
moves from left to right, with the side lobes and main lobe progressively encountering the
transition of the edge. The filter output is shown as h(x).

The edge enhancement filter in the figure has two effects. First, it tends to increase the
slope of the transition at the edge. Second, it produces overshoot, or ringing, on either side
of the edge. This behavior is typical of commonly-used edge enhancement filters.

As a second example of edge enhancement, consider the impulse response given by

glx) = 28(x) - e ¥ (76)
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h(x)

0 \j Figure 9-17 Edge enhancement,

X — example 1

and shown in Figure 9-18. Notice that

h=frg = f(0*28(0)-f(x)x e BT = 2f(x) - fix) e RT(7])
So the output is merely twice the input, minus the input convolved with a Gaussian.
Convolving with the Gaussian blurs the edge, as illustrated in the figure. By contrast, the
output has the enhanced edge form shown in the figure. Again, there is sharpening of the
edge with overshoot.
This exercise points out that subtracting a blurred image from the original image has
the effect of edge enhancement. The operation is reminiscent of the photographic darkroom
technique called unsharp masking.

9.5.3 Deconvolution

Often, when an image is obtained, it has already been acted upon by one or more linear sys-
tems over which we have no control. Many of the degradations that result from less than
perfect optics, sensors, recorders, and displays can be modeled as convolution operations.
The technique of designing one convolution to yndo the effects of another convolution is
called deconvolution. This topic is addressed in Chapter 16.
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9.6 CONCLUSION

In this chapter, we have established a framework within which to analyze the behavior of
optical systems, image sensors, electronic circuits, and digital filtering operations. This
almost completely covers the components encountered in image processing systems. In
Chapter 10, we develop another powerful tool for linear system analysis: the Fourier trans-
form. In the remainder of Part 2, we apply these tools to develop concise methods for
expressing the effects that digitizing systems, display systems, and image-processing oper
ations can have on an image.
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9.7 SUMMARY OF IMPORTANT POINTS

L

*

10

11,
12

13.

When the input into a linear system is the sum of two signals, the output is the sum of
the outputs produced by each of those signals acting alone.

Changing the temporal (or spatial) origin of the input to a shift-invariant system
merely shifts the output by the same amount.

Harmonic signals are used to represent sinusoidal signals because they simplify the
analysis of linear systems.

Harmonic (sinusoidal) inputs into a shift-invariant, linear system produce harmonic
outputs,

A linear, shift-invariant system is completely specified by its transfer function.

The transfer function is a complex-valued function of frequency that relates the
amplitude and phase of harmonic inputs and outputs.

. The harmonic input multiplied by the value of the transfer function at the input fre-

quency yields the output of a shift invariant, linear system.

The convolution of two functions consists of reflecting and shifting one function and
then integrating their product. The output is the value of the integral as a function of
the amount of shift.

The output of a shift-invariant, linear system is given by the convolution of the input
with a function called the impulse response of that system.

The impulse response of a particular shift-invariant, linear system is unique and com-
pletely specifies the system.

The convolution operation models the effect a sampling spot has on an image.
Convolution may be implemented digitally to perform linear filtering on digitized
signals and images.

Digitally tmplemented linear filtering may be used for deconvolution, noise reduc-
tion, and feature enhancement.

14. Since convolution cannot proceed all the way 1o the border of an image, it is important
to avoid having important information located there.

15. Convolving two Gaussian functions produces another Gaussian, broader than either
of the inputs.

16. The impulse §(x) is the identity function under convolution [Eq. (67)].

17. Changes of scale in the abscissa affect the strength of the impuise [Eq. (64)].

18. The impulse is the derivative of the step function.

19. The impulse response of an edge enhancement filter typically has a positive peak at
the origin surrounded by negative side lobes.

20. Edge enhancement filters often produce the artifact called overshoot or ringing.

PROBLEMS
1. Prove Eq. (4).

2. Verify Eq. (39).

15,

16.

PROJECTS

1
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. Venfy Eg. (40)
. Show that fI()* FTI(n = Ain).

Verify Eq. (55) and (56).
Ina particular system, £, (1) = cos?(27fyt) and 2f, (1) - 1+ cos(47fy?). Is this system linear? Why
or why not?

. Ina particular system, J1(m1) — cosech{2zt) and [1(n{r ~ a)] = cosech(2xar). Is this system

shift invariant? Why or why not?

. In a particular system, A(ar) — sech?(271) and Ala(r - a)] - sech?|27(z - a)]. Is this system

shift invariant? Why or why not?

. In a particular system, f,(f) — 8(2f) and 2f,(1) — 8(1). Is this system linear? Why or why not?
. Ina particular system, §;(r) —>cos(271) and f3(r — #/2) — sin(2 7). Is this system shift invariant?

Why or why not?

. Inaparticular system, 8(t) — 1/[1 + (#/2)*} and 8[4(z - 2)] - 1/(" - 41 + 8). Is this system linear?

Shift invariant? Why or why not?

. In a particular system. u (1) is the step fnction, 2u(1)~1 - { 1/f.’}tanh[2n(r -2)]. and

4u(1-9)— 2 >«2tanh[27(1~ 11}]. Is this system linear? Shift irivariant? Why or why not”

. Show that sech(xr) * sech(zr) = 21 cosech ().
. What wili be the output if a Gaussian of amplitude 100 and standard deviation 4 and centered on

=8 is put into a shift-invariam, linear system having an impulse response that is a Gaussian of
amplitude 2 and stahdard deviation 3 centered on the origin? Sketch the input and output on the
same graph.
A shift-invariant. linear system has an impulse response
o)) = 28(n - ——= ¢
NEY:

and its input is

-
x(1) = 10e 8

Sketch its input and output on the same graph.

[f you needed to reduce the random noise in a signal, which impulse response would you use, the

one in Problem 14 or the one in Problem 15? Why? If you needed to sharpen edges, which one

would you use? Why?

Using a computer system and software package with image convolution and display capability,
process a noisy image of a person’s face to reduce the noise. Experiment with the size and
shape of the convolution kernel to obtain the most pleasing overall result. Write a brief report
discussing what happens when the kernel is too smail, what tiappens when it is too large, and
how you arrived at the proper size. Include hard-copy images of the processing results in the
report.

. Develop a program that can crezte convolution kernels from specified parameters and write them

in a form that can be read by one of the image-processing software packages. Test the program
on digitized images to verify that it works.
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CHAPTER 10

The Fourier Transform

10.1 INTRODUCTION

The Fourier transform is a powerful tool in linear system analysis. [t allows us to quantify
the effects of digitizing systems, sampling spots, electronic amplifiers, convolution filters,
noise, and display spots. Those who combine a theoretical knowledge of Fourier transform
properties with a practical knowledge of their physical interpretation are well prepared to
approach most image-processing problems. Usually, those who develop this combination
of skills are students of electrical engineering and physical optics, and they do so in the
course of their studies. For anyone who intends to use digital image processing seriously in
their work, however, the time spent becoming familiar with the Fourier transform is well
invested.

In a sense, the Fourier transform is like a second language for describing functions.
Bilingual persons frequently find one language better than another for expressing certain
ideas. Similarly, the image-processing analyst may move back and forth between the spatial
domain and the frequency domain while proceeding through a problem.

When first learning a new language, one tends to think in his or her native tongue and
mentally translate before speaking. After becoming fluent, however, one can think in either
language. Similarly, once familiar with the Fourier transform, the analyst can think in either
the spatial or the frequency domain, and this ability is quite useful.

In the first part of the chapter, we develop the properties of the Fourier transform
using one-dimensional functions for simplicity of notation. Later we generalize the results

7
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to two dimensions. The convention in Part 2 of the text is first to consider one-dimensional
functions as simple examples and then to extend the discussion to functions of two spatial
variables as image-processing examples.

In our study of linear system analysis, we shall restrict our discussion to only one part
of this well-developed field. For example, we use only the Fourier transform and not the
LaPlace transform or the Z-transform, because they are not required for our purposes. This
restriction allows us to develop the techniques we need for the analysis of digital image-
processing systems with a minimum of mathematical complexity.

One reason we do not require the generality of the LaPlace transform, and other tech-

‘ niques from the field of linear system analysis, is that we are working with recorded data.

This relieves us of the burden of deating with physical realizability (causality) and its impli-
cations for the analysis.

Causality. Linear systems implemented with electronic hardware are referred to
as causal because the input signal causes the output signal to occur. In particular, this
means that if the input is zero for all negative time, then the output must likewise be zero
for 1 <0. While this is intuitively obvious, consider the constraint it places upon the impulse
response of a linear system: If the input is an impulse at 7 = 0, the impulse response must be
zero for all negative 1. Thus, with physically realizable systems, the impulse response is
always one sided. This means that it can be neither even nor odd, except in the trivial case.
Such a condition considerably complicates the linear system analysis of physically realiz-
able systems.

Working with recorded data leaves us not so constrained. Digitally implemented
convolution can easily deal with even and odd functions, as well as those that are zero for
negative time. Furthermore, in the spatial domain of image processing, the coordinate ori-
gin is arbitrary, and negative values of x and y have no special significance. Readers who
find the mathematics in the following chapters burdensome should be thankful that we are
working with recorded data and do not have to impose the causality condition upon the
analysis.

10.1.1 The Continuous Fourier Transform

The Fourier transform of a one-dimensional function £(r) is defined as [1]
o) = Fo = [ roera u)
where j* = —1. The Fourier transform is a linear integral transformation that, in the general

case, takes a complex function of n real variables into another complex function of n real
variables. The inverse Fourier transform of F(s) is defined as

F{F(s)} = I F(s)el?™'ds 2)
The only difference between the direct and inverse Founer transformations is the sign of the

exponent.
Fourier’s integral theorem states that
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£ =J “ f(t)eﬁ’“'dt}e’zm‘"ds 3

This means that the transformation is reciprocal, and

F{f(0)} = Fs) =2 F {F()} = f() “)
The functions f(¢) and F(s) are called a Fourier transform pair. For any function f(#), the
Fourier transform F(s) is unique. and vice versa.

There are alternative ways of writing Egs. (1), (2), and (3), depending on where the
factor 27 is placed in the equations. The convention used here corresponds to system 1 in
{1]. In this convention, the frequency variable is measured in whole cycles (rather than radi-
ans) per unit of ¢.

10.1.1.1 Example: The Fourier Transform of a G i

As an illustrative exercise, we now derive the Fourier transform of the Gaussian function

firy=e™ (5)

From Eq. (1), we can write
F(s) = j ¢ ™o s gy

ar

F(s) = j e T IN0 gy (©)

We multiply the right-hand side by
& /!\2()*'7(\: = I
which yields
Fis) = e r{.\"'[ e Ir(l+/.\|zdt N

We now make the variable substitution

u = t+js du = dt (8)
and Eq. (7) becomes

F(s) = e"‘"-[ & dy (9)

The integral in Eq. (9) is known to equal unity, so Eq. (9) reduces (o

F(s) = e ™ (10)

Thus, the functions in Eqs. (5) and (10) are a Fourier transform pair, and the Fourier transform
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of a Gaussian is also a Gaussian. This property makes the Gaussian function quite useful in
later analysis.

10.1.2 Existence of the Fourier Transform

Since the Fourier transform is an integral transformation, we must address the question of
the existence of the integrals in Eqs. (1) and (2).

10.1.2.1 Transient Functions

Some functions go to zero for large positive and negative arguments rapidly enough that the
integrals in Egs. (1) and (2) exist. For our purposes, if the integral of the absolute value of
a function exists, i.e., if

J if()ldt <oo (an

and the function either is continuous or has only finite discontinuities, then the Fourier
transform of the function exists for all values of s. We call these functions transient func-
tions, since the useful ones characteristically die out at large Il.

In a sense, these are the only functions we shall ever process. Any digitized signal or
image is necessarily truncated to finite duration and bounded. Thus, the transform exists for
any function we shall ever be required to use. Nevertheless, it is convenient to be able to dis-
cuss other functions whose transforms do not exist in the strict sense.

10.1.2.2 Periodic and Constant Functions

Clearly, the Fourier transform does not exist for all values of s if f(f) = cos (27t) or if
f(r) = 1. However, the impulse (1), introduced in Chapter 9, allows us to handle these
cases conveniently.

Consider the inverse transform of a pair of impulses

£ = F S5 fo)+8(s + fu)) = J' [8(s= f) + 8(s+ fo)le2™ds

which, by the sifting property of the impulse, is

J (s — fo)e 2™ ds +J. 8(s + fu)é”z"’”ds

-2 2
= AL I 2 ) cos (211

where we have used the Euler relation (Chapter 9, Eq. 7). Dividing by 2, we can write

S0

F{cos rfyN} = S8 - £,) + 85 + f)) (12)

This means that the Fourier transform of a cosine of frequency f; is a pair of impulses
located at s = % f; in the frequency domain. A similar development yields

§ (sin 2rfunt = §18(s + £ - 85 - Fo)l (13)
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If we let fy = 0 in Eq. (12), we can show that
F{1} = &s) (1)

That is, the Fourier transform of a constant is an impulse at the origin.

We now have usable expressions for the Fourier transform of constant and sinusoidal
furctions. [t is well known in the theory of Fourier series that any periodic function of fre-
quency fcan be expressed as a summation of sinusoids having frequencies nf, where n takes
on integer values. By the addition theorem |see Eq. (40}, this means that the Fourier trans-
form of a periodic function is a series of equally spaced impulses in the frequency domain.

10.1.2.3 Random Functions

We lump nonconstant aperiodic functions of infinite extent whose absolute integral {Eq.
(11)] does not exist into a class called random functions. In later chapters. we use these to
model the output of a random process.

In most cases, we require only the autocorrelation function of a random function. This
is given by

7
R(7) = _rl?inm# ’I_.f(r)fu+r)d/ (15)

and it exists for the functions that are of interest to us. The autocorrelation function is real
and even, and its Fourier transtorm is the power spectrum of f(#), as is shown later.
If it becomes necessary to transform a random function, we can redefine the Fourier
transform of Eq. (1) as
-

. 1 g —j2asi
F(s) = rhT,,Z—T 7[./(’)6’ dt (16)
and similarly for the inverse transform. We can then work with a class of functions for
which these redefined transforms exist. In this book, however, we shall stay with the deti-
nitions set forth in Eqs. (1) and (2), since they are appropriate for bounded signals of finite
duration. Any development carried out with this convention could be redone with the con-
vention suggested by Eq. (16), thereby extending the result to random functions for which
Ry (1) exists.

We conclude this discussion by taking the position that, for our purposes, the exist-
ence of the Fourier transform is not a major problem.

10.1.3 The Fourier Series Expansion

Suppose g(7) is a transient function that is zero outside the interval {-772,7/2]. This also can
be considered to be one cycle of a periodic function. We can obtain a sequence of coetfi-
cients by making s a discrete variable in Eq. (1) and integrating only over the interval, so that

m
G, = G(nhs) = J. gneri2rnaingy (17)

~T12

where T is the period and As = I/T. This expansion represents ¢(f) by an infinite sequence
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of (complex-valued) coefficients, although, for many interesting functions, only finitely
many of the coefficients are nonzero
The inverse (ransform becomes

81 = iG(nAs)ef“‘"A"’As = %2 G, ) 8
n=0 =0

It reconstructs g (¢) within the interval by adding together sinusoids of different frequencies.
The amplitudes of these sinusoids are the coefficients G,,.
The Fourier series expansion of the function f(¢} is [1]

_ Qp - n - . n
f( = 5 + ;ancos(2n71)+ ;b,, sm(Znit) (19a)

2 ™" 2 ™m n

. n Z i n
a, = 7 pr(x) LOS(ZII?X)((X and b, = Tj_mf(x) Sm(2ﬂ7.x)dx (19b)
It represents a periodic function of period T by two infinite sequences of real coefficients.
10.1.4 The Discrete Fourier Transform

If we discretize both time and frequency the Fourier transform of Eq. (19a) becomes

ye . . T N2 —jzx(ﬂ)i
Gy = G(nas) = Y g(ihne/mnanidipy « 5 Y oze ¥ (20a)
i==Nn2 i==-NIR

where T = NAr. The inverse transform takes the form

— . . had j2r{ + |n
8= 8liA1 = Y G(nhs)el2snivigg = % 3 Ge ) (20b)
n=-ou n=-—oco

Again, for many interesting functions, g (iAr), the coefficients { G, } are nonzero only for rel-
atively small n.

If {f] is a sequence of length N, such as that obtained by taking samples of a contin-
uous function at equal intervals, then its discrete Fourier transform (DFT) is the sequence
{F,) givenby

1 Pl —j2nli
F, = -—ﬁ Z fie v 21
i=0
and the inverse DFT is
N-) i
1 /Z;rl—vn
fiz =3 Fe (22)
J[_VR—O

where 0 < i, n <N - | are indices.
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10.1.4.1 Relationship to the Continuous Transform

The similarity the DFT holds with Eqs. (1) and (2) and with Eqs. (20a) and (20b) suggests
that the DFT might have many of the same properties as the integral transform. For the types
of functions we work with in digital image processing, the differences are slight indeed. In
fact, if {f;} is obtained by properly sampling a certain common type of continuous function,
then the DFT can be shown to be a special case of the continuous Fourier transform {2].
Properly sampling these so-called bandlimited functions, and using the DFT to compute
Fourier transforms are discussed in Chapters 12 and 13. Using the DFT to implement linear
filtering is addressed in Chapter 16.

It is our good fortune that the DFT is so closely related to the continuous Fourier
transform. As long as we abide by the sampling rules laid out in Chapter 12 we can view
them as essentially equivalent. This flexibility affords us considerable latitude in the design
process. It means, for example, that we can employ the continuous approach when formu-
lating a solution to an image processing problem, and then implement that solution with the
discrete approach,

10.1.5 The Fast Fourier Transform

When it is necessary to actually compute the Fourier transform of a sampled signal or
image, we normally use the DFT. The number of multiplication and addition operations
required to implement Egs. (21) or (22) is clearly on the order of N, even after the required
values of the complex exponential have been stored in a table. This makes the computation
potentially burdensome.

Fortunately, there exists a class of algorithms that reduce the required number of
operations to the order of N log,(N) [2-6]. These are called fast Fourier transform (FFT)
algorithms. N must be factorable into a product of small integers. Highest efficiency and the
simplest implementation result when N is a power of 2 (i.e., N = 2° where p is an integer).

Notice that Eq. (21) can be written as the matrix product

Fy Woo - Won-i fo
N R : 3)
Fy.i Wy 10 Wyoon [ fv-i
or
F = Wf (24)
where
L,
wo=Le s)
JN

Since the exponential function is periodic in the product of  and i, there is considerable
symmetry in the matrix ‘W. The matrix can be factored into a product of N-by-N matrices
that contain repeated values, including .many zeros and ones [2]. If N = 27, W factors into
p such matrices. The total number of operations required to implement p of those matrix
products is substantially less than that required for Eq. (23).

178 The Fourier Transform Chap. 10

The factor by which the FFT reduces the computational workload is
b
NN (26)
Nlogy(N)  log;(N)

This value increases with N, and for N = 1,024, the FFT is approximately 100 times as effi-
cient as the direct implementation.

10.1.6 Fourier Transforms of Some Useful Functions

Table 10--1 lists the Fourijer transforms of some common functions we will find useful.

TABLE 10-1 FOURIER TRANSFORMS OF SOME COMMON

FUNCTIONS
Function f(n F(s)
Gaussian o o
Rectangular pulse Hie sin(7s)
s
ol
Triangular pulse Aln) sin {75) (”;‘)
(ms)*
Impulse ) 1
it ste Masy -4
Unit step wit) 2[6(.\) MJ
Cosine cos(2xft) %I@( s+ )+ 8(s~ f)]
Sine sinrf) j%[é(.wf)ws(sAf)]
Complex exponential e 8s~f)

10.2 PROPERTIES OF THE FOURIER TRANSFORM

10.2.1 Symmetry Properties

In the general case, a complex-valued function of a single real variable has a Fourier trans-
form that is also a complex-valued function of a real variable. However, there are several
restricted classes of functions that are of particular interest because of how their symmetry
properties make them behave under the Fourier transformation.

10.2.1.1 Evenness and Oddness

A function £, (1) is even if and only if

flt) = fu(=1) (27
and a function £, (#) is odd if and only if
folty = =f,(-1) (28)
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A function f(1) that is neither even nor odd can be broken into even and odd components
given, respectively. by

£ = S+ geen 29)
and )
L0 = 20 - peo) (30)
where
F = fhn)+ [0) (N

We now investigate the effect of evenness and oddness on the Fourier transtormation.
Recall the Euler relation

¢ = cos (1) + jsin (x) (32)

We can rewrite the Fourier transform TEq. i 1)) as

F(s) = J. fltye PP = J. j(x)cos(st)dt—jJ. F(nsin QQrstydr 3H

Expressing fi1) as a sum ot even and odd components [Eq. (311 produces

F(s) = "' oy cos (27m)d:+J. Lo cos (2st) dr
h RES
—J J‘ fysin (Qmse)dr — j f 0y sin (2ost)y dt
Notice that the second and third terms are infinite integrals of the product of an even and an
odd function. These terms evaluate to zero, and the Fourier transform reduces to

F(s) = j f.(1) cos (27[.&1)(1[—/] f.(t)sin (2xst)dr = F(s) + jF,(s) (35)

Now we can list the symmetry properties of the Fourier transform:
L. Aneven component function produces an even component function in the transtorm.
2. Anodd component function produces an odd component function in the transform.
3. An odd component function introduces the coefficient -+

4. An even component function does not introduce a coefficient.

10.2.1.2 Real and Imaginary Components

We can usc the preceding four rules to deduce the effect of the Fourier transformation on
complex functions. If we express a general complex function as a sum of four compo-
nents—aun even and an odd real part. plus an even and an odd imaginary part-——we can write
the following four rules for the Fourier transtormation:
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1. The real even part produces a real even part.

2. The real odd part produces an imaginary odd part.

3. The imaginary even part produces an imaginary even part.
4. The imaginary odd part produces a real odd part.

Of particular interest is the case of input functions that are real, since we ordinarily use real
functions to represent input images. Notice that areal function produces atransform that has
an even real part and an odd imaginary part. This is referred to as a Hermite function, and
it has the conjugate symmetry property

F(s) = F*(-s) (36)

where * denotes the complex conjugate.
Table 10-2 lists the full expansion of the symmetry properties of the Fourier trans-
form. Notice that the inverse transformation [Eq. (2)] differs from the direct transformation

[Eq. (1)) only in the sign of the odd component. This tells us that the forward and inverse
transforms of an even function are the same.

TABLE 10-2 SYMMETRY PROPERTIES OF THE FOURIER

TRANSFORM
flo F(s)

Even Even
Odd Odd
Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Complex and even Complex and even
Complex and odd Complex and odd
Real Hermite
Imaginary Anti-Hermite

Real and even, plus imaginary and odd Real
Real and odd, plus imaginary and even Imaginary

10.2.2 The Addition Theorem
Suppose we have two Fourier transform pairs

F{r}

F(s) 37)
and

Flg(n} = G(s) (38)
If the two time functions are added, the Fourier transform of their sum is

F{f(n+g(n} = J Lf(n) + g(1)] e 2™t (39)

This may be rearranged to yield

F{f(O+g(nN} = j f(r)e’/z""d1+'[ f(De¥™dr = F(s) + G(s) (40)
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Thus, addition in the time or spatial domain corresponds to addition in the frequency
domain, as illustrated in Figure 10--1. This fits well with the concept of linearity in a system.
It follows from the addition theorem that

Flcf(N} = cF(9) (41)

where c is a rational constant. We take it as an axiom that Eq. (41) holds for any constant.

o) Fis) /T\

80 Gls)
— {I i S
fn+g @ FLU) + g (0}

=F(s) + G (s}

ul L

Figure 10-1 The addition theorem

10.2.3 The Shift Theorem

The shift theorem describes the effect that moving the origin of (shifting) a function has
upon its transform. Using the function f(r) as before, we can write

F{f(1-a)} = f S~ a)e ™ dr (42)
where a is the amount of shift. Multiplying the right-hand side of the equation by
ejZ;m.\-e—jhm.x =1 (43)
produces
ff{j(t—a)} = J’ f(t_a)eij:r.v(:—u)‘,—iju.\dI (44)

Next, we make the variable substitution
u=t—a du = dt (45)
and move the second exponential outside the integral, leaving
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F{f(-a)} = e ’Zm”J flwre PP = e 2RO () (46)

Thus, shifting a function introduces a complex exponential coefficient intoits Fourier trans-
torm. Notice that if a = 0. this coefficient is unity. The complex coefficient

e 275 = cos (2mas) — jsin (2mas) 47)
Has unit magnitude and revolves in the complex plane with increasing s. This means that
shifting a function does not change the amplitude (modulus) of its Fourier transform. but
does alter the distribution of energy between its real and imaginary parts. The result is a
phase shift proportional to both frequency and , the amount of shift.

10.2.4 The Convolution Theorem

Perhaps the most important theorem for linear system analysis is the convolution theorem.
We can express the Fourier transform of the convolution of the functions given in Egs. (37)
and (38) as

F{f) =g} =J- j /(u)g(t—u)due"z”"([i (48)

which, after rearrangement, becomes )
Fif(=gn)} = J f(.u»J‘mgu-u)e'”""drdu (49)
By the shift theorem, we can write N -
F{fin*g(n} = J‘“‘ e PP G(s)du = G(-T)jm= fluye 2 dy (50)

This means that
F{f()xg()} = F(5G(s) (51

and convolution in one domain corresponds to multiplication in the other domain. It follows
that

FUF($)G(s)} = f(1) *g(r) (52)

The convolution theorem points out a major benefit of the Fourier transform: Rather than
performing convolution in one domain. which is complicated to visualize and expensive to
implement, we can perform multiplication in the other domain for the same effect.

We can use the convolution theorem to derive the Fourier transtorm of the impulse.
Recall that

f(n*8(1) = f(1) (53
that is, the impulse is the identity under convolution. By the convolution theorem,
F(s)F{8(n} = F(s) (54)
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Since this is true for any, f(1), we can choose one such that F(s) has no zeros—for example,
the Gaussian. Then we can divide by F(s) to show that

FL8(} = | (55)

proving that the Fourier transform of the impulse is unity.

10.2.5 The Similarity Theorem

The similarity theorem describes the effect that a change in scale of the abscissa has on the
Fourier transform of a function.

Changing the abscissa’s scale broadens or narrows a function. Thus, we can stretch or
compress the function given in Eq. (37) by placing a coefficient in its argument. Its Fourier
transform then becomes

F{stan} = r flanye 2®idy (56)
Multiplying both the integral and the expo;;m by a/a produces
F{f(an} = }l J.“ flarye2matio g g (57)
We now make the variable substitution N
u=at du = adt (58)
and write
{flan} = ﬁr fluye 2metiar gy (59)
which we recognize as
Fifan) = Le(2) (©0)

If the coefficient a is greater than unity, it contracts the function f (1) horizontally, which, by
Eq. (60), reduces the amplitude of the Fourier transform and expands it horizontally by the fac-
tor a. If a is less than unity, it has the opposite effect. This is illustrated in Figure 10-2. The
similanty theorem implies that a narrow function has a broad Fourier transform and vice versa.

We can use the similarity theorem to derive a general expression for the Fourier trans-
form of a Gaussian. Recall from Eqs. (5) and (12) that the Fourier transform of a Gaussian
is also a Gaussian:

Fle™) = e (61)

By the similarity theorem.

S{e--z(un:} - :—Ie““"”')] (62)
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1 /m=n(§)

_ 4, Sin (2% as)
2a Fis)=2a “ra

=% sin (2% bs)
2b G(s) “orbs

1 8(x) =n(ﬁ)

Figure 10-2 The similarity theorem

We now let
C‘Vx("”)z - ‘(,—12/202 63)
and solve for

PR— (64)

J2not

Now the transform is given by

Fle @'} = JangPe 7 (65)
but sinice it, too, is a Gaussian, we can define a standard deviation & such that
g2 _ -t (66)
This means that
2rtotst = £ (67)
n°0°s* = —
202
or
a= 1 (68)
2no

So the Fourier transform of a Gaussian of arbitrary standard deviation & is

F(e129) = J2mote T ©9)

_ 1
*=315
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Thus, the Fourier transform of a unit-amplitude Gaussian with standard deviation & is
another Gaussian with amplitude J2%0 and standard deviation 1/ (2ro).

We can use the similarity theorem to illustrate again that the transform of the impulse
is constant. Suppose that

f() = g™’ (70)
and its transform is

F(s) = e=/o” m
If we let a approach infinity, f(1) narrows and grows in amplitude to approach an impulse,
while F(s) expands to approach constant unit amplitude. Thus, in the limiting case, the shrink-
ing Gaussian approaches an impulse, and its expanding Gaussian transform approaches unity.

10.2.6 Rayleigh’s Theorem

An important class of functions is those that are nonzero only over a finite portion of their
domain. For such functions, we can discuss the total energy content. The energy of a func-
tion is defined as

energy =J |f(O)]2ar (72)

provided that the integral exists. For transient functions, the integral in Eq. (72) exists, and
the energy is a convenient parameter reflecting the total “size” of the function. Rayleigh’s
theorem states that

j if(nfide = J [F(s)|%ds (73)
which means that the transform has the same energy as the original function.
The proof of Rayleigh's theorem is as follows. First we write

[ yora= [ ropodn - [ roroea w=o0 o
that is, the second equality holds for u = 0. Again, we use the superscript asterisk to indicate
the complex conjugate, since f(1) is, in general, complex. We recognize Eq. (74) as the
inverse Fourier transform of a product of two functions evaluated at the frequency u = 0.
Since

FHFF* ()} = Fy* F¥(-u)  u=0 (15)
we can write the convolution integral as
FUWOr0 = [ FOPG-0s  u=0 6)

Substituting u = 0 produces

FF(f* (1) =f Fis)PH(s)ds =0 7
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which proves Eq. (73) and states that the energy is the same in both domains, If f(2) is real
and even, then F(s) is also real and even, and

J' Fndr = f Fds (78)

Notice how Rayleigh’s theorem agrees with the similanty theorem: If we narrow a function
at constant amplitude, we clearly reduce its energy. The similarity theorem states that nar-
rowing a function broadens its transform, but also reduces its amplitude, keeping the energy
equal in both domains.

10.3 LINEAR SYSTEMS AND THE FOURIER TRANSFORM

In this section, we examine the important role the Fourier transform plays in linear system
analysis.

10.3.1 Linear System Terminclogy

Figure 10-3 shows, in both domains, the terminology commonly used for a linear system
In general, the Fourier transform of a signal is called the spectrum of that signal, and the
inverse Fourier transform of a spectrum is a signal. Similarly, the impulse response and
the transfer function form a Fourier transform pair.

10.3.2 Linear System Identification

Frequently, the impulse response and transfer function of a system are unknown and must
be determined. This process is called system identification. For the linear system shown in
Figure 10-3, the convolution theorem implies that

His) = F(5)G(s) (79)
We can now write
o HG) -
Gi(s) = *_F(A\‘) Fis)20 (80)

fn nn
F(sy iy H()
htr) = finxgin) Hisy= Fis)Gesy

A = tnput signal
F(s) = Spectrum of input signat
£(1y = Impulse response
Gis) = Transfer function
A1) = Output signal Figure 10-3  Linear system
H(s) = Spactrum of output signal terminology
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and therefore.

E}’{h(t)}} &

- g1
g = % {ff{f(r)}
This means that we can :nput a known f(1), measure h(#), and compute g(r) by numerical
integration. For instance, suppose f(¢) is an impuise. Then h(¢) is merely the impulse
response, and no further action is necessary to identify the system.

As a more interesting example. assume that

fiy = T (82)
is the input, and

hity = A1) (83)
is measured at the output, as shown in Figure {04 Now

11 /[\ Fior
i v N N
, w \J o \J

Input

r— §—

hin H(s)

Output

i / G(s)
N N
AR ,

-1 [ 1

— §—
Impulse response Transfer function

Figure 10-4 System identification, example 1
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g =

is the impulse response.
As a second example, consider Figure 10-5. Suppose we choose as an input
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sin®(7s)
2

F! —(’ﬂ- = M1(t)
sin(7zs)
(ms)

(84)

joo
1L
5
fin Flg)= ——
s
[\ Il { {
T T 0 T 0
- 1
! {— 5 —
input
joo
TL
h(n) H(s)
— —
' i 0 1 0
R A i
Output
g(1) G(s)
F —+
) 0 2 0
- §—
Impuise response Transfer function

Figure 10-5 System identification, example 2
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—%, 1<0
f@ = u-5 = 0 1=0 ®5)
+%, 1>0
which is an edge function having the spectrum
-J
F(s) = = 6
(s) 3 (86)
If the system’s response is given by
1o
h(t) = t, -1<r< (87)
+z, t>1
which has the spectrum
H(s) = _'ﬂ(_”iz) (88)
2(ns)
we can write
_ H(s) _ sin(xs)
G =55 = ms i
which implies that the impulse response is
g(1) = 11(z) (90)

In the preceding examples, the system output was expressed analytically and the problem
solved directly. In the usual case, however, the process goes more like this: The output is
digitized, both input and output are transformed by numerical integration, the ratio in
Eq. (80) is computed directly, and the inverse Fourier transformation of Eq. (81) is per-
formed by numerical integration. The fast Fourier transform, a computationally efficient
algorithm for computing the Fourier transform, is most commonly used [3-10].

Notice that it is prudent to choose an input function whose spectrum does not have
zeros. In the second example, we violate this constraint, but are fortunate enough to encoun-
ter an impulse response that also has zeros at those points in the frequency domain. If F(s)
has zero-crossings, H(s) will as well, and G(s) can be interpolated from surrounding values
before the inverse transformation is performed numerically.

10.3.3 Sinusoidal Decomposition

The Fourier transform is a linear integral transform that uses the imaginary exponential as its
kernel function. As shown in Eq. (33), the Fourier transform can be expressed as a sum of two
transforms using the sine and cosine functions as kerels. Thus, it should come as no surprise
that sine and cosine functions exhibit specialized behavior under Fourier transformation.
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The following exercise yields insight into the relationship between the impulse
response and the transfer function of a-linear system. Consider again the linear system
shown in Figure 10-3, and assume, for graphical convenience, that f(t) and g(r) are real and
even. In Figure 10-6, the input and the impulse response are graphed in both domains.

For the input spectrum, let us divide the s-axis into small equal intervals As and divide
F(s) into narrow strips As wide. If As is sufficiently small, F(s) is well approximated by a
sum of rectangular pulses, as shown in Figure 10-7. Note that an approximation to F(s) is
given by an infinite summation of such pulse pairs:

F(s)
An m
’
/ 0 " 0
' Input T
&) Giy)
A /R
0 [}
t — 5 —
Impulse response Transfer function
Figure 106 Linear system example
An E F(s)
0 -Sy 0 S }‘_ A
= P

Fsp)

2F(50) As cos(2my0)

As
1 T
0 0

“So So
{—» 3 —p

¢

Figure 10-7  Sinusoidal decomposition
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R s—iAs J+iAA')

F(s)~ZF(4A3)[I'I( e )+n( L ] )
i=1

Consider a particular pair of pulses, namely, those situated at s = £5;; and having amplitude

F(sy), width As, and area F(so)As. As As approaches zero, the pulse pair approaches an even

impulse pair at s = s, with infinitesimal strength F(s¢)As. The inverse transform of the

even pulse pair approaches

2F(sg)Ascos(2msyt) sy = iAs 92)

Since F(s) approaches a sum of even pulse pairs [Eq.(91)].f (1) approaches a sum of cosines
of the form of Eq. (92). This means that any even function can be decomposed into a sum
of infinitely many cosines of infinitesimal amplitude.

Since the output spectrum is the product of the input spectrum and the transfer func-
tion, the output signal A(r) can be expressed as a sum of cosines of the form

2G(sy) F(s9)As cos (27syt) (93)

We may now view the action of a linear filteras follows. The input signal f(r) is first decom-
posed into a sum of cosines of all different frequencies. The amplitudes of the individual
cosines are uniquely determined by F(s), which in tumn is the (unique) Fourier transform
of £(2).

Inside the linear system, each cosine of frequency 5, is multiplied by G (sp), the ampli-
tude of the transfer function evaluated at its frequency. Finally, all the cosines of modified
amplitude are summed at the output of the filter to form the output signal A ().

Notice that this interpretation is consistent with two previously discussed properties
of linear systems: (1) A sinusoidal input always produces a sinusoidal output at the same
frequency, and (2) the transfer function at frequency s is the factor by which the amplitude
of an input sinusoid of frequency s is multiplied.

If we had made f(¢) odd, F(s) would have been imaginary and odd, the pulse pairs
would have been imaginary and odd, and f(#) would then decompose into sine functions,
The remainder of the process would be identical, except that, at the output, the sine func-
tions of modified amplitude would be summed to produce the odd output signal A(1).

Similarly, if /() were neither even nor odd, it could first be decomposed into even and
odd component functions, each of which would then be decomposed as before into cosines
and sines, respectively. The modified sines and cosines again would be summed at the out-
put to produce the output signal A(r).

The foregoing discussion assumes that the transfer function is real and even. Suppose
instead that the input is real and even, but the impulse response g(f) is real and odd. This
makes the transfer function imaginary and odd. When the incoming even pulse pairs are
multiplied by the imaginary odd transfer function, they are converted into imaginary odd
impulse pairs. The process converts the incoming cosines into output sines. The outpui then
becomes a summation of sine functions, and g(¢) is odd.

The preceding illustrates that convolving an even input function with an odd impulse
response produces an odd function. From the graphical interpretation of the convolution
integral, one can satisfy oneself that this is correct.

Consider now the case where the input function is a cosine, viz.,
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f(0) = cos(2mfor) fo20 94)
and the impulse response is real, consisting of even and odd componexts, i.e.,
8(1) = g.(1) +g,(1) (95)
The transfer function
G(s) = G,(s) + jG,ls) (96)
is Hermite, which means that
G fo) = G.(fo) +JGo(fo) fo20 on
and
G(-fo) = G*(fo) = Ge(fo)—JiG,(fo) fo20 98)

Recall that the spectrum of the cosine is

F(s) = 3 (8(s = fo) + 85+ fo)) ©9)

We can now write the output spectrum as

H(s) = 3G 8(s - fo) + 8(s + fo)] + S G, S 8(s = fo) - 85+ )] (100)
which means that the output signal is
k(1) = G.(fy)cos2xfot) + G,(fo)sin(2mfyt) aon
This can be written as
h(t) = Acos(rfor+ @) (102)
where

A = JGi(fo) + G2(fo) and ¢ = arctan[G——"(fO)} 103)

Ge(fo)

This is an expected result in view of the property that a linear system can change the ampli-
tude and phase of a sinusoidal input, but cannot change its frequency or functional form.

The foregoing exercise illustrates the relationship between the even and odd compo-
nents of a real impulse response and the real and imaginary components of the transfer func-
tion. It shows how an odd component in the impulse response introduces an imaginary odd
component into the transfer function. This produces a sine component output from a cosine
component of the input and reflects itself in phase shift at the output. Finally, it illustrates
that the amplitude of the output depends on the root-mean-square amplitude (modulus) of
the complex transfer function. ’

Notice that we now have two equivalent ways of viewing the operation of a linear sys-
tem: (1) We may visualize convolution, with functions being reflected, shifted, multiplied,
and integrated, or (2) we may visualize sinusoidal decomposition followed by multiplica-
tion and resummation. We also understand the restrictions that evenness and oddness in one
domain place on the functions in the other domain. Having these two options available
affords us a very useful flexibility when approaching a problem with linear system analysis.
It also illustrates the bilingual analogy mentioned at the beginning of this chapter.
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10.3.4 Negative Frequency

Persons having prior experience with radio transmission or the use of a waveform analyzer
or spectrum analyzer are sometimes uncomfortable with the concept of frequencies less
than zero. Waveform and spectrum analyzers incorporate narrow bandpass filters that aliow
energy to pass only in a narrow range about certain sinusoidal frequencies. These filters act
to select, out of a signal, the sinusoidal component at a particular frequency.

One can derive the spectrum of an electrical signal by tuning the narrow-band filter
across the (positive) frequency range and plotting the amplitude of the output. Persons
experienced in using this type of equipment may be unfamiliar with the concept of negative
frequency.

Recall that the Fourier transform of the cosine is an even impulse pair and the trans-
form of the sine is an imaginary odd impulse pair. Since the cosine is an even function, it
must have an even spectrum, and similarly for oddness and the sine function.

For any real function, the spectrum is Hermite, and the left half is merely a complex
conjugate reflection of the right half. For real functions, then, we are using a double-sided
mathematical technique somewhat redundantly.

Since the left half of the spectrum is redundant for real functions, it could be ignored,
as it implicitly is ignored in the use of a spectrum analyzer. However, we are using a some-
what more general mathematical approach to model physical processes, and the analysis is
much simpler if we retain the left half of the functions.

Throughout Part 2 of the text, we graph double-sided spectra, although spectra are
often plotted elsewhere only for positive frequency. We should keep in mind that, as long as
we are using double-sided mathematics to model the operation of linear systems, the left
half of the function, redundant though it may be, is a part of the analysis.

10.4 THE FOURIER TRANSFORM IN TWO DIMENSIONS

So far, we have considered the Fourier transform of one-dimensional functions of time. In
digital image processing, and in the analysis of optical systems, the inputs and outputs are
commonly two dimensional and, in some cases, higher dimensional. Our investment in the
one-dimensional Fourier transform will not prove to be wasted effort, however, since the
transform generalizes easily to higher dimensions.

10.4.1 Definition

For functions of two dimensions, the direct and inverse Founer transforms are respectively
defined as

F(u,v) = j J F(x, y)e /2R ge gy (104)
and
flx,y) = J J F(u, v)e!2 v dy dy (105)

wheref(x, y)is animage and F(u, v)is its spectrum. F(u, v) is, in general, a complex-valued
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function of two real frequency variables u and v. The variable u corresponds to frequency
along the x-axis, and similarly for v and the y-axis.

Figure 10-8 shows an image and its two-dimensional amplitude spectrum. Gray level
is scaled to represent the magnitude (square root of the sum of the squares of the real and
imaginary parts) at each point 4, v in two-dimensional frequency space. The origin is
located at the center of the transform image, Periodic noise in the image produces the spikes
in the transform.

10.4.2 The Two-Dimensional DFT

If g(i, k) is an N-by-N array, such as that obtained by sampling a continuous function of two
dimensions at equal intervals on a rectangular grid, then its two-dimensional discrete Fou-
rier transform (DFT) is the array given by

N=1N-1 . i,k

1 i —j2n|mi s nk
G(m, n) = NZ Zg(l,k)e ( N N) (106)

i=0 k=0
and the inverse DFT is
N1 N-1 )

X 1 [2x[1'ﬁ+kﬁ)

80 k) = ’T’Zo %G(m, n)e (107)

As in one dimension, the DFT is quite similar to the continuous Fourier transform. And as
before, the two-dimensional DFT of a bandlimited function sampled on a rectangular grid
is a special case of the continuous Fourier transform.

Separability. The exponential in Eq. (106) can be factored, allowing us to write
the transformation as
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. ST IR S O et C)

Glm,n) = — — i,k)e ‘le (108)
(m, n) Wzo JNZ‘_Og( )

thereby separating the transformation into horizontal and vertical operations. Here, the term
in brackets represents ene-dimensional DFTs computed on the rows of the image. The outer
summation then performs columnwise one-dimensional discrete Fourter transforms on the
resulting array. Efficient implementations of the DFT in two dimensions use this approach
along with the one-dimensional FFT. The inverse DFT is likewise separable.

10.4.3 Matrix Formulation

In matrix notation, the DFT can be written as
G = FgF (109)

where
F=[fl= {——I ¢TI (110)
1
= m

is an N-by-N kernel marrix of complex coefficients.

F is a unitary matrix; that is, its inverse is the transpose of its complex conjugate. To
invert a unitary matrix, one simply interchanges rows and columns and reverses the sign of
the imaginary part of each element. Since F is also symmetric, the transposition is trivial.

Notice that row stacking to form a column vector and the use of a large block-
circulant matrix, as was required for two-dimensional convolution (Sec. 9.3.4), is not nec-
essary for computing the two-dimensional DFT. This is because the kernel function is sep-
arable into rowwise and columnwise operations, and F is unitary.

10.4.4 Properties of the Two-Dimensional Fourier Transform

The theorems of the two-dimensional Fourier transform are summarized in Table 10-3.
Notice that the generalization from one dimension to two is quite direct.

The two-dimensional Fourier transform has several properties that have no one-
dimensional counterpart. One is the property that if a two-dimensional image factors into a
product of one-dimensional components, the same is true for the two-dimensional spectrum
of the image. Another is the rotation property, which proves valuable in computerized axial
tomography (CAT) scanners, discussed in Chapter 22.

The Laplacian is an omnidirectional second-derivative operator often used for edge
detection and edge enhancement. Notice that using the Laplacian on a function multiplies
its spectrum by a 4 + v term. Per the convolution theorem, then, the Laplacian corresponds
to a linear system with a transfer function that increases as the square of frequency.

10.4.4.1 Separability
Suppose that
flx 3y = [0 faty) (n
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TABLE 10-3 PROPERTIES OF THE TWO-DIMENSIONAL FOURIER

TRANSFORM

Property

Spatial domain

Frequency domain

Addition theorem

Flay +gky)

F(u,v) + Gu,v)

L;(E 2)
labl \a’ b

Similarity theorem flax. by)
Shift theorem flx-a,y-b) eIy )
Convolution theorem fy)y =gk, v F(u, v)G(u,v)
Separable product F0r(») F(u)G(v)
Differentiation (aix)”(aiy)" Fny) (2 (j2AvY"F (4, v)
Rotation Sflxcos 8+ysin 6, Flu €08 6+ vsin 6,
—x sin 6+ y cos ) —usin @+ vcos 6)
2 2 )
Laplacian Vi f(x y) =( % + gy—Z)/(x, ) ~4mX(u? + V)F (u, v)
Rayleigh's theorem I j |f(x, v dx dy = J' J. |F (i, v)i2du dv
Then
Fu,v) =_[ J f1(0) fo(v)e PRy dy (112)
can be rearranged to yield
Flu,v) = _[ f u)e"”‘”‘”J LN dy = Fy()Fy(v) (113)

Thus, if a two-dimensional image factors into one-dimensional components, its spectrum
does as well.
Consider as an example the elliptical two-dimensional Gaussian
e_u!/zaf +v126%) - e_xllzaie-yzlzaf (114)
which factors into the product of two one-dimensional Gaussians. If the standard deviations
of the two factors are equal, we have

(2 2 2 2 s 2
(X +71200 _ ex/Zo'ze yine 115)

which is the circular Gaussian. This function is extremely useful in the analysis of optical
systems because it has circular symmetry and yet can be factored into one-dimensional
components.
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10.4.4.2 Similarity

The similarity theorem may be generalized to the case of two-dimensional transforms. We
can write

F{f(aix+b,y, arx +byy)}

= (116}
= J.I f@ x+ by, ayx + byy)e 72X+ gy dy
We make the substitutions
w=ax+by z=azx+byy (117
in which case
= Aw+Bz y=A,w+ By (118)
dx = Adw + B dz dy = Adw + Bydz
where
b, ~b,
AI = — BI = —_—
by —azb by~ azh
a0y~ a3, @0y~ a0y (119)
~a; a
= — By= ——
A2 ab, - azb, 27 ayby — agb,

Then the Fourier transform becomes

F{fla\x+byy, arx +byy)}
- jwj'“ Fiw, 2ye AT AL BN g ga By AR (120)
= (ABr+ A B\)F (A + A, Biu+ Byv)

10.4.4.3 Rotation

From the two-dimensional similarity theorem, it follows that a rotation of f(x, y) through an
angle 6 also rotates the spectrum of f(x, y) by the same amount. We let

a; = cos @ b, =sinf a, =-sin @ b, = cos 6 (121)
so that

A, = cos 8 A;=sin@ By = -sin 6 B, = cos 8 (122)
and

F{f(xcos 8 +ysinB ~xsin 8 +ycos 6)}

(123)
= F(ucos 8 +vsin 8,-usin@ +vcos 6
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10.4.4.4 Projection

Suppose we collapse a two-dimensional function f(x. y) into a one-dimensional function by
projection onto the r-axis to form

p(x) = j f(x, y)dy (124)

Then the (one-dimensional) Fourier transform of p(x) is

Plu) =-[ J FO, v)dy e 2 gy (125)

But P(u) can be wrilten as
P(u) = f J‘ Flx, v) e i2Rus+ 00 gy dv = F(u,0) (126"

so the tansform of the projection of f(x, y) onto the x-axis is F(u, v) evaluated along the
u-axis. This combines with the rotation property to imply that the one-dimensional Fou-
rier transform of f(x, y) projected onto a line at an angle @ with the x-axis is just F(u. v)
evaluated along a line at an angle 6 with the u-axis (Figure 10-9). The projection property
forms the basis for system identification by line spread functions (Chapter 16) and for
computerized axial tomography (Chapter 22).

Figure 10-9 The projection property
of the two-dimensional Fourier
u transform

10.4.5 Circular Symmetry and the Hankel Transform

Many important two-dimensional functions exhibit the property of circular symmetry. This
means that the function can be expressed as a profile function of a single radial variable

flxy) = fu(n) (127)
where

2

rt= x24y? (128)

We now investigate the effect that circular symmetry has upon the two-dimensional Fourier
transform. We can write the Fourier transform of f(x, y)as

w goo o @27
J. J- f(x, y)e~j2mm *“"dx dy = J. J' f,(r)f_jlx'"m'\ (H—Olrd’do ( '29)
¥ _oo 00
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where we have converted the integration from rectangular to annular and made the variable
substitution

x+jy = re'® and u+jv = ge'® (130

We can now rearrange Eq. (129), dropping ¢ because the integral is taken over a full cycle
of the cosine, to yield

o 2n
F{fx.n} = J _f’,(r)U e janrms(e)de:I rdr (131
[ 0

Now consider the integral in brackets, and recall the definition of the zero-order Bessel
function of the first kind:

r
1 .
Jn(2) = —I e-izes (849 (132)
2r),

Recognizing Eq. (132) in Eq. (131) allows us to write

F{fx,»} = 271"[ [1(NJyQ2rgryrdr (133)
0
Notice that the Fourier transform of a circularly symmetric function is a function only of a
single radial frequency variable 4. This means that

F(u,v) = F(q) (134)

where

q: =+ (135)

10.4.5.1 The Hankel Transform

For circularly symmetric functions, the direct transform is

FAq) = 2r) [fAr)Jy(2mgryrdr (136)
0

and the inverse transformation is

1401 = 28] Ftg)h2marrada (37)
0
These equations define a special case of the two-dimensional Fourier transform that is
called the Hankel transform of zero order. This transform is a one-dimensional linear
integral transform similar to the Fourier transform, except that the kernel is a Bessel func-
tion. Hence, two-dimensional functions with circular symmetry may be treated as one-
dimensional functions of a single radial variable if the Hankel transform is substituted for
the Fourier transform.
Hankel transforms of some familiar functions are listed in Table 104, Table 10-5
illustrates the theorems of the Hankel transform.
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TABLE 104 HANKEL TRANSFORMS OF CERTAIN FUNCTIONS

Function fn F(g)
. 1 1
Reciprocal = -
r q
Gaussian e (20
. &)
Impulse - 1
r al (2maq)
Rectangular pulse . 2a) —
Triangular pulse A[L) ﬂJHJ (xydx- 251 (x)
2a ar’), 0 ax?
Shifted impulse 8(r - a) 2naly(2mag)
2xa
ial del. -ar —_——
Exponential delay € [2rg)+al]
eer 2n
3 [(27q)*+a?]"?
arle ™ (_)1_" qz)e-w’
sin (2nar) Mg/2a)
T Ji?— ¢

TABLE 10-5 PROPERTIES OF THE HANKEL TRANSFORM

Property Spatial domain Frequency domain
Ad,:::;:m fln+en F(g9)+G(q)
Similarity i r(“)

theorem flan 2 \a

. - 2x
C
opvolution j f(p)g(r +p" - 2rpcosO)p dpd  Fig)Gig)
oY 0
. 2 d* 1d 5
Laplacian Vifin = ;{ + ;a-;é -4n¢’F(q)
Rayleigh’s - 2 - 2 _
et [ioerar - CRER
Poreren | 108" (rdr = [ roctwade - ¢
0 o

10.4.5.2 Computing the Hankel Transform

The projection theorem gives us a simple way to compute the Hankel transform of a func-
tion, which is useful, for example, in the study of optical systems, which commonly have
circularly symmetric impulse responses and transfer functions, Egs. (124), (125), (126) and
(134) allow us to write
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Fq) = Fu,0) = P(u) = F{p(n)} (138)
and Eqs. (124), (127) and (128) imply that

px) = I fr(J& + YD dy (139

So
Flg) = f?{ j £ +y2>dy} (140)

gives a two-step process for computing the Hankel transform: First project the function, and
then compute its (one-dimensional) Fourier transform.

10.4.6 Interpretation

We conclude this introduction to the two-dimensional Fourier transform with Figure 10-10,
which gives a bit of insight into the roles of amplitude and phase [11]. Parts (b) and (c) of
the figure are displays of the amplitude and phase components, respectively, of the spec-
trum of the image in part (a).

One might be tempted to place more importance upon the amplitude spectrum, since
it at least exhibits some recognizable structure, than upon the phase, which strikes the eye
as essentially random. Eliminating the phase information, however, by setting the phase
equal to zero and performing the inverse transformation yields part (d) of the figure—some-
thing bearing little resemblance to the original. On the other hand, eliminating the amplitude
information (by setting the amplitude equal to a constant prior to the inverse transformation)
yields part (e), a recognizable portrait.

While the amplitude spectrum specifies how much of each sinusoidal component is
present, the phase information specifies where each of the sinusoidal components resides
within the image. Figure 10-10 illustrates that disrupting this placement can create a
devastating effect. As long as the components are kept in position, however, their ampli-
tude appears to be less critical to the integrity of the image. For these reasons, most prac-

Flgare 10-10  Jean Bapizue F aph Foinier anil

tical filters affect amplitude only, doing little or nothing to the phase information in the his Fourier Trunssismmn (from (117 1) ar
x T L2 3] mpwt image
spectrum. ik dnlialiblide Spectiam: 1) phiss ~Pc-'n.rn=. v
(bl recvestnsatiom from anipliside

L&) recmslfuctian from s b

LT ¥y e, Dell Uaiversioy of T I_-L bl

10.5 CORRELATION AND THE POWER SPECTRUM

In this section, we develop a series of analytical tools useful for studying the effects of noise
in a linear system.

10.5.1 Autocorrelation

Recall that the self-convolution of a function is

f)* f(e) = j ff(rt-1dt (141)

If we do not reflect one term in the product, we form instead the autocorrelation function
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Rp(7) = f(1) * f(-1) =j fOf(r+Ddr (142)

The autocorrelation function is always even and has a maximum at ¢ = 0. It has the property

- o 2
j R,(r)d‘r: U f(t)dt} (143)

Every function has a unique autocorrelation function, but the converse is not true.

10.5.2 The Power Spectrum
The Fourier transform of the autocorrelation function is

Py(s) = F{R/ D} = F{f(t)*f(-n} F(s)F(-s) (144)
F()F*(s) = |F(s)}?

and is called the power spectral density function or power spectrumof f(1). If f(1) is real, its
autocorrelation function is real and even, and therefore, its power spectrum is real and even.
Again, any f(r) has a unique power spectrum, but the converse is not the case.

]

10.5.3 Crosscorrelation

Given two functions f{z) and g(r), their cross-correlation function is given by

Rp(T) = flt)*g(-1) = J. f(Hgt+ ndr (145)

In a sense, the cross-correlation function indicates the relative degree to which two func-
tions agree for various amounts of misalignment (shifting).

The Fourier transform of the cross-correlation function is the cross power spectral
densiry function ot cross power specirum

Pr(s) = S{R(1)} (146)

10.6 SUMMARY OF FOURIER TRANSFORM PROPERTIES

In this chapter, we have developed a number of properties of the Fourier transform that will
prove useful in subsequent analyses of image-processing systems. For convenience of ref-
erence, these properties are summarized in Table 10-6.

10.7 SUMMARY OF IMPORTANT POINTS

1. The Fourier transtorm is a linear integral transformation that establishes a unique cor-
respondence between a complex-valued function {e.g., of time) and a complex-valued
function of frequency.

2. The Fourier transform of a Gaussian function is another Gaussian.
3. Evenness and oddness are preserved by the Fourier transform.

204

bl

Ll

10.

11.
12.
13

The Fourier Transform Chap. 10

TABLE 10-6 SUMMARY OF FOURIER TRANSFORM PROPERTIES

Property Time (or Spatial) domain Frequency domain

Signal Spectrum
Impulse response Transfer function

Terminology Autocorrelation function Power spectrum
Cross-correlation function Cross power spectrum
f® F(s)

Definition J. F(s)e/*™'ds Jl f(x)ye=sdx

Addition theorem af (x) + bg(x) aF(s) + bG(5)

_— ) 1,(s

Similarity theorem f(ax) @F(E)

Shift theorem flx-a) e/ F(s)

Convolution theorem fx) s g F()G(s)

Differentiation d—dx {x) Jj2msF(s)

Autocorrelation

RAT) = f(x) * f(~x)

[F(s)? = Py(s)

theorem
Rayleigh's theorem J. [f(x0)%dx = £ I [F(s)i%ds = E
Power theorem J. f(x)g'(x)dx = P J. F(s)G'(s)ds = P

. The Fourier transform of a real function is a Hermite function.

The Fourier transform of a sum of functions is the sum of their individual transforms
(addition theorem).

. Shifting the origin of a function introduces into its spectrum a phase shift that is linear

with frequency and that alters the distribution of energy between the real and imagi-
nary parts of the spectrum without changing the total energy (shift theorem).
Convolution of two functions corresponds to multiplication of their Fourier trans-
forms (convolution theorem).

Narrowing a function broadens its Fourier transform and vice versa (similarity
theorem).

. The energy of a function (signal) is the same as that of its Fourier transform

(spectrum).

The transfer function of a linear system can be determined as the ratio of its (mea-
sured) output spectrum to its (known) input spectrum.

The Fourier transform of a sinusoidal function is an equally spaced impulse pair.
An input signal can be decomposed into an infinite sum of infinitesimal sinusoids.
A linear system can be thought of as operating separately on the sinusoidal compo-
nents of the input signal, which are summed at the output to form the output signal.
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14. The Fourier transform generalizes readily to functions of two or more dimensions. PROJECTS
15. If a function of two variables can be separated into a product of two functions of a
single variable, then so can its Fourier transform. 1. Develop a program that takes a single horizontal scan line out of a digital image and computes

16. Rotating a function of two dimensions rotates its Fourier transform by the same
amount.

Projecting (collapsing) a two-dimensional function onto a line at an angle 8 to the
x-axis and transforming the resulting one-dimensional function yields a profile of
the two-dimensional spectrum taken along a line at an angle 6 to the u-axis.

18. Circularly symmetric two-dimensional functions have circularly symmetric spectra.

19. The Hankel transform relates the profile function of a circularly symmetric function
to that of its spectrum.

20. Autocorrelation is self-convolution without reflection of either function.
21. Cross-correlation is like convolution, except that neither function is reflected.
22. The Fourier transform of the autocorrelation function is the power spectrum.

b

17

PROBLEMS

1. Hlustrate graphically that the convolution of an even and an odd function produces an odd
function.

2. Use integration by parts to prove the differentiation property in Table 10-6.

3. Suppose you have a TV camera that you suspect has a barely perceptible interlace problem. You
are convinced you can see, on hard-copy prints of digitized images, that every other line is
slightly darker than the intervening lines. The manufacturer’s representative says there’s nothing
wrong with the camera. How can you prove that there is a problem? You have a system capable
of digitizing a TV image, averaging lines or columns of pixels and displaying a one-dimensional
FFT. Describe the experiment and sketch the expected results.

4. Suppose you have two TV cameras that look identical, differing only in serial number. One is a
special high-resolution model intended for a military customer, and the other is an economy
model destined for a remote baby-sitting application. Due to a mix-up in shipping records, you
don’t know which is which. How can you identify the military camera? You have a system cap-
able of digitizing a TV image, averaging lines or columns of pixels and displaying a one-
dimensional FFT. Describe the experiment and sketch the expected results.

5. You have an RS-170 TV camera (see Figure 2-10) that has just been returned for repair. The cus-
tomer says it has a problem with 60-Hz noise from the power line getting into the video signal.
How can you verify that this is truly the problem before sending the camera out for repair? You
have a system capable of digitizing a TV image, averaging lines or columns of pixels and dis-
playing a one-dimensional FFT. Describe the experiment and sketch the expected results. Will
the interlaced scan complicate the situation in this case, or not? Explain why or why not.

6. Suppose you have an RS-170 TV camera (see Figure 2-10) that has just been repaired. It had a
problem with 40-kHz noise from the internal power supply getting into the video signal. How can
you verify that the problem has indeed been fixed before placing the camera back into use? You
have a system capable of digitizing a TV image, averaging lines or columns of pixels and dis-
playing a one-dimensional FFT. Describe the experiment and sketch the expected results. Will
the interlaced scan complicate the situation in this case? Explain why or why not.

[

and displays a piot of the line’s one-dimensional Fourier transform (amplitude and phase spec-
tra). Use the program on a digital image of a tapered vertical bar to demonstrate the similarity
theorem.

Developa program as in Project 1, and add the capability to modify the amplitude spectrum (e.g..
set a band of frequencies to zero). compute the inverse transform, plot the line, and reinsertit into
the displayed image. Use the program to remove the high-frequency noise from a portion of a
digital image.

. Develop a program that can compute and display the two-dimensional Fourier transform (ampli-

tude and phase spectra) of a digital image. Use the program on three digital images of the same
scene taken through a wire screen held in front of the camera. Ensure that the screen is in focus
well enough to be visible in the image. Rotate the screen 30° between scans, Identify the com-
ponents of the amplitude spectrum that are due to the screen.

. Developa program as in Project 3, and add the capability to modify the amplitude spectrum (e.g..

sct an annular region of frequencies to zero), compute the inverse transform, and display the
image. Use the program to remove the high-frequency noise from a portion of a digital image.

. Use a program as in Project 4 to remove the shading from a digitized image.
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11.2.1 Simple Lowpass Filters

CHAPTER 1 1 The Box Filter. A simple way 1o reduce high-frequency noise is with local aver-

aging. This is implemented by convolving the signal with the rectangular pulse, [7(x), as

illustrated in Figure 9-16. This is called a moving-average filter. The gray level at each

pixel is replaced with the average of the gray levels in a square or rectangular neighborhood.

Recall from Chapter 10 that the Fourier transform of the rectangular pulse has the

form sin(x)/x (Figure 10-2). Figure 11-1 illustrates the effect of the negative side lobes of

Filter Des ign the box filter transfer function. The test target contains a vertical bar pattern of variable fre-

quency. The impulse response is a horizontally oriented rectangular pulse of various widths.

The outputs show black-for-white reversals of the polarity of the bars at frequencies corre-
sponding to the negative lobes of the corresponding transfer functions.

1L

11.1 INTRODUCTION

In Chapters 9 and 10, we laid the groundwork for the analysis and design of linear filtering
operations. In this chapter, we discuss techniques for designing filters to accomplish par-
ticular goals. To develop insight into the process, we first examine the time domain and fre-
quency domain behavior of certain simple, but useful, filters. Later in the chapter, we
approach the problem of designing filters that are optimal for doing a specific job.

As in Chapters 9 and 10, we perform the analysis with one-dimensional (time) sig- m Figure 11-1 Image reversals caused
nals, for simplicity of the graphics and mathematics. The generalization to two dimensions by the box filter: test target convolved
is straightforward. In the discussion of simple filters, we adhere to the linear system con- I I I l l I I I I I "1“""H]H""H”Im |“| with rectangular pulse of indicated
ventions introduced in the previous chapter. (Recall Figure 10-3.) A different set of variable width

names, however, is used in the discussion of optimal filters.

In the following section, we consider some conceptually simple filters in order to
illustrate the time domain and frequency domain characteristics of filters and the effects
they have upon the signals they process.

By the similarity theorem (Chapter 10), the width of the transfer function is inversely
proportional to the width of the impulse response. As long as the box filter is no more than
two pixels wide, the first zero-crossing of its transfer function falls at or above the highest
frequency present in the sampled data (more on this in Chapter 12). If the box filter is more
than two pixels wide, however, there is the danger of polarity reversal for small structures

11.2 LOWPASS FILTERS in the image, as seen in Figure 11-1.

Very often. a signal or image has the majority of its energy in the low- and midfrequency The Triangular Filter. We can use the triangular pulse, A(x), asa lowpass filter

range of its amplitude spectrum. At the higher frequencies, the information of interest is impulse response. This is someumeg called a weighted-average filter. In two dimensions, it
. . . . . takes on the appearance of a pyramid.
often buried by noise. Thus, a filter that reduces the amplitude of high-frequency compo- . . P
) L e The spectrum of the triangular pulse has the form {sin(x)/x]*, which does not go neg-
nents can reduce the visible effects of noise. . h S
ative and dies out with frequency much faster than that of the box filter. Thus, the smaller
(positive) side lobes contribute less to the output image. This filter can be used safely in
207 large sizes without fear of polarity reversal.
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One can produce the same effect as atriangular filter by two successive applications of
the rectangular filter. Becduse of the simplicity of the box filter, this may be more computa-
tionally efficient than using A(x). In fact, using three or more successive applications of I7(x)
emulates filters that, like the Gaussian, have quite smooth behavior in the frequency domain.

High-Frequency Cutoff. A rather “brute force™ lowpass filtering method that is
sometimes used is 1o (a) compute the Fourier transform of the signal or image, (b) set the
high-frequency portion of the amplitude spectrum to zero, and (¢) compute the inverse Fou-
rier transform of the result. This is equivalent to multiplying the spectrum by a rectangular
pulse. This, in turn, is equivalent to convolving the signal or image with a sin(x)/x function.

Convolving with sin(x)/x causes ringing (recall Sec. 9.5.2) to appear in the vicinity of
sharp peaks and edges. For this reason, sharp cutoff in the frequency domain is of limited
usefulness.

11.2.2 The Gaussian Lowpass Filter

Since the Fourier transform of a Gaussian is also a Gaussian, this function yields a lowpass
filter with smooth behavior in both domains. It can, of course, be implemented by convo-
lution in the time or space domain, or by multiplication in the frequency domain.

11.3 BANDPASS AND BANDSTOP FILTERS

In some cases, the desired and undesired components of a signal or image occur predomi-
nantly in different frequency ranges of the spectrum. When the components are separable in
this way, a transfer function that passes or stops particular frequencies can be useful.

11.3.1 The Ideal Bandpass Filter

Suppose we desire to implement, by convolution, a filter that passes energy only at frequen-
cies between f| and f5, where f; > f;. The desired transfer function is given by

G(s) = { L fislsi<f 1)
0 elsewhere

and is shown in Figure 11-2. Since G(s) is an even rectangular pulse pair, it can be thought
of as a rectangular pulse convolved with an even impulse pair. If we let

Gy
,.{ As }'_
A_l |
|
; J
f—+ j +— )
- —f fi s £ Figure 11-2  Ideal bandpass transfer
5— function
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S0 = 21+ /2) and As = fa- ) 2
we can write the transfer function of the ideal bandpass filter as
Gis) = n(i)* 18(s ~50) + 8(s +50)1 (3)

With the transfer function expressed in this form, we can easily write the impulse response:

sin (Ast)
TAst
Since As < s, Eq. (4) describes a cosine of frequency syenclosed in a sin(x)/x envelope hav-
ing frequency As/2. This impulse response is graphed in Figure | 1-3. The number of cosine
cycles between envelope zero-crossings depends on the relationship between s, and As.
Notice that if s is held constant and As becomes small (i.e., a narrow passband), the enve-
lope expands to include more and more cosine cycles between zero-crossings. As As
approaches zero, the impulse response approaches a cosine. In the limiting case, the con-
volution actually becomes a cross-correlation of the input with the cosine at frequency so.

gy = Ax%Z cos (2msgt) = 2As cos (27syt) 4)

sin (TAst)

2As
{ Ast

Figure 11-3 Ideal bandpass impulse
response

11.3.2 The Ideal Bandstop Filter

The transfer function of a filter that passes energy at all frequencies except for a band
between f; and f, is given by

G(s) = {0 f|5|5|5f2 )

I elsewhere

and is graphed in Figure 11-4. For convenience, we again let s, be the center frequency and
As be the stopband width [Eq. (2)]. Now we can write the transfer function as one minus a
bandpass filter, i.e.,

Gl) = '—"(f;) * [8(s - 50) + 8(s + 59)] 6
from which the impulse response is
g() = &l)-ZASEmJ”ZTA’SQcos(zmnr) D
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. m 1 I; J h Figure 11-4  1deal bandstop transfer
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This impulse response is graphed in Figure 11-5. Its behavior with changing bandwidth and
center frequency is similar to that of the bandpass filter, which it resembles. If As is small,
this filter is called a notch filter.

wt sin (xsr)

24s
T \/‘ R
e

Figure 11-5 Ideal bandstop impulse
response

11.3.3 The General Bandpass Filter

We now consider a class of bandpass filters constructed in the following way: We select a
nonnegative unimodal function K(s) and convolve it with an even impulse pair at frequency
so. This yields a bandpass transfer function, as shown in Figure 11-6. That transfer function
is given by

G(s) = K(s) * [8(s - o) + (5 + 50)] ®
and the impulse response by
g(1) = 2k(t) cos (2asgr) )
G(s)
5 | P
0

Figure 11-6 The general bandpass filter
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This impulse response is a cosine of frequency s in an envelope that is the inverse Fourier
transform of K(s).
Suppose. for example. that K (s) is a Gaussian

G(s) = Ae "% x [§(s = s50) + 8(s + 50)| (10)
Then the impulse response becomes
b )
6= g = 2Rt 0s (2msy) an
2ra T ro?

This impulse response, a cosine in a Gaussian envelope, is graphed in Figure 11-7. Notice
that we could easily generate a class of bandstop filters as well by this technique.
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Figure 11-7 The Gaussian bandpass filter
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11.4 HIGH-FREQUENCY ENHANCEMENT FILTERS

The term high-frequency enhancement filter, or highpass filter, is generally taken to
describe a transfer function that is unity at zero frequency and increases with increasing fre-
quency. Such a transfer finction may either level off at some value greater than unity or,
more commonly, fall back toward zero at higher frequencies. In the latter case, the high-
frequency enhancement filter is actually a type of bandpass filter with the restriction of
unity gain at zero frequency.

In practice, it is sometimes desired to have less than unity gain at zero frequency, so
as to reduce the contrast of large. slowly varying components of the image. If the transfer
function passes through the origin, it may be called a Laplacian filter.

11.4.1 The Difference-of-Gaussians Filter

We can produce a high-frequency enhancement transfer function by expressing it as the dif-
ference of two Gaussians of different widths:

3N ot
Gis) = Ae™ M _Be* % A>B q,>a, 12)



Sec.11.4 High-Frequency Enhancement Filters 213

This is shown in Figure 1 (-8 The impulse response of such a filter is

() = — A . cne B ;o) o = I
' 2no;

J2roi ﬁ
and is graphed in Figure 11-9. Notice that the broad Gaussian in the frequency domain pro-
duces a narrow Gaussian in the time domain and vice versa. The impulse response shown in
Figure 11-9 is typicai of bandpass and highpass filters. having a positive pulse situated in
a negative dish.

R

”
nao,

Figure 11-8 The Gaussian high-frequency enhancement transfer tunction

It we et & approach infinity. the narrow Gaussian in the time domain narrows turther
1o an impulse, and the tilter has the form shown in Figure 11-10. Notice that the difference
between afilter that rolls off (returns toward zero) at high frequencies and one that does not
is the width of the central pulse in the time domain. In fact, the broader that central pulse. the
faster the transfer function rolls off.

11.4.2 Rules of Thumb for Highpass Filter Design

In this section, we develop two rules that hold approximately for estimating the behavior of
high-frequency enhancement filters. Suppose the impulse response of the filter is expressed
as a narrow pulse minus a broad pulse, ie..

g = g,(¢) - g2t (14

as illustrated in Figure 11-11. We know that the transter tunction G (s) will have the general
shape of a high-frequency enhancement filter. We would like to estimate the transter func-
tion at zero frequency to determine its effect on the contrast of large objects within the
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Figure 11-9  The Guussian high-frequency enhancement impulse response
image. We also would like to estimate the maximum value the transfer function takes on at
any frequency.
Maximum Value. 1f we write the Fourier transform of Eq. (14) and substitute the
value s = 0, we obtain

Gy = j gndt = J g(Ddt —J g(dr = A - A, (15

where A, and A, represent the areas under the two component functions.

We can place an upper bound on the magnitude of the transfer function if we assume
that G,(s) goes to zero (dies out completely) before G, (s) decreases from its maximum
value: that is,

G < G1(0) = f a0 = 4, (16)

We now have two rules of thumb for high-frequency enhancement filters composed of the
difference of two pulses:

G0) = A —A, and G, <4, an
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Hiy

hir)

Figure 11-10  The Gaussian highpass filter

£

s—
Figure 11-11 The general highpass filter

If g, (r) is an impulse (recall Figure [1-10), then equality holds for both rules in Eq. (17).

Low-Frequency Response. We now examine the effect a filter has upon large
objects and areas of constant gray level within an image.
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Assume the impulse response g(1) is duration limited—that is, zero outside a finite
interval, Assume also that the input signal f(r) is constant over an interval larger than the
duration of g(r). This situation is shown in Figure 11 -12. The output of the system is given
by the convolution integral

hix) = j f(Dgx-n)dr (18)

Over the interval of interest. however, the input signal is constant, and Eq. (18) becomes

h(x) = J cglx—1)dt = ('J g(n)dt 19

Notice that if we substitute s = () into the definition of the Fourier transform, we have

G(O) = j g(n)dt

which means that

h(x) = ¢G(0) 0)
Thus, if G(0) = 1, the filter will not change the amplitude of large, constant areas of f(x).
Generalizing to two dimensions, this means that the filter does not change the contrast of

large, flat areas within the input image. If G(0) # 1, it becomes a gain factor controlling the
overall amplitude relationship between large components of k() and f(1).

fio
C
— hd
T—> !
X
g -1
p—— VOV
h(x)
| Figure 11-12  Low-frequency
x response

11.5 OPTIMAL LINEAR FILTER DESIGN

In this section, we develop techniques for designing filters that are, in some sense, optimal
for doing a particular job. We do this by first establishing a criterion of performance and
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then maximizing that criterion by proper selection of the impulse response (or the transfer
function) of the filter.

The history of digital image processing has seen considerable filter design done. as
flying was done in World War L, “by the seat of the pants.” Filters have been chosen for rea-
sons of computational simplicity, past success, convenience, aesthetic appeal, rumor, and
whim. Such fifter design can prove successful, but it bears the unwholesome label subop-
timal. It almost never produces the best filter for the job, and it can be downright dangerous.

Suboptimal filters—particularly those that are easy to implement by computer—can
introduce artifacts into an image, usually without warning. Filters involving the rectangular
pulse in the one domain, favorites of computer programmers, have an unsavory behavior in
the opposite domain due to the infinite undulations of the sin{x)/x function.

Users of square-edged filters in one domain are often plagued by ringing and other
artifactual phenomena in the other domain. They sometimes mistakenly regard these unde-
sirable characteristics as inherent in digital processing, or they lament the lack of computer
power necessary to do the job correctly.

In this section, we develop design techniques for optimal filters and show that they are,
in general, quite well behaved. Armed with this knowledge, the user can intelligently trade
off between optimality and computational simplicity without courting disastrous artifacts.

We first review the concept of a random: variable and then develop design techniques
for two optimal filters: the Wiener estimator {1-4], which is optimal for recovering an
unknown signal from additive noise, and the matched detector {4-6], which is optimal for
detecting aknown signal buried in additive noise. Even if one never goes through the design
process for an optimal filter, these two developments can sharpen one’s insight into filter
design considerably.

11.5.1 Random Variables

In previous chapters, we referred to the concept of a random variable, particularly for
describing the noise that so often turns up in images. Since random variables play a major
role in the development that follows, we discuss them here in more detail.

We use the term random noise to describe an unknown contaminating signal. The
word random is actually a euphemism for our lack of knowledge. This ignorance results
from dealing with a process, the physics of which is not well understood, or with a process
too complicated to be analyzed in detail. Thus, if we have some general knowledge about a
signal, but lack specific details, we describe the signal as random.

When we record a signal, we know that, during the recording process, an undesired
contaminating signal will appear superimposed upon (added to) the desired signal.
Although we might know the origin of the noise, we cannot express its functional form
mathematically. After observing the noise for a period of time, we may develop a partial
knowledge of it and be able to characterize some aspects of its behavior, even though we
will never be able to predict that behavior in detail. Thus, the concept of a random variable
becomes a useful tool in dealing with noise. ‘

We may think of a random variable as follows: Consider an ensemble of infinitely
many member functions. When we make our recording, one of those member functions
emerges to contaminate our record, but we have no way of knowing which one. We can,
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however, make general statements about the ensemble as a group. In this way, we can
express our partial knowledge of the contaminating signal.

11.5.1.1 Ergodic Random Variables

In the remainder of the book, itis sufficient to concern ourselves only withrandom variables
that are ergodic. The definition of this term can be approached as follows.

There are two ways by which one can compute averages of a random variable. We can
compute a fime average by integrating a particular member function over all time. or we can
average together the values of all member functions evaluated at some particular point in
time. The latter technique produces an ensemble average at one point in time.

A random variable is ergodic if and only if (1) the time averages of all member func-
tions are equal, (2) the ensemble average is constant with time, and (3) the time average and
the ensemble average are numerically equal. Thus, for ergodic random variables, time aver-
ages and ensemble averages are interchangeable.

In Chapter 7, we introduced the expectation operator £{x (1)}, which denotes the
ensemble average of the random variable x computed at time 1. Under the ergodicity prop-
erty, £{x(1)} also denotes the value obtained when any particular sample of the random vari-
able x(1) is averaged over time; that is,

e{x()} =J. x(r)dt 21

Eq. (142) of Chapter 10 defines the autocorrelation function as a time average. For an
ergodic random variable, the autocorrelation function is the same for all member functions,
and it thus characterizes the ensemble. Therefore, when we say n(r) is an ergodic random
variable, we mean that it is an unknown function that has a known autocorrelation function.
This represents the state of our partial knowledge of n(t).

Since the autocorrelation function of n(r),

R,(7) = j n(t)n(r+ t)dt (e¥3)}

is known, its power spectrum,

P,(s) = F{R,(D)} 23
is also known. This means that we know the amplitude spectrum of n(t), butdo not know its
phase spectrum. Indeed, the ensemble is composed of infinitely many functions that differ
only in their phase spectra. Any real, even, nonnegative function can be the power spectrum
of arandom variable, and any real, even function that has a nonnegative spectrum can be the
autocorrelation function of a random variable.

Fortunately, ergodic random variables mode! commonly encountered random signals
quite well. For example, repeated observations of sources of “white noise” show that the
measured power spectrum is, t0 a good approximation, constant with frequency.

11.5.2 The Wiener Estimator

The Wiener filter is the classic linear noise reduction filter. While there are simpler ways to
derive the principal result pertaining to this filter, the development reproduced here points
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out the full power of the Wiener filter technique. The derivation is carried out here in one
dimension for simplicity. and it is generalized to two dimensions in Chapter 106.

Suppose we have an observed signal x(1), composed of a desired signal s (1) contami-
nated by an additive noise function n(r). We would like to design a linear filter to reduce the
contaminative noise as much as possible and thus restore the signal as closely as possible to
its original form. The filter is thus asked to “estimate” what the uncontaminated signal was.

The configuration is shown in Figure t1-13. The impulse response is A(¢), and the
output of the filter is y(!). Notice that we have now departed from the nomenclature used for
linear systems in earlier sections.

Ideally, we would like y(#) to be equal to 5(r), but in general, a linear filter is not pow-
erful enough to recover a noise-contaminated signal exactly. What we shall do instead is
select the impulse response A(r) so that y(r) will be as close as possible to s(#).

Partial Knowledge. Before we begin, we must decide what knowledge we have
about s(r) and n(¢). If we know nothing at all about the signal or the noise, we cannot even
get a start on the problem. At the other extreme, if we know one or both of the signals
exactly, the solution is trivial.

For the purposes of the following analysis, we assume that both s(¢) and n(r) are
ergodic random variables and thus have known power spectra. This means that, although we
do not know n(r) exactly, we do know that it comes from an ensemble of functions, all hav-
ing the same autocorrelation function and, hence, the same power spectrum. The same
restriction applies to s(7). Furthermore, we assume that either we know the power spectra a
priori or we can capture samples of s(f) and n(!) and determine their power spectra, which
are, in turn, representative of their respective ensembles.

11.5.2.1 Optimality Criterion

Before we begin the development of the optimal filter, we must establish an objective cri-
terion of optimality. Since asking for y () = s(?) is, in general, asking too much of a linear fil-
ter, we shall ask instead for the best job possible under the circumstances. As a criterion of
optimality, we use the mean square error.

No matter what h(1) is, optimal or not, we will obtain an output y(f) in response to an
input s(#). We define the error signal at the output of the filter as

e(t) = s(1)-y(1) (24)
that is, the amount by which the actual output differs from the desired output, as a function
of time. If the impulse response, A(1), is well chosen, the error signal will be, on the average,
relatively small. A poor choice of 4(7) will produce a larger error signal.

As a measure of the average error, we use the mean square error given by

MSE = g{¢%(1)} =j e2(0)dr (25)
R0 —o@&-o h(1) ——» ¥
; N

' Figure 11-13 Modei for the Wiener
nir) estimator
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The latter equality holds because the error signal, itself a linear combination of ergodic ran-
dom variables, is also an ergodic random variable.

Notice that ¢*(1) is positive for both positive and negative errors. Also, squaring the
error causes large errors to be “penalized” more severely than small errors. For these rea-
sons, minimizing the mean square error is an intuitively satisfactory choice for the optimal-
ity criterion. While other criteria (e.g., the average absolute error) could be used, they would
complicate the analysis considerably and provide, for our purposes, little or no advantage.

11.5.2.2 The Mean Square Error

We now approach the problem as follows: Given the power spectra of s (#) and n(z), we must
determine the impulse response A (#) that minimizes the mean square error. Notice that the
mean square error is a functional of h(r), the impulse response, since a function, h(r), maps
into a real number, MSE.

The branch of mathematics concerned with functional minimization is the calculus of
variations, which we employ here. In particular, we shall (1) obtain a functional expression
for MSE in terms of h(1), then i2) find an expression for the optimal (minimizing) impulse
response, hy(t), in terms of known power spectra, and finally, (3) develop an expression for
the MSE that results when hy(#) is used. The last step is done to indicate how well the opti-
mal filter can be expected to work.

We begin by expanding the mean square error in Eq. (25):

MSE = e{e(1)} = e{[s()- ¥’} = e{s’() - 2s()y(1) + Y (1)} (26)
Since the expectation is an integral operator [Eq. (21)], we can write
MSE = g{s*()} - 2&{s(y(N} + (¥’ (N} = T\ + T + T, n

where T, T», and T} are introduced so that we may consider the three terms separately. Writ-
ing T, as an integral, we have

T, = €{s°(1)} = J s2(t)dt = R,(0) (28)

—ec

We recognize this as the 7= 0 point on the (known) autoeorrelation function of s (). Thus,
its value is known from the outset.
Writing y(1) as the convolution of x(¢) and /(t) allows us to expand the second term as

T, = _25{3(1)-’- h(-r)x(t-‘r)d‘r} (29

Since the expectation operator is actually an integral over time, we can rearrange Eq. (29)
to produce

T, = _zj h(t)e{s()x(t - 1) }dT (30)

Now we recognize the expectation inside the integral as the cross-correlation function of
s(r) and x(#) and write

T, = —ZJ h(T) R, (D)dT (31
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We can expand 7 as the expectation of the product of two convolutions:

T, =+ {J‘ h(Tt)x(r - T)drj’ h(ul\(l—-ru)du}‘ (32)

This in turn may be rearranged as before to yield

T, = j J nhiu)e{ vt - Dx(t —u)}dtdu (13)

[f we make the variable substitution v = £ - u inside the expectation operator. that factor
becomes
efat-nx(t-w)} = e{x(v+u~1)x(v)} (34

which is simply the autocorrelation function of xir) evaluated at the point u — . Now the
third term can be written as

7% :I I (D) R (u— T)dTdu (35)

The mean square error of Eq. (27) can now be written as

MSE = R\(0)~2J‘ h(t)R‘,\(r)dr+J. f (D h()R (u - 1)dt du (36)
This is the mean square error in terms of the filter's impulse response and known autocor-
relation and cross-correlation functions of the two input signal components. As expected,
MSE is a functional of k(f). We now wish to select the particular function A, (1) that
causes MSE to take on its minimum value,

11.5.2.3 Minimizing MSE

We denote by h,(7) the particular function that minimizes MSE. In general, an arbitrary (1)
will differ from the optimal A, (r), and we can define a function g(#) to account for this vari-
ation from the optimal; that is,

h(t) = h (1) + (1) (37)

where #(#) is an arbitrarily chosen (suboptimal) impulse response function and g(r) is cho-
sen to make the equality hold. The reason for this seemingly unnecessary complication is
not obvious now, but it will allow us to establish a necessary condition upon A, (z).
It we substitute the definition of g(2) in Eq. (37) into the equation for MSE (Eq. (36)].
we obtain
MSE = R ()~ ZJ. [h,(T) + (D] R, (T)dT

38)
+ .[ I [1,(7) + g(T)] L h,(u) + g(u)}] R (u~ T)dTdu

This expression can be expanded, producing seven terms:
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MSE = R {0) - QJ‘ h,.(t)R”(t)rIr+J. J. h (D0, (4R (- D)ydrdu
+ J J. haTIg(IR (4 - DdTdu + j J hGg(TR (u - Ddtdu (39)

--Z‘J. ::(t)RH(T)dHJ J g(g(u)R (u~ )dT du

Comparing the first three terms with Eq. (36), we sec that their sum represents the mean
square error that results when the optimal impulse respense ,,(¢) is used. We denote this
value by MSE,,. Since the autocorrelation function R, (« — 7) is an even function, the fourth
and fifth terms of Eg. (39) are equal. We can combine them with the sixth term and write the
equation as

MSE = MSE,,+2J. g(u)}J. R (DR, (- DT~ Rn(u)] du
= e 40
+ J‘ j DR (-~ Ddudr = MSE,+ T, + T,

where T, and T are introduced for compactness of notation.
We shall now show that the term 7T is nonnegative. Writing the autocorrelation func-
tion R,(u —~ 7) as an integral produces

Ts = J' J- ,u(u)x(‘l’)." x(1=7)x(1 ~ u)dt du dt 4h

which may be rearranged to yield

Ts = J. J g(u)x(x«u)duj g(Dx(r-ndrdt 42)
If we define z(r) as the function that results from convolving g (f) with x(7), we can recognize
Eq. (42) as

'rs:J‘ F0ydi20 t43)

which can never be negative.
Returning now to the mean square error, we can write Eq. (40 as

o w q
MSE = MSE, + 2J' g(u)U hATDR 4~ T)dT~ R”(u)J du+Ts (44)
where MSE,, is the mean square error under optimal conditions and 75 is independent of i,
and cannot be negative.

We wish (o establish a condition on £,(7) that will ensure that MSE,, is the smallest
value that MSE can have. One way to do this is to make the quantity in brackets be 7ero for
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all values of «. This makes 7, drop out of £q. (40) and guarantees that MSE,, € MSE. While
impasing such a condition ooks like the right thing 10 do. we still must make sure that it is
both necessary and sufficient to optimize the filter.

We establish necessity by the following argument: Suppose that the term in brackets
in Eq. (44) were nonzero for some values of u. Then. since g(u) is an arbitrary function, it
could take on large negative values where the bracketed term is positive. and vice versa. The
integral in T, would then take on a large negative value, and MSE would become smaller
than MSE,. Since this would violate our definition, we conclude that it is necessary that the
bracketed term in Eq. i44) be identically zero. This means that

R (1) = I ()R (u- TYdu (45)

is a-necessary condhion for the mean square ervor to be minimized. Thus, the complication
introduced in Eq. (37) has paid off by giving us a necessary condition for the optimal filter.

Tt is easy to see that Eq. (45) is also sufficient to optimize the filter—that is. that no
additional conditions are required. Since the necessary condition causes T, to drop out of
Eqg. (40). the equation becomes

MSE = MSE + T 7,20 (46)
from which it is clear that
MSE 2 MSE,, (47)
Thus, Eq. (45) does, in fact, define the impulse response of the linear estimator that is opti-
mal in the mean square sense.
It is easy 10 show that, for any linear system. the cross-correlation between input and
output is given by
R, (1) = ()% R () (48)
where R (u) is the autocorrelation function of the input signal. (See Sec. 16.6.2.)
Notice now that the right-hand side of Eq. (45) is a convolution integral that can be
written as
R (D = h(u)* R (1) = R, (7) (49)
This relates the optimal impulse response to the autocorrelation of the input signal and the
cross-correlation of the input and the desired signal. The second equality results from Eq.
(48) and illustrates that the Wiener filter makes the input/output cross-correlation function

equal to the signal/signal-plus-noise cross-correlation function.
Taking the Fourier transform of both sides of Eg. (49) leaves us with

P (s} = H,(5)P(s) = P () (50
which implies that
P (%)
H. (s} = 5>— 51
(8} P.(s) 5hH

is the frequency domain specification of the Wiener estimator.
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11.5.24 Wiener Filter Design

Eq. (51) implies that we can design a Wiener estimator in the following way: (1) Digitize a
sample of the input signal s(7). (2) Autocorrelate the input sample to produce an estimate of
R (7). (3) Compute the Fourier transform of R (7} to praduce P, (s). (4) Obtain and digitize
asample of the signal in the absence of noise. (5) Cross-correlate the signal sample with the
input sample to estimate R (7). (6) Compute the Fourier transform of R,, (1) 1o produce
P..(5). (7) Compute the transfer tunction of the optimal filter by Eq. (51). (8) If the filter is
to be implemented by convolution, compute the inverse Fourier transform of H,(s) to pro-
duce the impulse response. 1,(1). of the optimum linear estimator.,

If it is impossible or impractical to obtain samples of the noise-free signal and the
input signal. one could assume a functional form for the correlation functions or the power
spectrarequired in Eq. (511 For example, “white noise™ has a constant power spectrum. and
some other functional form might be assumed for the desired signal or its power spectrum.

11.5.3 Examples of the Wiener Filter
11.5.3.1 Uncorrelated Signal and Noise

The autocorrelation functions in Eq. (49) and the power spectra in Eq. (51) are somewhat
difficult to visualize and interpret. The situation is improved considerably, however, if we
assume that the noise is uncorrelated with the signal. By definition, this means that

e{sin(n} = e{s@)e{n)} (52
We can transform the numerator of H,(s) [Eq. (51)] and write
R (D) = elxttis(t+ D} = lls()+n(D)s(r+ D} 53
or
R.J(T) = e{s(Dst+ 1)} +e{n(t)s(r+ D} (54)

In view of Eq. (52), we can write

R () = R(D)+&ln)e{sti+ D)} = R(T) + f n(I)le‘ st + T)dt (55)

or
R.(7) = R(7) + N(1)S(0) (56)
A similar exercise in the denominator of Eq. (51) produces
RAD = R{T)+R (1) + 2S(O)N(0) (57)

Then Eq. (51) becomes
P.(s)+ N(D)S(0)8(s5)

H.(s) = 5
A= B+ Byl + 2N(0)S(0)805) 49
or. ignoring zero frequency,
Pyis
Hoo) = 8L (59)

P.(s)+ P,(s)
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and we have the transfer function in terms of more easily computed spectra.

Notice that if either the signal or the noise has zero mean value, then Eq. (59)is valid
for all frequencies, including zero. If both the signal and the noise have nonzero mean val-
ues, then

i
)} = = ]
H0) = 5 (60)

Notice also that if there is no noise (P,,15) =0). then the transfer function takes on its maximum
value of unity at all frequencies. Similarly, in the absence of a signal, it is everywhere zero.

11.5.3.2 Filter Performance

Recall that Eq. (36) gives the mean square error at the filter output. This quantity gives an
indication of how well the filter will be able to recover the signal from the noise.

If we install the optimality condition of Eq. (45) in the third term of Eq. (36), it com-
bines with the second term, leaving

MSE, = R‘(O)—J. hADR (DT (61)

a simple expression for the mean square error of the optimal filter. With uncorrelated zero
mean noise, Eq. (56) suggests that we can replace R, (T) with R,(7). But this is just the
inverse Fourier transform of P,(s). So Eq. (61) becomes

MSE, = R,(0) «J. h(DF ' PAs)}dT (62)

Writing out the inverse transformation and rearranging integrals produces
MSE, = R,(0) —j P\(.s)J. h,(1)e/ " Tdt ds (63)

Recognizing the first term and the second integral as Fourier transforms atlows us to write

MSE, = I P\(.\‘)ds—J‘ P (s)H (~s)ds (64)

Since the transfer function 4,(s) is even, the minus sign in its argument can be ignored. We
now substitute Eq. (59) into Eq. (64) and obtain

- - P(s)
MSE, = P.(s)ds - P {§) ot ds
’ J o L RS R (63)
which may be rearranged to yield
T PAs)P,(s) -
MSE, = s - .
35 J.,_,,P.\(s)+ P,,(s)ds jml’,,(.\)ﬂ,,(:)ds (66)

the frequency domain expression for the mean square error in the case of uncorrelated signal
and noise.
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11.5.3.3 The Wiener Filter Transfer Function

Figure 11 -14 illustrates the frequency domain behavior of the Wiener filter in the uncorre-
lated case.

At the low frequencics, where the signal power is much larger than that of the noise.
the transfer function takes on values near 1, passing the energy in the signal. It then
decreases to a value of (.5 at the point where the signal and noise power are equal and
declines toward zero at the higher frequencies, which are dominated by the noise.

When we assumed that our knowledge of s(r) and n(f) was limited to power spectra,
we admitted that we had no information on the phase of the signal and noise. Notice that the
transfer function H,(s) is real and even and thus introduces no phase shift.

The actual mean square error at the output, an indication of how successfully the filter
is able to recover the signal from the contaminating noise, is given by Eq. (66). The
integrand is plotted in Figure 11-14. Notice that the contributions to MSE occur only in

T T T T
- P(s) ~
— P(s)
Il
0 B S e
(a)
T T T T
LOF 1
_\ Hs)
L 1 I
0 §— f"‘“
(b)
T T T T
MSE(s)

Y f—e frac Figure 11-14 The Wiener filter
(© transfer function
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frequency bands where both the signal and noise power spectra are nonzero. The transfer
function stops all noise energy in bands where the signal power is zero.

Figure 11-15 illustrates the case where the signal and the noise are separable in the
frequency domain. In this case, the Wiener estimator passesthe signal in its entirety and dis-
criminates completely against the noise.

The case of a bandiimited signal imbedded in white noise is illustrated in Figure 11--16.
Here. H,,(s) is a bandpass filter. If the signal power spectrum is constant. the mean square
error is proportional to its bandwidth.

1f the signal-to-noise ratio is low, Eq. (66) reduces to approximately

MSE, :J' P(s)ds = J' Sl ds (67)

T LE T T
= -~
~ MSE(s) ~
= e
J 1 L 1
0 5§ — foax  Figure 11-18  Separable signal and

(c) noise
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(c) Figure 11-16 Bandlimited signal
which is, by Rayleigh’s theorem,
MSE, =I s3(1)dt = R(0) = energy (68)

Thus, in this case, the mean square error is, perhaps surprisingly, proportional to the energy
in the signal.

11.5.4 Wiener Deconvolution

As previously discussed, ordinary deconvolution does not account for noise. Thus, decon-
volution transfer functions, which often take on extremely large magnitudes at high fre-
quencies, are not practical when noise is present.
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Figure 11-17 illustrates the situation where deconvolution is followed by a Wiener
filter. The desired signal s(1) is first degraded by a linear system with impulse response f(/).
The output of the filter is then corrupted by an additive noise source #(¢) to form the
observed signal x(t).

TN
u'(l)n un 1 vy

(11 Fis) '\\;J | o H (51 )

niry
| — G |

Figure 11-17  Wiener deconvolution

It is desirable to design a tinear filter g(¢) that will simultaneously deconvolve the
undesired impulse response f(¢) and discriminate against the noise. In Figure 11-17, gir) is
illustrated as a concatenation of a deconvolution filterand a Wiener filter with impulse
response #1,,(1).

Since the deconvolution filter is known, it remains only to determine the impulse
response f1,(1) before combining the two linear filters (by convolution) to produce g(1).

The configuration in Figure 11-17 implies that the spectrum of the observed signal is

X(s) = F(5)S(s) + N(s) 69)
Furthermore, assuming that #(s) has no zeros. the spectrum of the input to the Wiener filter is
N(s)

Y(s) = S(s)+ = S(s) + K(s) a0

F(s)
Eq. (59} implies that, for uncorrelated signal and noise sources. the Wiener filter transfer
function is

P(s) NG

H,(s) = = an

PUI+PUAS) 552+ NG

F(s)
Thus, the transfer function i (s) of the optimal deconyolution filter in the mean square sense is

H,(s) 1 [ Pi(s) } F*(5) P (x)

G(s) = = —— = 72
i) F(s) — F(s)LP(s) + Pi(s) [F(s)2P(s) + P,(s) 7

11.5.4.1 Examples

Figure 11-18 shows a one-dimensional example of a Wiener deconvolution filter. In this
case, the signal has a Gaussian power spectrum, and the noise is white. The blurring func-
tion is the optical transfer function of a perfect lens. (See Chapter 15.)

Notice that, at low frequencies, G(s) increases with frequency, to compensate for
F(s), which is decreasing. By the midrange, however, G (s) begins to roll off toward zeso to
block the noise. In this example, the peak occurs at 40 percent of f,,,, where the signal
power is still 14 times that of the notse. Thus, Wiener deconvolution is a rather conservative
process, emphasizing noise reduction over reconstruction of the signal. This is a by-product
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of the fact that Wiener deconvolution minimizes mean square error. More aggressive tilters
for image restoration are discussed in Chapter 16.

Figure 1119 shows an example of two-di ional Wiener dec tution in the fre-
quency domain. Here, the blur is Gaussian, the signal power spectrum is 1/, and the noise
is white.

1155 The Matched Detector

We now consider 2 filter that is optimal for a different purpose. Whereas the Wiener filter
is designed to recover an unknown signal from noise. the matched detector is optimat for
locating a known signal in a noisy background |4-6]. That is, the matched filter is designed
to “detect” the occurrence of a signal of prescribed form in the presence uf noise. (By con-
trast, the Wiener filter is designed to “‘estimate” what the signal was before it was contam-
inated with noise.)
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Figure 11-19  Example of two-
dimensional Wiener deconvolution:
(a) signal power spectrum; (b) noise
power spectrum; (¢) blurring function:
(d) transfer function

The model for the development of the matched detector is shown in Figure 11-20. A
signal m(r) is contaminated by additive noise n(z) to form the observed signal x(r), which is
input to the linear filter having impulse response (1), producing the output y(z).

We wish to use the filter’s output to detect the presence or absence of m(1). That is to
say, we shall monitor v (1) to detect the occurrence of m(r), a specified signal of known form.
We wish to select the impulse response k(¢) that makes the job easy.

For the system in Figure 11-20,

y(1) = [mug) +n(n) | *k(2) = m1) * k(1) + n(t) * k(1) (73)

which means that the system in Figure 1 1-21 is equivalent to that in Figure 11--20. In other
words, it makes no difference whether m(f) and n(r) are summed before or after passing

through the filter.
We define the component outputs as
u(t) = m(t) * k(1) and v(r) = n(t) * k() (74)
x(1)
mqry + k(1) ———— V(1)
Figure 11-20 Model for the matched
n(1) detector
my———s ki) A1

@—b ¥y
n(t) —————» k(o ’——W}—I
Figure 11-21 A model equivalent to

T that of Figure 11-20.
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Now (1) is the filtered signal and vir) is the filtered noise.

As with the Wiener filtér, we must first stipulate what knowledge we have about the
signal and noise, and cstablish a criterion of optimality. Suppose we know the functional
torm of mir), but we do not know at what point in time the signal occurs. The classical appli-
cation of the matched detector has been the detection of reflected radar pulses. In this case,
the reflected pulse, identical to the transmitted pulse. is known in form, but not in time of
arrival. In digital image processing. the matched detector is useful for locating known fea-
tures (calibration marks. alphabetic characters, etc.) in a noisy image.

As with the Wiener filter, we shall assume that the noise is an ergodic random variable
with known power spectrum. We wish to design k(f) so that. by observing the output. we
may best be able to detect the signal when it occurs.

11.5.5.1 Optimality Criterion

As a measure of the performance of the filter, we shall use the average signal-to-noise
power ratio at the output. evaluated at time zero:

_ el

efvi(0y}

The prototype signal, m(r). is usvally some relatively narrow function centered upon the ori-

¢in. We want the output power to become targe at 1 = 0, where the signal is tocated. Betore
and ufter, in the absence of signal, the output amplitude is refatively small.

By the shifl-invariance property. if the signal, m(r — 1)), arrives at some other time, 7.
then the amplitude of the filter output becomes large at f), thereby flagging the occurrence
of the signal.

Clearly. if p is large, the amplitude of the output, v(1), will be highly dependenton the
presence or absence of m(7), and it will be relatively insensitive to fluctuations in the noise
n(1). Thus, as a criterion tor optimality of k(). we choose the maximization of p.

It is important to note that this criterion makes no guarantee that the output signal,
v(1), will resemble m (¢) in any way. However. since we already know the functional formy of
m(t), we are not interested in fidelity of reproduction. as we were in the case of the Wiener
filter. Instead. we want the output to be large when m (1) is present and small when it is not.

Since u(7) is deterministic. we can drop the expectation operator in the numerator and
write Eq. (75) as

«75)

WO kP 1T YME) =KW e 76
etviny  etln(n k') el [n(n) = k(D) Pu
where p, and p, allow us to consider the numerator and denominator separately.
We begin by expanding the denominator as a product of two convolution integrals:

py = e{J. k(q)n(!~q)a’q'|. 4 k(tn(r— T)d‘r} 77

Since the expectation is an integral over time, and the impulse response k(7) is not a random
signal, we can rearrange the integrals in Eq. (77) to produce

Py =j J K(G(DE (- n(r - T) L dg dT (78)
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We recognize the expectation factor within the integral as the autocorrelation function
R,(T~ g) of the noise, which is, in turn, the inverse Fourier transform of P, (s), the noise
power spectrum. Thus,

e{n(i-q)nt -1} = R, (1-¢q) ='[ P,(s)el™(T-a)dg (79
which makes the denominator of p

pd=J- J l((q)k(‘r)j P (s)e? ™G ds dg dt (80)

Now we can factor the exponential and rearrange the integrals to produce

pdzj P,,(S)U. k(q)e""”"’qu. k(r)e’z"”d‘rildx (t:30]

The term in brackets is the product of two inverse Fourier transforms, namely, K (s) and
K(-s). Furthermore, since the impulse response k(1) is a real function, the transfer function
K(s) is Hermite, and K(—s) = K*(s). Thus, the term in brackets reduces to

K(s)K(-s) = K(s)K*(s) = |K(s)|? 82)

Substituting this into Eq. (76) and writing out the Fourier transform in the numerator allows
us to write the signal-to-noise power ratio as

oo 2
[I K(J)M(s)dsJ

p=tr= 1 83)
j K(s)PPy(s)ds

It is this expression that we wish to maximize. As with the Wiener filter, we must select a
function (i.e., K(s)) to optimize a quantity.

11.5.5.2 The Schwartz Inequality

At this point, we make use of the Schwartz inequality. This is the mathematical result which

states that
2
sz(t)er‘gz{t)dtZ[Jf(l)g(t)d{l (84)

where f(¢) and g(¢) are arbitrary real functions and the integration is performed between
arbitrary limits. Qur approach is to define the functions f(r) and g(®) in terms of factors
appearing in Eq. (83) and obtain an inequality involving p. We shall then assume a form for
the transfer function and show that it maximizes p. First, however, we shall prove the
Schwartz inequality.

We begin by defining a nonnegative function of the variable A by writing

o) = f 1A (1) + g(0)dr 20 @s)
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Expanding the integrand and collecting terms produces
j [Af (1) + g(DOVdt = AZJ Fnde+ ZAJ fwendr + j g2 (Ndr=0 (86)
Eq. (86) is a quadratic equation in the variable 1. Therefore,
{zj f(r)g(r)dr}.—zzj. flu)d;jgl(r)mso (87)
or
r 2
\jf(l)x(f)dr] Ssz(r>dtj g2 (nyd (88)
L

thus proving Eq. (84).

11.55.3 A Necessary Condition

We now use Schwartz’s inequality to obtain a condition upon the signal-to-noise ratio p.
First we define two functions

f(s) = K(s)JP,(s) (89)
and
M(s)
(s) = (90)
8 JPuls)
Their product is
F(s)g(s) = K(s)M(s) (C1)]
and their squared magnitudes are
F@I? = [K(s)2Pu(s) 92)
and
1M(s))?
2 E —
lg(s)* = P.5) 93)

If we substitute the functions defined in Eqs. (89) and (90) into Schwartz’s inequality, using
s as the variable of integration, we obtain

o i2 oo o 2
j K(s)M(s)ds| < U IK(s)lzP,,(s)ds} U MdsJ 94)
oo o o Pa(s)
If we divide both sides by
I IK(s)[*P,(s)ds 95)

we are left with
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J. K(s)M(s)ds| I |K(s)|2pn(s)dsj M;((ss))"ds
= = =t (96)
J' K ()P, (5)ds j IK($)2Py(5)ds

—c0

Recalling Eq. (83), we recognize the leftside of the inequality as p. Furthermore, the
denominator on the right-hand side cancels the first term of the numerator, leaving us with

“IMG)?
ps I mT(s-)—ds (97)

arelatively simple upper bound on p.

Thus, Schwartz's inequality has led us to Eq. (97), which states that p is less than or
equal to an expression involving the power spectrum of the signal and that of the noise.
Clearly, p will be maximized under the equality condition in Eq. (97). Since we want p to
be as large as possible, we take

Aad 2
Pmax = I IA;((S‘))l ds (98)

as a necessary condition for maximizing p.

11.5.54 The Transfer Function

Next, we assume a particular form for K (s) and show that it does indeed maximize p. We
assume that the optimal transfer function is

M*(s)

P.(s)

where C is an arbitrary constant. Substituting that assumed form into the general expression
for p [Eq. (83)] produces

K, sy =C

(99)

2

T M)
L Pris) M e)ds
p= (100)

had *
J’ MEO™ME) p ds
- Pus)*Pus)

Canceling the constants and the P, (s)’s in the denominator reduces the expression to

M) o
L Prs) MO
p=ll= (101)

“"' M*(s)M(s)
——ds
- PR

Since P,(s) is real and even, P¥(s) = P,(s), and the numerator is the square of the denom-
inator. Now p reduces to
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~M(s) i
= s = 102
P J. . P9 ds Prmax { )

which satisfies the necessary condition for optimality of Eq. (98). This means that the trans-
fer function assumed in Eq. (99) does indeed maximize the signal-to-noise power rano at
the output of the filter.

Notice that the magnitude of the transfer function

: ) [M(s5)]
K, ()} = ICl oy (103)

is proportional to the signal amplitude-to-noise power ratio as a function of frequency. The
arbitrary constant C is not surprising, since we originally endeavored to maximize a ratio at
the output.

11.5.6 Examples of the Matched Detector

To develop an insight into the operation of the matched detector, we consider some exam-
ples under particular conditions.

11.5.6.1 White Noise
In the first case, let us assume that the noise n(r) is spectrally white: that is,
P(s) = N§ (104)

Since C in Eq. (99) is an arbitrary constant, we can set it equal to N}, in which case the
matched detector becomes

K, is) = M*(s) (105)

In the time domain. the impulse response is
ki = 5K} = j M (s)e ™ ds (106)

Since m(7) is real, M(s) is Hermite, and we can write

Jan(-

k(1) = j M=)’V s = m(-r) (107)
Thus, the impulse response for the white noise case is merely a reflected version of the sig-
nal itself. This filter is said to be matched to the signal [5), and the term has become attached
to the more general detector of Eq. (99).

The signal component of the output is given by

u(t)y = m(t *k,(1) = j m(Tym(~ 1+ 1dt = R, (-1} (108)

and the noise component by

v(r) = n(ry*# k(1) = J n(tym(-1+10)dt = R _(-1) (109)

man
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Since k(1) in Eq. (107) 15 just the reflected signal we are trying to detect, the matched filter
k. (1) 1s merely a cross-correlator, cross-correlating the incoming signal plus noise with the
known form of the desired signal. The output is

Y = u(t)y+v(t) = R,,,l—r)+Rm”(~t) (110)

which has a cross-correlation component everywhere, but has an autocorrelation compo-
nent only where the signal is located.

{f the correlation between the signal and noise is small, then R,,,( ) is smail for all val-
ues of 7. and the noise component at the output is small. Furthermore, the autocorrelation
function R,,(7) has a peak at 7= (). So.

u*(0)

= — (1
P efv(n)}

is large at r = 0, or wherever the signal occurs, as desired.

11.5.6.2 The Rectangular Pulse Detector
Now, suppose, forexample, that m(2) = [T(t); that is, the matched filter is designed to detect
arectangular pulse in white noise. Suppose also that the inputis x(1) = s(t) + n(1), where s(t)
=I1(1-T) and n(2) is white noise. Recall that the autocorrelation function of the rectangular
pulse is given by
Ryt = My II(1) = Al (112)

Now the output of the filier is

Y1) = Rt = Ropl) + Ryplt) = Al =T)+ R, (1) 1y
So. for the system shown in Figure 11-22, the components of the input and output are pre-
sented in Figure [1-23.

[ e e e

W |
Wy — + ),‘*Lﬂ 1) M V(1) =
e N ~ At N+ Ry(n)

nit)
Figure 11-22  Rectangular pulse detector

From the latter figure, we see how the matched filter discriminates against the noise
while responding to the signal. The output has a peak at ¢ = 7. the time at which the input
pulse occurs, but takes on relatively small amplitude elsewhere. Thus, a simple examination
of the output signal indicates when the input pulse occurs.

Notice that the form or shape of the signal is not preserved by the matched detector, as
it was with the Wiener estimator. This is because we designed the filter to detect the presence
or absence of a particular known input signal, rather than to estimate its noise-free shape.

11.5.6.3 Image Feature Detection

Figure 11--24 shows a matched filter that locates the grid intersections in a digitized
graph. This information can be used, for example. to guide a geometric transformation
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W Signal R.(1) A Filtered signal
I—:—[ +
T T
alt) Noise Ry Fittered noise

el N

Signal plus noise i Filter output

Figure 11-23  Input and output component signals

that rectifies the coordinates prior to automatic curve tracking. The convolution kernel
(Figure 11-24a) matches what the image is expected to look like in the local area of a grid
intersection.

11.5.7 Comparison of the Wiener Estimator and the Matched
Detector

The Wiener estimator and the matched detector are each optimal filters designed to doa spe-
cific job. Although they were designed for different functions, it is instructive to compare
the two filters.
Recall from Eg. (59) that for uncorrelated signal and noise the Wiener estimator trans-
fer function is
Pls)

H,(s) = P—.———_‘(x)+P,,(s) (114)

and the mean square erfor one can expect when using this filter is, from Eq. (66),

[T PGP, [T
MSE, = LP‘(W s - J'_mmnn,,(sws (115)

If we let C =1 in Eq. (99). the matched detector transfer function becomes

$*(9)

K,(s) = o)

(116)

and the signal-to-noise power rutio at its output is
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Fig!lre l!-24 Example o_f two-dimensional matched filter: (a) convolution kemnel;
(b)_ input image; (c) output image: (d) stretched output image (courtesy Perceptive
Scientific Instruments, Inc.)
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= Pys) )
- pEANA 17
P L s a1

First, notice that while H,(s) is real and even (and hence contains no phase information)
K, (s) is Hermite and does contain phase information. Notice also that H,(s) is bounded
between O and +1. This means that it can never amplify spectral components of the input
signal. However, K,(s) has neither a positive nor a negative bound, so its frequency domain
behavior is much less constrained.
Let us define the signal-to-noise power ratio as a function of frequency by
2
_ ISP _ P (118)

R = —_— =
) N2 Pals)

In terms of this function, the magnitude of the matched detector transfer function is

Rs) _ JRG) 19

Ko =Tl S TN
Ko = 51 = TN
and the signal-to-noise ratio is
oo = | RS (120
The Wiener filter transfer function is
- _ R
Ho) = Hy) = 330 (121
and the mean square error is given by
{7 RGIP(S)
MSE, = J’__, T+ R (122)

which is just that noise power that passes through the filter, accumulated over all
frequencies.

Figure 11-25 shows an example of the frequency domain functions discussed in this
section. For best performance of the matched detector, we want p to be large. This will
occur if there are frequencies over which P,(s) is much larger than P, (s). On the other hand,
in order for the Wiener filter to be successful, we want the area under the MSE integrand to
be small. At frequencies where P,(s) and P,(s) are roughly equal, the contribution to MSE
is maximum.

11.5.7.1 Practical Considerations

Estimation is a more difficult task than detection, for two reasons. First, we ask an estimator
to recover the signal at all points in time, whereas we ask the detector only to determine
when the signal occurs. Second, we have more a priori information in a detection problem
in that we know the form of the signal exactly, instead of having only its power spectrum.
Since we are asking a detector to do less with more information, we can expect better per-
formance under the same conditions.
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Figure 11-2§  Spectral functions of
Wiener filter and matched filter

Whether one uses a detector or an estimator is normally dictated by the problem.
Since the two are designed for different jobs, they usually do not compete for consideration.
Nevertheless, it is instructive to compare their behavior under similar conditions. Figure
11-26 presents a computer simulation that illustrates both the Wiener estimator and the
matched detector when the signal is a Gaussian pulse embedded in white random noise. In
this case, the signal-to-noise ratio is on the order of unity.

Both the estimator [Eq. (114)] and the detector [Eq. (116)] are lowpass filters in this
situation, but they differ somewhat in form. The detector output clearly shows a peak at the
point where the input pulse occurs. The estimator recovers the pulse from the noise, but not
without residual error. The low-frequency components of the noise penetrate the Wiener
filter and prevent exact recovery. One would expect better performance from both filters
with improved signal-to-noise ratio, and conversely.
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Signal Wiener filter
output

Signal + noise Matched filter
output

Vay PN L

Figure 11-26 Comparison of the Wiener and matched filters

11.5.8 A Practical Example

We conclude the chapter with an example that illustrates how optimal filter theory can guide
the design of practical filters. Figure 11-27 shows a digitized X ray of a tube filled with
X -ray-absorbing dye. The image models angiography, a diagnostic technique in which dye
is injected into blood vessels during X-ray exposure. Here, the smooth tube substitutes for
the vessel.

The goal in this example is to develop a processing technique that will find the edges
of the tube in the noisy image of Figure 11-27 and reliably measure the tube’s diameter all
along its length. Such a technique is useful for quantifying the narrowing of blood vessels
that accompanies atherosclerosis and produces heart attacks [7].

Since the problem is one of edge detection, the matched detector would seem the nat-
ural choice. In this example, however, we pose the problem somewhat differently. We shall
assume that the vessel’s edges occur, on each image line, at the two points of steepest slope
and attempt to locate these by differentiation. Before differentiating, however, we shall
employ a Wiener filter to estimate the noise-free image. Furthermore, we shall process each
horizontal scan line individually. This not only reduces the problem to a one-dimensional
one, but also allows the procedure to respond to rapid changes in width, should they occur.

Figure 11-28 shows a gray-level plot of one line f;(x) from Figure 11-27. The evident
noise is common in radiography, due primarily to film grain and photon statistics in the illu-
minating beam. Clearly, differentiating this curve would not produce reliable peaks at the
inflection points, because of the noise.

Assuming uncorrelated signal s(x) and noise n(x), the specification of the Wiener
filter {Eq. (59)] requires the power spectrum of the signal and that of the noise. We can esti-
mate the signal’s power spectrum by line averaging, since, with a smooth tube, all lines f;(x)
should be identical in the absence of noise. Thus,
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N 2

- gl

Ps) =I5 {s() 1= lfF{NZf.(X)} (123)
i=1

will reduce the noise by the factor 1/ JN . Figure 11-29 shows the result of averaging 60
lines in Figure 11-27 and the resulting amplitude spectrum of the signal.

Once the signal has been estimated, the power spectrum of the noise can be estimated
from Figure 11-27 using line-by-line power spectrum averaging after subtraction of the sig-
nal; that is,

N
1 _ 2
Pols) = j I Lf:x) = s a24)
izl
m .
s(x)
100 -
4] "Nn‘("’]
x— 25 mm
(8)
S(s)
—
\/ s 1.25 cy/mm
(b}
Figure 11-29 (a) Noise-free signal esti btained by line ing in

Figure 11-27; (b) Fourier amplitude spectrum of (a)
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In this study, Eq. (124) showed the power spectrum of the noise to be essentially constant
with frequency.

Figure 11-30(a) shows the Wiener filter transfer function H,(s) computed by
Eq. (59). The transfer function takes on values near unity at the signal-dominated low fre-
quencies and tends to zero at high frequencies.

We could inverse transform the transfer function in Figure 11-30(a) to obtain the
impulse response for predifferentiation smoothing. There are, however, some practical con-
siderations worthy of note.

The notchies in the transfer function of Figure 11-30(a) are produced by the zero-
crossings in the signal’s spectrum [Figure 11-29(b)]. By the similarity theorem, the position
of these notches will shift with changes in the width of the vessel.

This points up the fact that our signal is not actually an ergodic random process, as the
Wiener filter development assumes. The member functions in the signal ensemble corre-
spond to vessels of different width and thus do not all have identical power spectra. As it
happens, we are forced to violate one of the assumptions on which the Wiener filter is based.
We shall proceed nevertheless, acting in the belief that a “near-optimal” technique will
prove an adequate substitute for true optimality, which is beyond our grasp.

If we were to include the troublesome notches in the design, our filter would be quite
sensitive to slight changes in the vessel’s width. It would be optimal only for the exact ves-
sel width used in the design and would rapidly become suboptimal as the width varied. This
is due to the rather abrupt frequency-domain behavior of the transfer function.

We choose instead to ignore the notches by fitting a smooth envelope to the transfer
function. Figure 11-30(b) shows a smooth approximation, H(s) , to the Wiener filter transfer

1.0
H(s)
0 W.VANIDUY,N —
2.5 cy/mm
5 —p
(@)
10 \
H(s)
0 |
s—b 2.5 cy/mm
(b)
Figure 11-30 (a) Wiener filter transfer function; (b) smooth approximation
to{a)
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tunction. FH{s) was chosen because of two desirable properties: It is a reasonable approxi-
mation to the envelope of Figure 11-30(a), and its impulse response renders digital convolu-
tion quite an efficient computation. )

Figure 11-31 shaws the corresponding impulse response, A(x) , which is piecewise
parabotic, and A’(x), its first derivative, which is piecewise linear. Since differentiation
commutes with convolution, using the latter function combines smoothing and differentia-
tion into one step. Furthermore, digital convolution using a piecewise linear impulse
response can be programmed to execute very efficienily [8).

Figure 11-32 shows the results of using the two impulse responses in Figure 11-31 on
the image line in Figure | 1-28. The first produces smoothing for noise reduction only, while
the second combines smoothing with differentiation. In this case, the degree of noise reduc-
tion is gratifying. Notice also that the inflection points in the upper curve give rise to distinct
peaks in the lower curve, suggesting that vessel edge detection is now a simple task.

The piecewise linear impulse response A’(x) is a computationally efficient approx-
imation to the differentiating Wiener filter for this application. Even though the signal is
nonergodic, the notch-free transfer function H(s) should be rather well behaved under sub-
optimal conditions, since it has no abrupt behavior in the frequency domain. Furthermore,
Figure 11-32 strongly suggests that we have a comfortable solution to this edge detection

20 -
\
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r— 1.65 mm 36 mm

(a)

0.65 mm

P?lx)

5.6 mm

1.65 mm
(b)
Figure 11-31 (1) Impulse response of Figure 11-30(b); (b) derivative of (a}
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Figure 1)-32  Results of smoothing the line in Figure 11-28(a) with TGR
(b) with A’{.x)

problem. The differentiating Wiener filter designed on the smooth tube has proved usetul
on routine angiograms [8].

11.6 ORDER-STATISTIC FILTERS

By definition, if a filter fails the test of lincarity (Chapter 9). it is nonlinear. Many types of non-
linear filters have been described. tested, and used. Arguably, nonlinear approaches can solve
certain types of image-processing problems better than finear filters can. They lack. however,
the far-reaching and relatively straightforward theoretical background that underlies linear fil-
ters. For an introductory treatment, we address one of the most useful classes, order-statistic
filrers, sa called because they are based on statistics derived from ordering (ranking) the ele-
ments of a sel rather than computing means, etc. The median filter is one of these.

11.6.1 The Median Filter

The nonlinear filtering technique that has probably found most common usage is the median
filter. Tt is a neighborhood operation, similar to convolution, except that the calculation is
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not a weighted sum. Instead, the pixels in the neighborhood are ranked in the order of their
gray levels, and the midvalue of the gropp is stored in the output pixel. For an N-by-N
median filter, where N is odd, the output gray level is the gray level of that input pixel which
is greater than or equal to (V2 — 1)/2 of the pixels in the neighborhood and less than or equal
to (N* - 1)/2 of them.

Median filtering is normally a somewhat slower process than convolution, due to the
requirement for sorting all the pixels in each neighhorhood by gray level. There are, how-
ever, algorithms that speed up the process [9,10].

The median filter is popular because of its demonstrated ability to reduce random
noise without blurring edges as much as a comparable linear lowpass filter. This is
illustrated one dimensionally in Figure 11-33. Here, the signal is an edge plus a sinusoid
at one-fourth the sampling frequency, and the median is computed pver a three-point
neighborhood. In this example, the median filter removes the sinusoid completely, while
preserving the edge.

In general, light or dark objects having less than half the area of the median filter are
essentially eliminated, while larger objects are preserved approximately intact. Thus, the
spatial extent of the median filter must be “tuned” to the problem at hand. There is much less
theory to guide the design of median filters than there is to guide linear filter design. Exper-
imentation often substitutes for analysis.

The noise-reducing effect that a median filter has on an image depends on two related,
but totally separate, things: the spatial extent of the neighborhood (mask), as mentioned

Median
filter width

A
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>
~
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(b)
Figure 11-33 Median filtering in one dimension: (a) input, (b) output
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above, and the number of pixels involved in the median computation. The simple case is an
N-by-N square mask (where ¥ is commonly odd), with all N? points used in the computation.
One can, however, use a sparsely populated mask, as shown in Figure 11-34, to save time.

For large masks, the noise reduction effect of using more pixels in the computation of
the median reaches a point of diminishing returns. Figure 11-35 shows how the noise reduc-
tion effect of a median filter depends on the number of pixels used in the computation. Here,
different sparsely populated five-by-five median filter masks were used on an image con-
taining white random noise. The standard deviation of the output image is plotted against
the number of points used in the median computation. For more than 9 or 13 points, it is
questionable whether the additional time required to rank the larger number of pixels is jus-
tified by the improvement in noise reduction. Thus, if the problem calls for a spatially large
filter, one may be able to obtain the desired result with a sparsely populated median mask.

11.6.2 Other Order-Statistic Filters

The median filter is only one member of the class of order-statistic filters. If the input pixels
in the neighborhood are ranked, the median represents the S0th percentile. Other percentiles
can be used as well. Zero and 100 percent correspond to the minimum and maximum filters,
respectively. Using percentiles other than 50 percent tends to darken or lighten the image.
While these filters are less popular for general use, they are valuable in some applications.

Figure 11-34  Sparsely populated
5x 5 median filters

80 T T T T
50 -
O 40} .
ok Figure 11-35  Effect of a five-by-
7 five median filter on white noise:
standard deviation of the output image
0 ) ) ) ) versus the number of pixels in the five-
0 5 10 15 20 25  by-five mask that are used in the
N-—» computation of the median
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11.7 SUMMARY OF IMPORTANT POINTS

1. A high-frequency enhancement-filter impulse response can be designed as a narrow
positive pulse minus a broad negative pulse.

2. The transfer function of a high-frequency enhancement filter approaches a maximum
value that is equa) to the area under the narrow positive pulse.

3. The transfer function of a high-frequency enhancement filter has a zero frequency
response equal to the difference of the areas under the two component pulses.

4. The zero frequency response of a filter determines how the contrast of large features
is affected.

5. Filters designed for ease of computation rather than for optimal performance are
likely to introduce artifacts into an image.

6. An ergodic random process is a signal whose known power spectrum and autocorre-
lation function represent all the available knowledge about the signal.

7. The Wiener estimator is optimal, in the mean square error sense, for recovering a sig-
nal of known power spectrum from additive noise of known power spectrum.

8. The Wiener filter transfer function takes on values near unity in frequency bands of
high signal-to-noise ratio and near zero in bands dominated by noise.

9. The matched detector is optimal for detecting the occurrence of a known signal in a

background of additive noise.

In the case of white noise, the matched filter correlates the input with the known form

of the signal.

10

11. The Wiener filter transfer function is real, even, and bounded by zero and unity.
12.
13. Order-statistic filters are nonlinear and work by ranking the pixels in a neighborhood.
14

The matched filter transfer function s, in general, complex, Hermite, and unbounded.

A median filter essentially eliminates objects less than half its size, while preserving
larger objects. It is useful for noise reduction where edges must be preserved.

15. A sparsely populated mask can reduce computation time on spatially large median
filters.

PROBLEMS

1. Prove Eq. (49).

2. A signal has power spectrum P,(s) = 10/isl, and the noise is white and uncorrelated with spectral
amplitude 2. Sketch the Wiener filter transfer function, H(s), and the signal-to-noise power ratio,
R(s), for Ist < 20. Is this a lowpass, bandpass or highpass filter?

3. A sample of the signal is approximately s(x) = a sech(1as), and the noise power spectrum is
white with amplitude N,. Sketch the Wiener filter transfer function for 0 <s < a.

4. A sample of the signal is approximately s(x) = a sech(xas), and the noise amplitude spectrum is
approximately N(s) = exp(-isi/2a). Sketch the Wiener filter transfer function for 0< s < fua, = a.

5. The signal is (1) =4 cos(2nﬁ)cxp(—t2/20'2), where f= /8 and 0 = 12. The noise is white with
spectral amplitude 1. Design a Wiener filter to recover the signal. Sketch s(1) for -64 <1< 64 and
P.(s), P,(s), H,(s), and the integrand of the MSE integral for0 <5 <0.5.
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6. The signal is s(t) = 10 cos(2nfr)sech(nt/a), where f= 1/8 and a = 6. The noise has power spec- 2. W.B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise,
trum P, (s) = 4 sech(5/0.3125). Design a Wiener filter 1o recover the signal. Sketch s(r) for —64 McGraw-Hill, New York, 1958.
<1< 64and P(s), Pu(s). Hy(s), and the integrand of the MSE integral for 0< s <0.5. 3. Y. W. Lee, Statistical Theory of Communication, John Wiley & Sons, New York, 1960.

4. L. A.Wainstein and V. D. Zubakov, Extraction of Signals from Noise, Prentice-Hall, Englewood
Cliffs, NJ, 1962.
PROJECTS 5. G. L. Turin, “An Introduction to Matched Filters,” IRE Transactions on Information Theory,
June 1960.

1. Develop a program for one-dimensional Wienfer filter de? ign. QSe the program 10 estimate the 6. D. Middleton, “On New Classes of Matched Filters and Generalizations of the Matched Filter
waveshape o‘f ? sho_rt spoken w?rd (or other brief found) in aAnmsy digitized s?und sequence. Concept,” IRE Transactions on Information Theory, 349-360, June 1960.

2. Generate_ a #lglla‘ sggnal 512 points long that contaﬂxs a Gaussian pulsle (?f amplitude 20 and stan- 7. E.s. Beckenbach. R. H. Selzer, D. W. Crawford, S. H. Brooks, and D. H. Blankenhom, “Com-
dard deviation 5 points located at a noninteger position somewhere within. Add random numbers | from Arteri » Medical Instru-
uniformly distributed between 0 and 20. Write down the exact location of the pulse, seal the infor- puter Tracking and MceasurcTem of Blood Vessel Shadows from Arteriograms,” Medi T
mation in an envelope and give the envelope to a New York accounting firm for safekeeping (or 8, No. 5. Sep ~October, 1974. o .
tock it in your desk). Exchange the locations of noisy pulses with another student who has done the 8. K.R. Ca§tlcrpan, R H. S(?lzer, and D. H Blankenhom, *“Vessel Ejdge DC'WCUOH in Angmgran}s:
same. Develop a program for one-dimensional matched filter design. Use the program to locate the An Application of the Wiener Filter,” in J. K. Aggarwal, ed., Digital Signal Processing, Point
exact position of the pulse obtained from your fellow student. Strive to locate the pulse more accu- Lobos Press, No. Hollywood, CA, 1979.
rately than he or she can locate yours. Finally, open the envelopes and determine who has most 9. T. 8. Huang, G. T. Yang, and G. Y. Tang, “A Fast Two-Dimensional Median Filtering Algo-
closely located his or her pulse. Honor the victor with a suitable ritual, consistent with local custom. rithm,” IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-27(1):13-18, 1979.

3. Develop a program for two-dimensional Wiener filter design. Use the program to reduce the 10. J.T. Astola and T. G. Campbell, “On Computation of the Running Median,” JEEE Trans. Acous-

noise in a grainy photograph. Assume that the noise is white, and estimate its amplitude using a
gray-level histogram computed in a flat area of the image.

4. Develop a program for two-dimensional matched filter design. Digitize an image of an assort-
ment of pills, tablets, and capsules of different sizes and shapes on a contrasting background.
Position the objects randomly, but not touching, and all aligned the same way. Use your program
to pick out all the medications of one type.

5. Develop a program for two-dimensional Wiener deconvolution. Use the program to restore an
image that has been blurred by a three-by-three box filter and has had random noise added.

6. Developa program for two-dimensional Wiener deconvolution. Use the program to restore a dig-
itized image that has been blurred by camera motion and has visible film grain noise. Estimate the
blurring function from the profile of a sharp edge in the image, and estimate the amplitude of the
noise from a gray-level histogram computed in a flat area of the image.

7. Use the convolution capability of an image-processing program as a matched detector to count the
number of times the letter “A” (or your favorite ietter) occurs on a page of text. Use a screen capture
oran image from a paint program as a noise-free digitized page of text. Pick out one occurrence of
the letter, and make a convolution kernel out of it. Afier the convolution, threshold the image and
count the dots. If the threshold is set too low, which other letters start being counted? Why?

8. Do Project 7, but digitize an actual page of printed or typed text with a pixel spacing that makes
the letters about 8 to 10 pixels high. Scale the image for good contrast of the print. Comment upon
the performance of the technique.

9. Do Project 8 with a larger pixel spacing, one that makes the letters only about five pixels high.
Comment upon the resulting performance of the technique.

tics, Speech, and Signal Processing, ASSP-37(4):572-574, 1989,
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CHAPTER 12

Processing Sampled Data

12.1 INTRODUCTION

In previous chapters, we have discussed digital image processing without particular
attention to the effects of sampling. We have assumed that, done properly, sampling will
not invalidate the results obtained from the analysis of continuous functions. But sampling
is inherent in digital processing. Therefore, we shall use the tools we have developed
in preceding chapters to approach sampling in a concise and effective manner in this
chapter.

Chiefly, we investigate the ramifications of sampling continuous images and of pro-
cessing sampled data. In particular, we address the following questions: (1) To what extent
does sampling cause loss of information, and what is the nature of that loss? (2) Once acon-
tinuous function has been sampled, can it be recovered completely, and, if so, how? (3) How
finely must we sample a function in order to preserve it? (4) What effect does sampling have
upon the spectrum of a function? (5) If we treat a sampled function as if it were continuous,
what assumptions, approximations, and errors are involved?

12.2 SAMPLING AND INTERPOLATION

Before we can describe quantitatively the effects of sampling, we must establish a mathe-
matical procedure for modeling the process. To do this, we use a special function called the
Shah function.
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12.2.1 The Shah Function

A valuable tool for inodeling the sampling process is the infinite impulse train, 11 (x), pro-
nounced “Shah of x™ and defined by

i) = z Stx-n) (n

nz e
I (x} is a series of unit-amplitude 1mpulses that occur at unit spacing along the x-axis.
Much to our good fortune, the Shah function is its own Fourier transform | 1,2]; that is,

F{H(x)} = I(s) (2)

We shall use this function to model the process of sampling a continuous signal.

12.2.1.1 Similarity

1If we substitute the similarity theorem,

F{flax)} = lf(;) 3

fal

into Eq. (2), we obtain

s}'{mff)} = 1ll(15) @
\ T,

where the spectrum is a train of impulses spaced every 1/7 along the s-axis (Figure 12--1).
Recall that under similarity, the impulse has the curious property that
Sax) = ~-8(x) )
lal
Since HI (x) is an infinite train of equally spaced impulses [Eq. (1)], it also exhibits this
behavior under stretching and compression. In particular,

M = 3, dax-m = Y 5[“("3)] “

"= nE e

which means that

oo « 4 5 os-3)

w (2) R

EARRE RN T
= 7

Figure 12-1 The Shah function and its spectrum
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If we leta = /7, we have
m(ir'j =Y d-ny) (8)

or impulses spaced every 7. Notice that spacing the impulses every r rather than at unit
intervals multiplies the strength of the impulses by the factor 7. Transforming Eq. (8) yields

:T%m['ir')} = ll(zy) = i 5(?—%) 9)

The last two equations indicate that a train of impulses of strength 7 spaced every 7 in the
time domain produces a train of unit impulses spaced every [/7in the frequency domain.
We could, of course, divide Eq. (8) by 1 to have impulses of unit strength in the time domain
and, correspondingly, impulses of strength 1/7in the frequency domain.

12.2.2 Sampling with the Shah Function
Suppose a function f(x is bandlimited at a frequency s,; that is,
F(s) = 0 I8t 25y i10)

This is shown in Figure 12-2. If we sample f(x) at equal intervals 7. we destroy f(x) every-
where except at v = n7. We can model the sampling process as simply multiplying the func-
tion f(x) by III{(x/7) to form g(x). the sampled function. The process destroys the function
between sample points by driving itto zero and yet preserves the value of the function at the
sample points in the strength of the resulting impulses. The sampled function is illustrated
in Figure 12-3. Mathematical convenience makes this model for sampling the method of
choice.

{19 F iy
- T T T
0 x —— 50 05 oy,
Figure 12-2 A bandlimited function
G(s) = THHTs) * F(y)
rry=Hdn) fin)
0> a D5 X
T Sy S0 T

Figure 12-3 A sampled function
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12.2.3 Sampling and the Spectrum

We now examine what sampling dees to the spectrum of f(x). The convolution theorem dic-
tates that when we multiply f(x) by Ili(x/1), we convolve F (s) with til1(zs). Recall that
tIil(7s) is a series of unit-strength impulses spaced every 1/7 along the s-axis. Recall also
that convolution of a function with an impulse produces merely a copy of that function.
Thus, the convolution in the frequency domain replicates F (s) every 1/7 along the s-axis.

As indicated in Figure 12-3, G(s) consists of infinitely many copies of the spectrum
F (5) equally spaced along the s-axis from minus infinity to infinity. Notice that the spec-
trum G (s) of the sampled function is periodic with frequency 7. Thus, any function sampled
at equal intervals 7 has a spectrum that is periodic with frequency 7.

12.2.4 The Sampling Theorem

Now that the function f(x) has been sampled, the information between sample points has
been lost. But can we recover the original function intact from the sample points? Clearly.
we can reclaim f(x) from g(x) if we can reclaim F (s) from G(s). We can do the latter by
merely eliminating all the replicas of #(s), except the one that is centered upon the origin.
One way to do this is to multiply G(s) by [1(s/2s,), where

SOS.S]S%.—SO (b

Then
G(s)n( %) = F(s) (12)
1

and we have recovered the spectrum of f(x) from the spectrum of the sampled signal g(x).
The original function is given by

fx) = FH{F(s)) = EF"’{G(s)H(Z—‘;])} (13)

Applying the convolution theorem to the right-hand side of Eq. (13) yields

sin (27ts ) x)

f(x) = glx) *2s 275 x

(14)
which tells us how to reconstruct f(x) from g(x): We merely convolve the sampled function
with an interpolating function of the form sinc(x) = sin(x)/x.

Eq. (14) shows us that we can indeed recover f(x) from g(x), and it tells us how to do
it. This development, however, is subject to two restrictions. First, f(x) must be bandlimited
at s [recall Eq. (10)], and second, the relationship between the sampling interval 7and the
band limit s must satisfy Eq. (11). What we have done is prove the well-known sampling
theorem [3-7], which states that a function sampled at uniform spacing 7 can be completely
recovered from the sample values, provided that

TS — (15)

where the function is bandlimited at 5.
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12.2.5 Interpolation

Convolving g(x) with the interpolating function suggested in Eq. (14) in effect replicates a
narrow sin(x)/x function ateach sample point, as shown in Figure 12—4. Equation (14) guar-
antees that the summation of the overlapping sin (x)/x functions will add up to reproduce the
original function exactly.

Figure 124 illustrates the case where s, = 1/27, but Eq. (11) allows considerable arbi-
trariness in the frequency of the sin(x)/x function if the reciprocal of the sampling interval
is considerably larger than the band limit, s,. That equation allows us to place 5, anywhere

between s and 1/7 - s,,. For convenience, we may place s; at the midway point:
{
5= 57 (16)

Then the interpolating function becomes

(7

8(x)
sin (272 (x21)]

2n(x2)

/ fx)

T\ i N\
e y

Figure 12-4 Interpolation with sin (x)/x

12.2.6 Undersampling and Aliasing

Equation (15) specifies how finely one must sample a function if it is to be totally recov-
erable from its sample values. We now examine what happens if that condition is not
satisfied.

Suppose 7> 1/2so. Then when F () is replicated to form G(s), the individual replicas
will overlap and sum together (Figure 12-5). If we then interpolate, using the function in
Eq. (17), we will not recover f{s) exactly, because

G(s)H(ZiJI):F(s) (18)
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/-— G(s)

05 —» 1 1
2r T

Figure 12-5 Overlap of replicated spectra

The effect of overlap of the spectral replicas can be viewed as follows. Energy above the fre-
quency s; is folded back below s; and added to the spectrum. This folding back of energy is
called aliasing, and the difference between f(x) and the interpolated function is due to alias-
ing error.

As a general rule, the more energy that falls above sy, the more energy will be folded
down into the spectrum, and the worse will be the aliasing error. Notice that if f(x) is even,
then F (5) is also even, and the aliasing effectively increases the energy in the spectrum. If
f(x) is odd, the opposite occurs, and the energy in the spectrum decreases. If f(x) is neither
even nor odd, then aliasing increases the even part and decreases the odd part, making the
function and its spectrum more even than they were before.

12.2.7 Examples of Sampling

“The following examples illustrate aliasing in the frequency domain and its effect in the time
domain. Suppose that we have the function

f(r) = 2 cos (2rfyt) (19)
which has the spectrum
F(s) = 8(s + fo) + 8(s - foy) (20)

as shown in Figure 12-6. Suppose also that we sample () at equal intervals Ar. The period
of f(1) is fy.

Quersampling. For case |, suppose that

At = “l(f‘_o) @n

N A\’i/\ L1
\/oI(U )

Figure 12-6 The cosine and its spectrum




Sec. 12.2 Sampling and Interpalation 259

which means that the folding frequency is

1
fo =5 = 2o 22)

and we are taking four sample points per cycle of f(1).

Figure 12-7 shows the sampled function and its spectrum. 1t also shows the interpo-
lating function and its spectrum. Since F (s) contains no energy above fy, f(1) can be com-
pletely recovered from its sample points.

! '
gn=fi — (-—)
0 M G

0l

”“ ar P* v o nd £, In 2fy

2y, 0 (27£,1) n(;TN)

3o
2rf 1

2 0ls = v

Figure 12-7 Sampling the cosine, case |

Critical Sampling. In case 2, assume that
Ar = l( L) (23)
2\ fy

which means that
fnv=to (24)
and we have two sample points per cycle. This case is illustrated in Figure 12-8. Here. we
are sampling the cosine at its positive and negative peaks, and the function still can be com-
pletely recovered by interpolation, as in case 1. In the frequency domain, the impulses from

adjacent replicas combine at s = f;, but the spectrum of the interpolating function takes on
the value 1/2 at that point. so the function is recovered intact.

Undersampling. For case 3, we let

2( 1 ) )
At = 2| (25)
3\ Sy
which means that

. 3

fn= qu (26)

This case is illustrated in Figure 12-9. Here, the left-hand impulse from the spectral
replicate centered upoun s = 2fy falls between zero and fy at the point s = f/2. Upon
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Figure 12-8 Sampling the cosine, case 2
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Figure 12-9 Sampling the cosine, case 3

interpolation, the energy at 5 = f, is aliased down to the frequency fy/2. Figure 12-9 illus-
trates how interpolation fits a cosine of frequency fp/2 through the sample points. This
shows graphically how high-frequency information is aliased to appear as low-frequency
information.

Severe Undersampling. Incase 4, we let

- (L
At = ( fo) Q@7
so that
v = %fo (28)

This case is illustrated in Figure 12-10. The energy at f; is aliased all the way down to zero
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Figure 12-10 Sampling the cosine, case 4

frequency. The cosine is sampled only at its positive peaks, and when these sample points
are interpolated, the resulting function is constant with unit amplitude.
Case 5 is the same as case 2, except that the function is

£ = 2sin (27f,o1) (29)

as shown in Figure 12-11. Here, the odd impulse pairs from adjacent spectral replicas over-
lap at s = fy, where they cancel. The figure illustrates why the interpolated function is zero.
This case corresponds to sampling the sine at its zero-crossings.

Primary First

—»f Arfe— g spectrum replicate
TINTAY
!

I
o r( ¥,
f=

Figure 12-11 Sampling the sine, case 5

12.2.7.1 Aliasing in Image Digitization

Figure 12-12 shows an example of visible aliasing in a digitized image. This image is from
a CCD camera with pixel width considerably smaller than pixel spacing. The shirt has a fine
weave pattern that, in (a), is aliased down to lower frequencies, creating the Moiré effect. In
(b), the camera was defocused very slightly to blur out the weave pattern, thereby removing
the energy that is subject to aliasing.
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Figure 12-12  Aliasing in a digitized
image: (a) digitized in focus;
(b) digitized with slight defocus

(b)

12.3 COMPUTING SPECTRA

One important application of digital processing is merely to compute the spectrum of a sig-
nal or an image. In this section, we describe how to compute the spectrum of a signal and
how the computed spectrum compares with the actual spectrum of the signal.
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12.3.1 Truncation in the Time Domain
Suppose a signal f(1) is represented by N sample points separated by constant spacing At, as
shown in Figure 12-13. The total interval over which the signal is sampled is

T = NA: (30)

where T is the width of the truncation window. Since a signal can be sampled with only a
finite number of points, the sampling process truncates the signal by ignoring it outside the
truncation window. This amounts to setting the signal to zero outside the window.

M F]ﬂ\m\

T >~ e T s Sm 2
2 A 2 halnn
|
! r ¥
As=L 5=l
T " 2A

Figure 12-13 Computing spectra

We want to use the sample values of f(z) to compute points on its spectrum F (s). We
nay do this by programming the Fourier transform as a numerical integration. First, how-
ever, we must decide the number of points we shall compute on the spectrum, the spacing
between those sample points, and the frequency range over which we shall compute the
spectrum.

Since the sampled signal consists of N independent measurements, it is reasonable to
compute a total of N points on the spectrum. Computing more points would introduce
redundancy, while computing fewer points would not take advantage of all the information
we have about f(1). Thus, a general-purpose computer program for calculating the Fourier
transform should take N (complex) sample points into N (complex) points on the spectrum.
For convenience, the computed points are usually spaced equally along the s-axis.

12.3.2 Truncation in the Frequency Domain

Since f(r) is a sampled function with sample spacing Ay, its spectrum F (s) is periodic with
period 1/At. Clearly, we should confine our computation to cover only one cycle of F(s). It
is common practice to spread the N sample points evenly across that cycle of F(s) which is
centered upon the origin. This means that we compute points on F(s) only over the range

Loe,e !

LYY en
If we spread N equally spaced sample points over one cycle of F(s), then
NAs = L (32)
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where
1 1
= — = = 3
A= mTT 63

is the sample spacing in the frequency domain. Thus, for our purposes, the best choice for
computing the spectrum of (1) is to compute points with equal spacing, given by Eq. (33),
over a frequency range from s, to sp,, Where
Sw = 5
" 24t
Notice that the maximum frequency we can compute is inversely related to the time domain
sample spacing [Eq. (34)]. The frequency domain sample spacing, which determines how
finely we can compute the spectrum, is inversely r_eiated to the width of the time domain
truncation window [Eq. (33)].

(34)

12.3.3 Computing the Spectrum

In brief, the sample spacing in one domain dictates (or is dictated by) the truncation width
in the other domain. If we desire to compute high-frequency components of the spectrum,
then we must sample finely in the time domain. Furthermore, if we insist upon high reso-
lution in the spectrum (small As), we must use a large truncation window in the time
domain, even if the function is narrow. The relationships between the time and frequency
domain sampling and truncation parameters are summarized in Table 12-1.

If £(#) is complex and we compute its spectrum, the N real and N imaginary values are
transformed to produce N real and N imaginary values of the spectrum. If £(7) is real, then
Nreal values and N zeros (the imaginary part) give rise to N/2 real and W2imaginary values
in the right-hand half of the spectrum. Since F (s) is Hermite, the left half of the spectrum is
a mirror image of the right. Thus, the N/2 real and the N/2 imaginary values in the left half:
of the spectrum are, from the point of view of information content, redundant. Notice that,
in both cases, the number of unconstrained sample points in the two domains is the same.

TABLE 12-1 SUMMARY OF SAMPLING AND TRUNCATION PARAMETERS

Parameter Domain Relations
Number of sample points Both N = T _ ZJ_-
AT s
Sample spacing Time ar=T o 1
N 2s,
s . 250 _ 1
ample spacing Frequency As = =2 =
N T

Truncation window width Time T = N\
Maximum computed frequency F -1 _1

(also Nyquist or folding frequency) Tequency = I 2NAs

12.4 ALIASING

We now take a closer look at the phenomena associated with aliasing to determine to what
extent its detrimental effects can be controlled and how to do so. {See also [8-9].)
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12.4.1 The Unavoidability of Aliasing

The sampling theorem indicates that a judicious choice of sample spacing can completely
avoid aliasing when one is sampling a bandlimited function. Thus, if wise selection or good
fortune allows us to work with bandlimited functions, then aliasing can be avoided. On the
other hand, if we are forced to work with inherently non-bandlimited functions, then we are
condemned to work in the shadow of unavoidable aliasing. Reality, unfortunately, works to
our disadvantage here: Our plans are foiled by the process of truncation.

To see how this is so, suppose a bandlimited function is truncated to a finite duration 7.
The process may be modeled as multiplying the function by a rectangular pulse of width
T. Recall that this has the effect of convolving the spectrum with a sin(x)/x function that has
infinite duration in the frequency domain.

Since the convolution of two functions can be no narrower than either, we conclude
that the spectrum of the truncated function is of infinite extent in the frequency domain.
Thus, truncation destroys bandlimitedness and condemns digital processing to producing
aliasing in all cases. Fortunately, while aliasing cannot be avoided totally, the resulting error
can be bounded and reduced to the point of an approximation acceptable for practical use.

12.4.2 Bounding Aliasing Exror

The following example illustrates how one can place a bound on aliasing error and select
digitizing parameters to produce a desired accuracy in spite of unavoidable aliasing.

Suppose we wish to identify the linear system shown in Figure 12-14 by computing
the spectrum of its response to a rectangular pulse. If f(1) is the input pulse and g(1) is the
system’s output, then the transfer function is

_G@)
" F(s)
Assume, for this case, that we know that the system is a lowpass filter, and thus its output
is a rectangular pulse with slightly rounded comers.

H(s) (35)

f@ g

A— h(n

Figure 12-14 Linear system identification

If we are to evaluate Eq. (35) by digital computation, we must digitize f(t) and g (1)
and compute their spectra. We must select the sample spacing Ar and the sampling period 7'
so as to yield good spectral resolution with reasonably small aliasing error. To do this, we
must define a measure of spectral resolution and a measure of aliasing error and relate the
two quantities to the sampling parameters. Then we can make an intelligent choice of N, T,
and Ar.

The input signal and its spectrum are shown in Figure 12-15. Since F (s) extends from
minus to plus infinity, no choice of Ar will completely avoid aliasing. F (s) is enclosed in an
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Figure 12-15 The input signal and its spectrum

envelope of the form /s, however, and this assures that the peak amplitude of the function
dies out with increasing frequency. If we ignore the sinusoidal variations and consider only
the envelope, we note that the largest possible spectral amplitude to be aliased occurs at the
frequency s,,. We can take this to be the worst case for aliasing and define, as a measure of
aliasing error, the ratio of F (s,) to F/(0). Since F (0) is unity and the envelope is 1/27us, we
can write an upper bound on aliasing as
1 2At _ At

< 27as, 27ma | Ta e
Notice that this bound on aliasing error, as we have defined it, is proportional to Az, but inde-
pendent of T. Thus, we can make the aliasing error as small as desired by making A small
compared to the pulse width 2a.

12.4.3 Spectral Resolution

F(s) has sinusoidal variations of frequency a. Let us denote by M the number of sample
points per cycle of F(s) on the computed spectrum and use it as a measure of spectral res-
olution. The parameter M indicates how finely we are computing the sampled spectrum
F(s). The period of the sinusoidal variations of F'(s) is Va, and

_ 1
MAS = a a7

! T
M= P vl (38)
This means that we may have as many sample points per cycle of F (s)as desired if we make
the sampling period T large compared to the half-width of the pulse. Notice that if we insist
upon both small aliasing error and high spectral resolution, then At is small, T is large, and
the required number of sample points is very large. As it frequently happens, one must pur-
chase accuracy with computer power.

12.5 TRUNCATION

Like sampling, truncation can cause a computed spectrum to differ from the actual spec-
trum of a function. Like the sample spacing, the truncation window must be selected
wisely to produce suitably accurate results {10,11]. The next example illustrates the effect
of truncation.
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12.5.1 Computing the Spectrum of an Edge

Suppose we wish to calculate the spectrum of an edge (an approximate step function). This
technique is often used to determine the transfer function of a filter that has already acted
upon an image containing an edge. (See Sec. 16.6.) Since truncating an edge is quite a sig-
nificant alteration, the following example illustrates the effect of truncation rather well.

In the example, we use the function sign(x) shown in Figure 12-16. Inorder to calculate
the spectrum, we must first truncate f(x) «o afinite duration 7. Since the sign(x) function goes
to infinity with constant amplitude, we recognize that this example is sensitive to truncation.

joo

+1

f(x)=sign {x)

—joo
Figure 12-16 The step tunction and its spectrum

If we truncate the function with a truncation window of width 7, the resulting function
is given by

= n(_x_):n(_i(__l)_n(_x_ l) 39
800 = Sl 7 e~ 2) "\ *a G99
as shown in Figure 12-17. Since the truncated function is an odd pair of rectangular pulses,

it can be written as
= X AN + T A
g(x0) H(Tﬂ) * [B(X ) S(X )] (40)

Transforming Eq. (40) produces the spectrum of the truncated edge function:

. T\sin (ns7/2)
G(s) = =2j sm(nsi)———

| ) T (41)

This may be rearranged to produce

6t5) = sin BT = 251} Jeos (51 | (42)
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Figure 12-17 The truncated step function and its spectrum

a graph of which is shown in Figure 12-17. The spectrum of the truncated signal is a sinu-
soid enclosed under an envelope that is twice the desired spectrum F(s). This considerable
change in the nature of the spectrum is a result of truncation—in this case arelatively radical
modification of the original function.

Since what we actually do is compute points on G(s), we can ask where those points
fall with respect to the sinusoidal variations in G(s). The sample points on G(s) will be com-
puted at discrete frequencies

s=ibs=1  i=012..7% “3)
joo
G (iAs)
s 5As 10As
0
2F(s)
Figure 12-18 The computed

—joo spectrum of the step function
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and the computed points will be

Gls) = 2F<:,.)[% - %cos(i;r)] (44)
The cosine term takes on the value +] for even i and -} for odd i, so

2F(s) iodd
0 i even

GGy = { (45)

This is shown in Figure 12-18.
12.5.2 Truncation Effects

Notice the curious effect of truncation in the preceding example: The odd-numbered points
were correct, albeit twice normal size, while the even-numbered points were zero. It appears
that truncation redistributed the energy among the odd and even points.

In this example, the edge was centered in the truncation window. The reader is invited
to determine the effect upon the sample points of G(s) if the edge is slightly off center in the
truncation window.

One could obtain the expected result by convolving G (iAs) with a narrow, triangular
local-averaging filter such as [1/4,1/2,1/4]. This would be equivalent to multiplying the
truncated edge by a windowing function of the form (sin(x)/x)>. This, in turn, would avoid
the discontinuities at 772 and prevent truncation error.

12.6 DIGITAL PROCESSING

We are now in a position to examine the overall, cumulative effects of digital processing
upon a continuous signal or image. We consider the effects of sampling, truncation, inter-
polation. digitally implemented convolution, and Fourier transformation.

In this section, we desire only to digitize a function and then reconstruct it without
processing. We begin with a continuous function f(r), as shown in Figure 12-19. The func-
tion in this example has a {riangular amplitude spectrum but random phase.

Amplititude |F (s)l
spectrum
Signal f

I NENAN .
olf+—» \/' sy Olss g

Figure 12-19 A signal and its spectrum
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12.6.1 Truncation

When we digitize the signal, we must truncate it to a finite duration T. The truncation window
IT(/T) and its spectrum are shown in Figure 12-20. Also shown are the truncated tunction
and its spectrum. Truncating f{) convolves its spectrum with a narrow sin(x)/x function.

- 1
Truncation window n(j) Spef:"um_ of sin(Ts)
truncation window 2
nls
L I s
T 0 T
2 2
. sin (s}
Truncated signal jmﬂ(#) Truncated signal |F(xth‘—'-”(‘%—
spectium '

-5, 0 S

Figure 12-20 Truncating the signal

12.6.2 The Sampling Aperture

The digitizer will have a finite-width sampling aperture over which the signal is averaged at
each sample point. As discussed in Chapter 9, this local averaging can be modeled by con-
volution with a suitable sampling aperture function. For an image digitizer, the sampling
aperture function models the spatial sensitivity of the scanning spot. Electrical signals are
usually sampled with a circuit that integrates over a fixed period.

In Figure 12-21, we model the sampling aperture with a smail rectangular pulse of
width 7. As shown in the figure, convolving the truncated signal with a sampling aperture
function multiplies the spectrum by a broad sin (x)/x function,

If the sampling aperture were, for instance, a Gaussian, the spectrum of the truncated
signal would be multiplied by a broad Gaussian. In either case. the effect of the sampling
aperture is to reduce the high-frequency energy in the signal. Notice in Figure 12-21 that at
frequencies beyond s = 1/7. the polarity of the energy will be reversed.
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Figure 12-21 Convolving the sampling aperture

12.6.3 Sampling

The sampling process is illustrated in Figure 12-22. The truncated signal, smoothed by
the sampling aperture, is multiplied by I (//Ar) to effect sampling. As illustrated, sam-
pling the signal makes its spectrum periodic by replicating the original spectrum at inter-
vals Ar.

12.6.4 Interpolation

Suppose we wish merely to interpolate the sampled function to regain f{(r) as well as pos-
sible. Figure 12--23 illustrates interpolation by convolution of the sampled function with a
triangular pulse. In the figure, the width of the triangular pulse is 21,

Convolving the sampled function with the interpolating function multiplies its spec-
trum by a function of the form sin®(x)/x> Since this function generally decreases with
increasing frequency. it tends to drive all replicas to zero, except for the primary replica
tocated at s = 0.

Recall that the ideal interpolating function is sin{x)/x, which multiplies the spectrum
by a rectangular pulse centered on s = 0. However, the triangular pulse of Figure 12-23 pro-
duces approximately the same effect
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Figure 12-22  Sampling the signai

If we denote by A7) the function obtained by interpolating the truncated sampled

function. then
= [ ¢ 0.yl ( i 1 /L)
h(1) = [{L/(”nT] Tﬂ( T)}lll Af)]*l()AL'O (46)

and its spectrum is

- sT) 7 s sin (7#s1g) 2
His) = [{[H.\‘) * /~———“";S”TY7) ’———“"7([.:? i } *A{III(SAI)][—_';SI; 0)} A7

12.6.5 The Effects of Digital Processing

Clearly, the question is not whether digital processing has an effect on the signal, but rather,
how much effect it has.

In the foregoing example, the sampling aperture and interpolating function were cho-
sen rather wide to demonstrate their effect. Specificalty, 7 = 7, = 2Ar. These parameters,
while arbitrary, normally should be chosen in proper relationship to one another. For exam-
ple. the sampling aperture should have width 7 roughly equal to the sample spacing Ar.
Also, for linear interpolation, £, = At.

Truncation convolves the spectrum with a narrow sin(x)/x. If the truncation window
is wide, 1ts spectrum becomes narrow. approximating an impulse, and this reduces its effect.
Also, if the function is already zero outside the window, truncation has no effect.
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Figure 12-23  Interpolating the sampled siznal

The sampling aperture, as illustrated in Figure 12-21. tends to reduce the high-
frequency energy in the spectrum. In so doing, it can reduce subsequent aliasing. The sam-
pling aperture can also reverse the polarity of the high-frequency energy it its transfer func-
tion goes negative.

Sampling, of course. makes the spectrum periodic. This produces aliasing of energy
above the folding frequency, 17241

Interpolation restores the spectrum to a single replica centered upon the origin. This
is done accurately, however. only if sin(x)/x is used as the interpolating function. Other
interpolating functions remove spectral replicas incompletely. reduce the high-frequency
energy content of the primary replica, or both.

The digitizing parameters usually result from the design of the digitizing equipment
The truncation window, for example, represents the maximum field of view of the image
digitizer, The sampling aperture is merely the sensitivity function of the scanning spot. The
sample spacing is often adjustable and should be setin relation to the spot diameter. For dis-
playing an image, the interpolating function is the display spot itself.

12.7 CONTROLLING ALIASING ERROR

There are two parameters that we can use to prevent aliasing from corrupting the informa-
tion that is of interest in the image: the sampling aperture and the sample spacing.
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12.7.1 The Antialiasing Filter

Figure 12-24 illustrates how one can use a rectangular sampling aperture to reduce aliasing.
The width of the aperture is twice the sample spacing. This places the first zero-crossing of
its transfer function at fy = 1/2As. Thus, energy at frequencies above fy (which is subject to
aliasing) will be attenuated severely.

ST T)

Figure 12-24 Reduction of aliasing with a rectangular aperture

The triangular sampling aperture used in Figure 12-25 is four sample points wide and
also has its first zero-crossing at fy. Since its spectrum dies out with frequency more rapidly
than that of the rectangular pulse. it is more effective against aliasing. Like the rectangular
pulse. however, it reduces the energy in F(s) below fy.

sin?imsty)

(msto)

! a
dra] [ 05 X .

Figure 12-25 Reduction of aliasing with a triangular aperture

In Figure 12-12, aliasing occurred because the CCD camera had significant gaps
between the pixels on its sensor chip. Thus, the sampling aperture (i.e., the sensor element)
was too narrow to act as an antialiasing filter and remove the high-frequency information
prior to sampling. In part (b), the camera was defocused slightly, and consequently the lens
served as an antialiasing filter.

12.7.2 Oversampling

Eqgs. (46) and (47) might appear to suggest that a continuous function cannot be processed
digitally without severe distortion and that our previous development has been in vain.
There is, however, a way out—by oversampling.
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If we make the sample spacing small, we can place fy far beyond the frequencies of
interest in the spectrum. Then, when aliasing contaminates the upper part of the spectrum.
it will have little or no effect upon the data of interest. As a rule of thumb, oversampling by
a factor of two is adequate for most applications, although an analysis should be performed
in each case.

Also, the truncation window should be large enough to produce minimum contami-
nation of the signal’s spectrum. By suitably oversampling, one can reduce aliasing and trun-
cation effects to any desired order of magnitude. The piper, of course, must be paid—in this
case with computer resources.

12.8 DIGITALLY IMPLEMENTED LINEAR FILTERING

Linear filtering can be implemented digitally in two different ways. First, the filtering oper-
ation implied in Figure 12-26 could be implemented by digital convolution of the sampled
function f(t) with A(#) to produce g(r).

Figure 12-26 A linear system

Alternatively, one could transform f(¢) and 4 () into the frequency domain with a
Fourier transform algorithm implemented by numerical integration. Then the output spec-
trum G(s) could be formed by multiplication and the output signal generated by an inverse
transformation.

If one or both of the convolution input signals are of short duration, then the method
of digital convolution is computationally simpler. Otherwise, efficient Fourier transform
algorithms make the second method more ;;raclical. In this section, we compare the two
approaches with respect to aliasing and truncation error.

12.8.1 Convolution Filtering

As noted before, sampling f() and h(r) makes their spectra periodic. If both signals are sam-
pled at the same interval Az, their spectra will be periodic with the same period, 1/Ar. Con-
volution of the sampled signals multiplies the two spectra in the frequency domain to form
G(s), which is also periodic with frequency As. When g(#) is interpolated, its spectrum is
reduced to a single replica at the origin, as in the previous discussion.

If either f(1) or h(r) is bandlimited below s = 1/2A¢, then g(#) will be similarly
bandlimited, and interpolation will reconstruct it exactly. Truncation, however, destroys
bandlimitedness, and some aliasing is unavoidable. This aliasing will express itself in g(#)
in a straightforward manner. Thus, digital convolution introduces no new effects beyond
those produced by sampling, truncation, and interpolation.

12.8.2 Frequency Domain Filtering

Figure 1227 illustrates what happens when we compute a Fourier transform. The input
signal f(t) is sampled to form x(¢), which has a continuous, periodic spectrum. When we
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Figure 12-27 Frequency domain filtering

compute the Fourier transform of x(), we actually calculate equally spaced points on the
primary cycle of its periodic spectrum, as illustrated in the figure.

We compute N points equally spaced every As over the frequency range from —1/2At
to 1/2At. We denote the computed spectrum by Y(s) because it is, in fact, not X(s), the spec-
trum of x(r).

Since Y(s) is sampled, its inverse transform y(1) is a continuous (unsampled) periodic
function of infinite duration. Thus, the computed spectrum Y(s) is not the spectrum of x(7)
or even that of f(1), the underlying unsampled function. It is instead the spectrum of a con-
tinuous periodic function having period 7. All the sample points of x () fall exactly upon the
primary cycle of ¥(1), und barring aliasing, the primary cycle of y(1) is exactly £(1), the func-
tion that was sampled to form «(¢).

By computing the spectrum of x (1) digitally, we have necessarily sampled that spec-
trum to produce ¥ (s). This in turn is the spectrum of a continuous periodic function y(7). We
now have, in the frequency domain, the equivalent of spectral replication, which we saw
before when we sampled in the time domain.

If we implement digitally the inverse transform, we can, of course, reclaim x(7) from
Y(s). If we then interpolate x(f), we can recover f(t). The fact that Y(s) corresponds to a peri-
odic function produces no ill effect in this case. If we implement digital filtering by modi-
fying the spectrum, however, the situation is not so simple.

Overlap of Replicated Spectra. Suppose we implement frequency domain
filtering by multiplying ¥(s) by some transfer function H(s). This convolves y(f) with the
impulse response A(f). Since v(1) is periodic, the convolution will tend to shift the adjacent
cycles down into the primary cycle in the vicinity of r = +T/2.

If hi1) is narrow and y(r) is approximately constant in the area about ¢ = 772, then this
overlap of adjacent cycles will have only a small effect. If x(1) is not equal at each end of the
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truncation window, however. then v (r) will have a discontinuity at r = //2. This produces an
artifactual discontinuity in the (periodic) function at each end of the truncation window.
Convolution with the impulse response 4 (1) then produces artifacts at both ends of the trun-
cation window by smearing over the discontinuity.

While the smearing effect at the ends of the truncation window cannot be avoided
completely. it can be reduced to tolerable levels (a) by making the truncation window wide
with respect to the important components of the signal, so that nothing of interest is dam-
aged. or (b) by arranging for x() to have equal amplitude at each end of the truncation win-
dow, so that little or no discontinuity appears when 1t becomes periodic. One can do this by
multiplying the truncated function by a windowing function. Such a function has unit ampli-
tude over most of the window, but tapers to zero at each end.

The smearing effect at the ends of the truncation window that is encountered in fre-
quency domain filtering is the frequency domain equivalent of the aliasing that results from
sampling in the time domain. When implementing linear filtering by using computed spec-
tra. one should perform an analysis to quantify the effects of the truncation.

12.9 SUMMARY OF IMPORTANT POINTS

1. The Shah function (impulse train) is its own Fourier transform |Eq. (2)].

2. Stretching and compressing the Shah function (similarity operations) alter the
strength of impulses |Eq. (8)].

3. Sampling a continuous function can be modeled as multiplication by the Shah
function,

4. A function that is bandlimited at frequency s, can be completely recovered from its
sample values if they are taken no farther than 1/2s, apart.

5. Undersampling causes aliasing, whereinenergy above the folding frequency (s= 1/2A1)
appears an equal distance below the folding frequency.

La

Truncation destroys bandlimitedness and makes aliasing unavoidable in digital pro-

cessing.

7. The effects of aliasing can be reduced to tolerable levels by oversampling. or by fow-
pass filtering prior to sampling.

8. Frequency domain filtering can produce a smearing effect near the ends of the trun-

cation window (i.¢., at the borders of an image).

PROBLEMS

1. Prove Eq.(2)

2. What would be the values of the sample points on the spectrum of the edge in Figure 12-18 if
they were computed at s, = (7 + ¥2)/T in Eq. (43)?

3. Sketch what Figure 12-1% would look like if f(x) = sign{(x - «) where u = T/8.

4. A signal is periodic with frequency f, =3 Hz. You wish to compute its spectrum to determine how
high in frequency its harmonics go. You know that it has already passed through a lowpass filter
that stops all energy above 48 Hz. What is the minimum number of samples, taken over what
period of time. that you could use to digitize this signal with critical sampling?
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5. Asignal is a cosine of frequency i = 0.22 Hz in a Gaussian envelope of amplitude 4 and standard
deviation ¢ = 10 seconds. centered on 1 = (). For truncation purposes, assume that the signal is
zero when its amplitude falls below 0.1 percent of its maximum value. How many samples over
what period would you take to digitize this signal (a) with critical sampling? and (b) oversam-
pling it by a factor of two? (¢) [f you use a digitizer that always takes 256 samples. will you have
an aliasing problem?

6. A signalis asine of frequency f, = 430 Hz in 4 Gaussian envelope of standard deviation o =20
msec, centered on £ = 0. For truncation purposes, assume that the signal is zero when its amplitude
falls below 0.1 percent of its maximum value. How many samples over what period would you
take to digitize this signal. oversampling it by a factor of two? With critical sampling?

7. Asignal is asine of frequency fiy = 250 Hz in an envelope of the form 4sech(mar). where « = 20
msec, centered on 2= 0. For truncation purposes. assume that the signal is zero when its amplitude
falls below 0.1 percent of its maximum value. How many samples over what period would you
take Lo digitize this signal, oversempling it by a factor ot two? With critical sampling?

8. A signalis (x/7) in a Gaussian envelope of amplitude 2 and standard deviation o, centered on
t=0. Here. 7= 100 msec and o = 500 msec. Sketch the signal and its spectrum.

9. A signal is WL/ 1) in a Gaussian envelope of amplitude 5 and standard deviation o. centered on
1= 0. Here, 7=3 msec and o= 2 msec. Sketch the signal and its spectrum.

10, A 35-mm negative is 24 mm by 36 mm. It contains alternating black and white bars spaced £ mm
apart in the 26-mm direction. You have a 640-by-480 pixel digitizer. (a} What is the smallest
pixel spacing with which you car. digitize the entire negative? (b) If the bars are sinusoidal and
D = 0.15 mm. can you digitize without aliasing problems? (¢) If /} = 0.3 mm, can you digitize
with 2x oversumpling? 3x oversampling? (d) If /> = | mm, and the bars are nonsinusoidal. can
you compute their spectrum to eight harmonics (1.e., 5, = 8x the frequency of the bars)?

PROJECTS

L. The marketing department of your company is proposing a new image-processing product
design that reduces the size of digital images by simply discarding rows and columns, You know
that the images will sutfer from significant aliasing ertor. Your upper-level manager {who thinks
aliasing means logging on under a phony user name) likes the earnings projections of the pro-
posed new product. There is a new-product review meeting in a few days. You have but one
opportunity to kill this ill-conceived design betore its high-profile failure in the marketplace
bankrupts your company. Most of your personal wealth is tied up in the company’s stock and
pension plans. You are the only one in the company who can see the danger. You must act
quickly and be convincing
Digitize an image containing a strong high-frequency pattern. Demonstrate aliasing by resam-
pling the image to half its size without using local averaging to prevent alissing. Sketch the MTF
of the image-digitizing system. On the same scale, mark the folding frequency before and after
resampling. Also. mark the frequency of the pattern before and after resampling. Write a shont
report explaining the theory behind the demonstrated phenomenon, relating it to the observed
eftects of aliasing and discussing what can be done to correct the problem after it has occurred
and how it can be prevented. Make a set of overhead projection transparencies. and present your
report to your colleagues. Good luck!

2. Locate an image-digitizing system (film scanner. CCD camera. etc.) in which the scanning spot
is, or can be set to be. significantly smaller than (roughly half of) the pixel spacing. Select an
object (or an image of an object) that contains a strong high-frequency pattern. First compute the
pinel spacing (at the object) at which aliasing of the pattern will just begin o occur, Thendigitize
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an image at0.5, 1.0, and 2.0 times that pixel spacing. Write a short report presenting your results.
Use the resalts to support a discussion of what pixct spacing should be used.

. Develop a gallery of examples of aliasing (similar to Figure 12-12) by resampling digital images

to smaller sizes by discarding rows and columns without focal averaging. Make the best image
into a photographic posteard, and send it to your friends. Write a brief report explaining what is
required to generate a good example of digital image aliasing.

. Locate an image-digitizing system (film scanner, CCD camera. etc.) in which the scanning spot

is, orcan be set 10 be, significantly smaller than the pixel spacing. Use the device to develop a gal-
lery of examples of aliasing. Make the best image into a photographic Christmas card. and send
it to the author. Write a brief report explaining what is required to generate a good example of
digital image aliasing.

. Use a mathematics program or write a program to implement frequency-domain lowpass filtering

in one dimension. Use the program to demonstrate smearing at the ends of the truncation window
on a function that differs in amplitude at each end of the window. Write a brief report describing
your illustration of the phenomenon.

. Select a digital image that exhibits significant differences in gray level between its right and left

borders and/or between its top and bottom borders. Use an image-processing system to imple-
ment lowpass filtering in the frequency domain. Create three examples using progressively more
severe lowpass filtering. Write a brief report illustrating the effect of smearing adjacent cycles.
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CHAPTER 13

Discrete Image Transforms

13.1 INTRODUCTION

The discrete Fourier transform (DFT), introduced in Chapter 10, is but one of a number of
discrete linear transformations that prove useful in digital image processing. In this chapter,
we examine the topic more generaily, developing several other transforms and some of their
properties and applications as well.

Images of interest normally occur in continuous form and must be viewed that way as
well. Since we are limited to working with a discrete representation of a continuous image.
much of digital image processing requires that we keep sampling and interpolation consid-
erations in mind while processing the discrete data. Some applications, however, allow us
to treat the digital image as a discrete entity, without particular regard for the history of its
origin or for the underlying continuous image.

One such application is image compression. Here, one wishes to encode an image into
a more compact data format, either with no loss, or with only a tolerable loss of information
content. Normally, considerations of optics, sampling, and interpolation, regarding the dig-
itization and display of the image, are not of immediate concern, and the digital image can
be treated merely as a data file.

A representation of an image is a particular embodiment of the data that defines the
image. It is a presentation of the image data in a particular form or format. A digital image
can be represented as a matrix or. with row stacking, as a vector.
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13.2 LINEAR TRANSFORMATIONS
13.2.1 One-Dimensional Discrete Linear Transformations

Definition. 1f x is an N-by-1 vector and T is an N-by-N matrix, then
Al
Vo= Zt"fxf or y = Tx [§}]
1=0
where i =0, . . ., N— | defines a linear transformation of the vector x. The matrix T is also
called the kernel matrix of the transformation. Note that this use of the word kernel is dif-
ferent from its use in the term convolution kernel discussed in Sec. 9.3.4.
The result of the transformation is another N-by-1 vector, y. The transformation is lin-
ear because y is formed by a first-order summation of the input elements. Each element y,
is the inner product of the input vector x with the ith row of T.

Example. A simpleexample of a linear transformation is the rotation of @ vector in
a two-dimensional coordinate system. (See Chapter 8.) Here,

N “‘ _ [cos(e) -sin (8) xJ 2
¥, [sin(8) cos (8) sz
rotates the vector x through the angle 6.

Inversion. After the transformation, the original vector can be recovered by the
inverse transformation

x=T'y &)
provided that T is nonsingular. As before, each element of X is an inner product, this time

between y and arow of T™'. For the foregoing example. this amounts to a rotation through
the same angle in the reverse direction.

13.2.1.1 Unitary Transforms

For a given vector length N, there are infinitely many transformation matrices T that could
be used. The more useful ones, however, belong to a class having certain properties.
If T is a unitary matrix, then

T' =T and TT* = TT*'T = I (€
where * indicates complex conjugation of each of the elements of T and the " indicates the
transpose operation. If T is unitary and has only real elements, then it is an orthogonal
matrix, and it follows that

T'=T and TT' =TT =1 (5)
Notice that the i, jth element of TT' is the inner product of rows i and j of T. Eq. (5) implies

that this is zero unless ( = j, in which case it is unity. Thus, the rows of T are a set of orthonor-
mal vectors.

Example: The onedimensional DFT. The one-dimensional DFT is ap exam-
ple of a unitary transform, since
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1 i
F, = \/_NZf,exp(—jZIZk[—v) or F = Wf (6)

i=0
where W is a unitary (but not orthogonal) matrix with (complex) elements

1 . i
Wik = Tﬁexp(—ﬂnkﬁ) 7

Interpretation. Normally, the transform matrix T is non-singular (i.e., rank(T) =
N), so as to make the transform invertible, as per Eq. (3). Then the rows of T form an
orthonormal basis (a set of orthonormal basis vectors, or unit vectors) for the N-dimensional
vector space of all N-by-1 vectors. This means that any N-by-1 sequence can be viewed as
representing a vector from the origin to a point in N-dimensional space. Furthermore, any
transform of the form of Eq. (1) can be viewed as a coordinate transformation, rotating the
vector in N-space without changing its length.

In summary, then, a unitary linear transformation generates y, a vector of N transform
coefficients, each of which is computed as the inner product of the input vector X with one
of the rows of the transform matrix T. The inverse transform is computed similarly, as a set
of inner products of the transform coefficient vector with the rows of the inverse transform
matrix.

The forward transformation is generally considered to be a process of analysis, break-
ing the signal vector down into its elemental components. These fundamental components
are naturally in the form of the basis vectors. The transform coefficients specify how much
of each component is found to be present irt the mixture that comprises the particular vector
being decomposed.

The inverse transformation. on the other hand. is often considered a process of syn-
thesis, reassembling the original vector from its components via summation. Here, the
transform coefficients specify the proper amount of each basis vector that must be added to
the mixture so as to reconstruct the input vector accurately and completely.

Akey to this process is the principle that any vector can be uniquely decomposed into
a set of normal basis vectors of the proper amplitude and fater reconstituted by adding these
components back together to reconstruct the original. It is significant that the number of
transform coefficients is equal to the number of elements in the vector. Thus, the number of
degrees of freedom is the same before and after the transformation, and information is nei-
ther created nor destroyed by thé process.

A transformed vector is a representation of the original vector. Since it contains the
same number of elements (and thus has the same number of degrees of freedom) as the orig-
inal, and since the original can be recovered from it without error, it can be considered an
alternative form of expressing the original vector. This chapter considers several alternative
ways of representing digital signals and images, and the usefulness of each.

13.2.2 Two-Dimensional Discrete Linear Transformations

In two dimensions, the general linear transformation that takes the N-by-N matrix F into the
transformed matrix G (also N by N) is
N-IN-
Gun = 3. Y FiiB0ikom ) 3]

i=04k=0
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where i, k, m, and n are discrete variables that range from 0 to N - 1 and 3(i, k, m, n} is the
kernel function of the transformation.

3(i, k. m, n) canbe thought of as an N°-by-N? block matrix having N rows of N blocks,
each of which is an N-by-N matrix. The blocks are indexed by m, n and the elements of each
N-by-N sub-matrix by i. k (See Figure 13-1.)

If 3, k, m, n) can be separated into the product of rowwise and columnwise compo-
nent funcions—that is, if

It k,mon) = T.(i, m)T.(k,n) 9)

then the transformation is called separable. This means that it can be carried out in two
steps—a rowwise operation followed by a columnwise operation (or vice versa):

N-1[N-1
Gun = 3, {Z F. T.(k, n)} T,(i, m) (10)

i=0Lk=0
Further, if the two component functions are identical, the transform is aiso called symmetric
(not to be confused with a symmetric matrix). Then

i k,m.n) = T4, m)T(k, n) (1
and Eq. (8) can be written as

N-1 N-1|
G = ZT(i,m)1 ZF,V‘T(k,n)} or G = TFT (12)
=0 Lk=0

where T is a unitary matrix, called the kernel matrix of the ransform, as before. We use this
notation throughout the chapter, tosignify a general, separable, symmetric unitary transform.
The inverse transform is

F=T'GT' = T¥GT¥ (13)
and it recovers F exactly.

Example: The Twodimensional DFT. The two-dimensional DFT is a separa-
ble and symmetric unitary transform. In this case, T in Eq. (12) becomes the matrix ‘W from
Eq. (7). i

The inverse DFT uses W', which is simply the corjugate transpose of “W. The dis-
crete Fourter transform pair is thus expressed as

G = WFW and F = W'GW* (14)
n=1 n=2 n=N

RIESl

mer| L

mes|| | |

P l
! I Figure 13-1 The kernel matrix
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13.2.2.1 Orthogonal Transformations

Unlike the Fourier transform, many transforms have only real elements in their kernel
matrix T. A unitary matrix with real elements is orthogonal, and the inverse transformation
becomes simply

F = TGT (15)
If T is a symmetric matrix, as is often the case, then the forward and inverse transforms are
identical, so that

G = TFT and F = TGT e

13.3 BASIS FUNCTIONS AND BASIS IMAGES

The primary difference between any two unitary transforms is the choice of basis functions,
that is, the rows of T. Here. we examine basis functions in more detail.

13.3.1 Basis Functions

The rows of the kernel matrix form a set of basis vectors for an N-dimensional vector space.
The rows are orthonormal; that is,

N-i
TT* = I or Z T, T*.i = &4 a7
i=0
where § is the Kronecker delta.

While any set of orthonormal vectors will serve for a linear transform, normally the
entire set is derived from the same basic functional form. The Fourier transform, for exam-
ple, uses the complex exponential as its prototypical basis function. The individual basis
functions differ only in frequency.

Any vector in the space can be expressed as a weighted sum of unit-length basis vec-
tors. Any one-dimensional (N-by-1) unitary transform, then, corresponds 1o a rotation of a
vector in an N-dimensional vector space. Further, since an N-by-N image matrix can be row-
stacked to form an N2-by-1 vector, any two-dimensional, symmetric, separable unitary
transform corresponds to a rotation of a vector in an N>-dimensional vector space.

13.3.2 Basis Images

The inverse two-dimensional transform can be viewed as reconstructing the image by sum-
ming a set of properly weighted basis images. Each element in the transform matrix, G, is
the coefficient by which the corresponding basis image is multiplied in the summation.

A basis image can be generated by inverse transforming a coefficient matrix contain-
ing only one nonzero element, which is set to unity. There dre N2 such matrices, and these
produce N2 basis images. Let one such coefficient matrix be

GP ={8_,; .} (18)
where i and j are the row and column indices and p and q are integers that specify the loca-
tion of the nonzero element. Then the inverse transform [Eq. (13)] is

286 Discrete Image Transforms Chap. 13

| TN 1
Froa = Zl"ii. m); Zﬁ, ,,,“,,q'l"(k.n)‘ = Tip,myTq.n 119
i=0 [ g
Thus, for a separable unitary transtorm, each basis image is the outer product of two rows
of the transtorm matrix.

As with one-dimensional signals. the basis images can be thought of as a set of basic
components into which any image can be decomposed. They arc also the building blocks
from which any image cun be reassembled. The forward transforin does the decomposition
by determining the coefficients. The invene transform does the reconstitution by summing
the basis images, weighted by those coefficients

Since infinilely many sets of basis images exist. infinitely many transforms exist as
well. Thus, a particular set of basis images takes on profound imrportance only in the context
of a particular transform.

13.4 SINUSOIDAL TRANSFORMS

For reasons mentioned in Chapter 10. the Fourier transform has emerged as the single most
important transform in digital imaging. It has, however, several relatives that also use sinu-
soidal basis functions. These are introduced in this section. after a brief review of the dis-
crete Fourier transform.

13.4.1 The Discrete Fourier Transform

Introduced in Chapter 10, the DFT is considered again here. in the context of separable uni-
tary transforms, to enable us to draw comparisons between it and other transforms of the
same type.

The kernel matrix for the DFT {recall Egs. (6) and (7)} s

woqo e Wonod
W = : (20)
WA o Wy ne
where
| -1 "% k)
Wi = ﬁe (21)
Because of the periodic nature of the imaginary exponential. "W is unitary.
In one dimension, the forward and inverse DFTs are
F = Wf and f= W*F 22)

where f and F are N-by-1 signal and spectrum vectors, respectively. If fis real, F will. in
general, have complex elements. Only if fhas the proper symmetry (discussed next) will F
be real.
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13.4.t.1 The Spectrum Vector

Figuere 5 3-2 shuws where the different frequency components occur in the spectrum vector
F. wrien fis real. The cero-fregaency component and the highest frequency component
(corresponding to the Nyquist frequency) appear only once. The remaining components are
duplicated as complex conjugates. (Recall that the spectrum of a real function is a Hermite
function.) Iif F' is viewed as a row vector, the first N/2 + 1 elements are the right half of the
spectrum, while the last M2 - | elements are the left half. The frequency corresponding to
the ith element of F is
[ %f\, 0<isN2
s, = Rk}

i
*_(’_‘jv-‘)_/,v NR+1SisN-1

where fy is the Nyquist (folding) frequency (haif the sampling frequency). If the last /2 — |
elements of f form a mirror image of elements | through N/2 - 1, then F is even, and F will
be real-valued.

0 N i ; N {N My
%2 b : 2 "2 Figure 132 Locaton o th
wgure 13 ation of the
[T r T r l ] l i i l dit%'erenl frequency components in the
(U i—» N, N1 spectrum vector

One can rotate the elements of F by the amount N/2, using a circular right (or left) shift
operation, 10 produce a vector suitable for plotting the spectrum. In that case, the zero-
frequency element is located at N2, and frequency increases in both directions from there.
The Nyquist frequency element appears only at Fy,.

The shift theorem of the Fourier transform (Sec. 10.2.3) provides another way of
achieving the same result, Applying the theorem to a shift in the frequency domain yields

Fu) e fx)=> Flu Aq,)c:«exp(/ZmN fx) 24)

= exp (Jay) flx) = (-1)'f(x)
where the amount of shift is &, = N/2. This means that we have merely to change the signs
of the odd-numbered elements of f(x) prior to executing the DFT. Doing so leaves the spec-
trum properly shifted for plotiing.

13.4.1.2 The Two-Dimensional DFT
In two dimensions. the forward and inverse DFTs are
G = WFW and F = W GW* (25)
where F is an image in matrix form and G is its spectrum matrix.
Figure 13-3 shows where the various spatial frequency terms are located in the spec-

trum matrix G. Rearrangement of the four quadrants, as shown in the figure, makes
displaying the spectrum more convenient. That way, zero frequency falls at the center of
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._'_Fn 0
1 4
9 3 Figure 13-3  Location of the various
spatial frequency terms in the spectrum
matrix: (a) after transformation; (b)
(a) (b) after rearrangement

the matrix, and frequency increases radially from there. In two dimensions, Eq. (24)
generalizes to

Fu,vye f(uyv) =2 Fu-N2. v-N2)ye (-1 f(x, v) (26)

and again, changing the sign of half the elements of the image matrix F effects the desired
shift. If F has the symmetry shown in Figure 13-3(a), then G will be real valued.

13.4.2 The Discrete Cosine Transform

The discrete cosine transform (DCT) is defined in two dimensions as

~IN-1
_ . n2i+ )ym 2k + )n
G.(m, n) = a(m)a(n) %kzog(t, k)cos[ N }cos[ N j| Q7
and its inverse by
o 2i+1) A2k +1)
. _ i m n
gli, k) = ZO zz)a(m)a(n)G((m, n)cos{ 7N }cos[ N ] 28)
where the coefficients are
a(0) = */1% and a(m) = A/% for l<m<N 29)
Like the DFT, the DCT can be expressed as a unitary matrix operation in the form
G, = CgC (30)
where the kernel matrix has elements
C,.m = a(m)cos [——L”(Z;Vl m] (K1Y

Also like the DFT, the DCT can be computed by a fast algorithm [1-3]. Unlike the DFT, the
DCT is real valued. It has found wide usage in image compression, for reasons pointed out
later in the chapter.

13.4.3 The Sine Transform

Jain [4] introduced the discrete sine transform (DST), defined as
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L N-IN-I »
G, (m n) = 7»7%712 Zg(i,k)sin["“ */J):';'* ”J sin{"‘k+ Din+ ')} i32)

N+
i=Uk=0
and
2 e i+ (m + 1) "k + D+ 1)
ik) = —— g i 33
¢Ui k) N+IZZG‘("1‘")Mnli 1 ]sm[ N } (33)
we=the =
The DST has unitary kernel matrix elements
S n(i+l)k+])} (34)
T ANT T N+ )

Unlike the other sinusoidal transforms, the DST is most conveniently computed for N =27
— 1, where p is an integer. Then it can be taken as the imaginary part of a specially con-
structed (2N + 2)-point FFT |5].

The DST has a tast implementation algorithm |6} and properties that prove usetul in
certain image compression problems, as discussed later in the chapter.

13.4.4 The Hartley Transform

In 1942, Hartley introduced a continuous integral transform as an alternative to the Fou-
rier transform (7). Bracewel! later defined an-analogous discrete unitary transform based
on the Hartley transform {8]. The forward two-dimensional discrete Hartley transform
(DHT)

NeaN-]
) J 2r,.
Gu = F/z EX,.A Ca-‘[ﬁ(:m + kn)] (35)
i=Dh=0
and the inverse two-dimensional DHT
' A-tN ) /’](

Bt = Z 2 Guu uas[:ﬁ(im + ku):l (36)

= On= ()

are identical and use the bastis function

cas (8) = cos (8) + sin(8) = /2 cos (8- m/4) 37
which is a cosine shifted 45 degrees to the right.
The kernel matrix of the Hartley transform has elements

T, = /Lﬁ[cas( 2::'-3)] (38)

Py
Whereas the DFT transforms N real numbers into N complex numbers with conjugate sym-
metry, the discrete Hartley transform produces N real numbers.

As one might expect, the DHT is closely related to the DFT. In Chapter 10, we saw
that the Hartley transform is simply the real part minus the imaginary part of the correspond-
ing Fourier transform. Likewise, the Fourier ransform is the even part minus J tirnes the odd
part of the Hartley transform.
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The convolution theorem of the Hartley transform is only slightly more complicated
than that of the Fourier transform. It is expressed as

g(x) = f(x)*h(x)= G(v) = F(VH(V)+ F(-V)H (V) (39)

where F(v) and G(v) are the Hartley transforms of f(x) and g(x), respectively, and H,(v)
and H,,(v) are the even and vdd components, respectively, of the Hartley transform of A (x).
(See Sec. 10.2.1 for a definition of even and odd components.)

In the common case where one of the functions is even, the second term of Eq. (39)
drops out. and convolution corresponds to muitiplication in the Hartley transform domain,
Jjust as it does with the Fourier transform in the frequency domain.

The DHT is a computational alternative to the DFT. There is a fast algorithm for the
Hartley transform [9]. For linear filtering applications—particularly if the kernel is symmet-
ric—the DHT can significantly reduce the computational work load, since it avoids complex
arithmetic.

13.4.5 Other Sinusoida!l Transforms

Jain [ 10] has introduced a family of unitary transforms having sinusoidal basis functions.
The DFT, the DCT, and the DST belong to this family.

13.5 RECTANGULAR WAVE TRANSFORMS

Several transforms of interest in discrete image processing use basis functions that are vari-
ations of the square wave rather than sinusoids. In general, these are fast to compute, since
many of the multiplication operations become trivial.

In this section, we introduce the Hadamard, Walsh, slant, and Haar transforms. The
Haar transform differs fundamentally from the other three, and it is discussed further. in the
context of wavelet transforms, in the next chapter.

13.5.1 The Hadamard Transform

The Hadamard transform {11-15] is a symmetric, separable unitary transformation that has
only +1 and —1 as elements in its kernel matrix. It exists for N = 2", where n is an integer.
For the two-by-two case, the kernel matrix is

1 T
—H, = — 40
2 fz[l AJ

and for successively larger N, these can be generated from the block matrix form

1 I _{Hyn Hyp
—=Hy = —= : @n
SN JX’!:HN/Z -Hup

For any size N = 2", the matrix contains only elements that are +1, provided that the N ~'"
factor is kept out in front. This makes the transform less expensive to compute.
For N =8, for example, the Hadamard kernel matrix is
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[ A
=1 1 -1 1-1 1-1}7
I -1 -1 1 1=-1-t3
HK=L,_1_1 -t -1 -1 1) 4 42)
PN B N B B e I |
I -1 1 -t-1 1-1 176
I 1 -1 -t-t-t 1 12
g-1r-1 1-1 1 1-1]5

where the column to the right shows the number of sign changes along the corresponding
row. Notice that these are different for each row. This sign change count is called the
sequency of the row |16}

We can reorder the rows to make sequency increase uniformly with row number,
much as frequency increases with the Fourier kernel. This yields a transform that is
somewhat easier to interpret. The kernel of the ordered Hadamard transform, for N = 8,
is thus

TR T T U T T
N T S S U S R
I ol-l =l =11 1 1
L=l =1 1 1-1-1
=l -1 1 11 -t 1
=l -1 1-1 1 1-1
1
I

W N - O

(43)

S R R
-1 11 1-1 -1

~N N h

13.5.2 The Walsh Transform

The Hadamard transform basis functions are actually Walsh functions { 17]. Thus, the Had-
amard transform is also referred to as the Walsh transform.

13.5.3 The Slant Transform

The slant transform [18] was designed to have not only a constant first basis function, but
a linear second basis function as well (Figure 13-4). The slanted second basis function
matches the linearly sloping background that is present in many images.

The unitary kernel matrix for the slant transform is obtained by starting with the two-
by-two Haar or Hadamard matrix

L
Sy = — (44)
ﬁ{l 4]

and iterating it according to the schema
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[

(45)
where I is the identity matrix of order N2 — 2 and
IN? N -]
asy = and byy = [——— (46)
W ANt M NaNT T

The slant transform basis functions occur in all sequences from 0 through N - 1. The
slant transform also has a fast transform algorithm and has been used for image compres-
sion [18].

13.5.4 The Haar Transform

The Haar transform is a symmetric, separable unitary transformation that uses Haar func-
tions for its basis [19-21]. Tt exists for N = 2", where n is an integer.

Whereas the Fourier transform basis functions differ only in frequency, the Haar
functions vary in both scale (width) and position. This gives the Haar transform a dual
scale-position nature that is evident in its basis functions (Figure 13-5). Such a feature
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Figure 13-5 The Haar transform
basis functions for N = 8

IS
[ES

distinguishes it from the other transforms mentioned so far and establishes a starting point
for wavelet transforms, which are introduced in the next chapter.

Basis Function Indexing. Since the Haar functions vary in two aspects (scale
and position), they must be specified by a dual indexing scheme. The Haar functions are
defined on the interval [0, 1] as follows. Let the integer 0 <k £ N - 1 be specified (uniquely)
by two other integers, p and g, as

k=2"+qg-1 47
Notice that, under this construction, not only is k a function of p and g, but p and ¢ are func-
tions of k as well. For any value of k > 0, 27 is the largest power of 2 such that 2" < k, and

g — | is the remainder.
The Haar functions are defined by

1
h ().’) = — (48)
! JN
and
!
-1 973
202 = <x<
2P 27
1
hy(x) = — 1 (49)
& I -3
¥R __foxcd
o 20
0 otherwise

Ifweletx=iNfori=0.1,..., N~ this gives rise to a set of basis functions, each of which
is an odd rectangular pulse pair, except for k = 0, which, as in the case of many of the other
transforms discussed here, is constant. Further, the basis functions vary in both scale

294 Discrete Image Transforms Chap. 13

(width) and position (Figure 13-5). The index p specifies the scale, while g determines the
shift.

Whereas the transforms discussed so far use full-width basis functions, the Haar func-
tions are all scaled, shifted versions of a single “prototype™ function, the odd rectangular
pulse pair. There are two major ramifications of this property.

First, although the basis functions are identified by the single index k. they have a dual
scale-position nature that is specified by the indices p and ¢. Thus, it is less enlightening to
plot the transform coefficients along the k-axis than it would be, for example, to plot a con-
ventional frequency spectrum obtained with the Fourier transform.

Second, suppose a particular feature, such as an edge. is embedded jn the signal at
some position along the .x-axis. The Fourier transform, for example, encodes this position
into the phase spectrum in accordance with the shift theorem (Sec. 10.2.3). While the fea-
ture position is uniquely specified and can be recovered exactly via the inverse Fourier
transform, it may not be particularly visible in any convenient display of the spectrum.
(Nore: If a single feature dominates the signal, then the phase plot will be linear. with slope
related to feature position (as per the shift theorem), and this can be used to locate the fea-
ture. A multiplicity of features or the presence of noise, however, normally makes the phase
plot so complicated as to be uninterpretable.)

By contrast, the Haar transform addresses lines and edges more directly, since its
basis functions resemble these features. Recall that a signal, or a component thereof, which
approximately matches one of the basis functions will produce, in the transform, a large
coefficient corresponding to that basis function. Since the basis functions are orthonormal,
that signal will produce small coefficients elsewhere. Thus, the Haar transform can call
attention to specific line and edge features by their size and location.

The eight-by-eight unitary kernel matrix for the Haar transform is

U S N R T R TN
I T T T R T R
N2L2-2-200 0 0
Hr:_‘- 00 0 Oﬁﬁ—ﬁ—JE (50)
Bla2 0 000 0 o
00 2 200 0 0
00 0 02-2 0 0
00 0 000 2 2|

and the same pattern holds for larger N. Because of the many constant and zero entries in the
matrix, the Haar transform is very fast to compute.

The basis images for N = 8 appear in Figure 13-6. Notice that the lower right quadrant
searches for small features at all different locations in the image.

13.6 EIGENVECTOR-BASED TRANSFORMS

Two important transforms use basis functions that are derived from eigenanalysis. (For a
more complete summary of eigenanalysis. with numerical examples, see Appendix 3.)
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13.6.1 Eigenanalysis
Recall that for an N-by-N matrix A, there are N scalars, 4., k=0, ..., N - 1. such that
A-A41 =0 (51
The A;’s are called the eigenvalues of the matrix. (See Appendix 3.) Further, the set of N
vectors v; such that
Av, = Lv, (52)

are called the eigenvectors of A. They are N by |, and each corresponds to one of the eigen-
values. The eigenvectors form an orthonormal basis set.

13.6.2 Principal-Component Analysis

Hotelling developed a linear transformation that removes the correlation among the ele-
ments of a random vector and called it “the method of principal components” [22]. Later.
Karhunen {23] and Loéve [24] developed an analogous transformation for continuous sig-
nals. This approach leads to. among other things, a discrete image transform.
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Suppose x is an N-by-1 random vector; that is, each element x; of x is a random vari-
able. The mean vector of x can be estimated from a sample of L such vectors by

L
1
my = zz X; (53)
I=1
and its covariance matrix by
. L&
Cx = &{{x-m)(x-my)'} = 7 3 %%~ m,m] (54)

=1
The covariance matrix is N by N, real, and symmetric. The diagonal elements are the variances
of the individual random variables, while the off-diagonal elements are their covariances.
Now let the matrix A define a linear transformation that generates a new vector y from
any vector x by

Yy = A(x~my) (55

where A is constructed so that its rows are the eigenvectors of C,. For convenience, we
arrange the rows in order of decreasing magnitude of the corresponding eigenvalues.

The transformed vector, y, is a random vector with zero mean. Its covariance matrix
is related 1o that of x by

C, = ACA’ (56)

Since the rows of A are eigenvectors of C,, C, is a diagonal matrix having the eigenvalues
of C, along its diagonal. (This is a result of Eq. (52).) Thus,

A O
Cy=| - &)
0 Ay
and the A, are the eigenvalues of C, as well.

Because the off-diagonal elements of C, are zero, the elements of y are uncorrelated.
Thus, the linear transformation A removes the correlation among the variables. Further-
more, each A, is the variance of y;, the kth transformed variable.

Notice that the transform of Eq. (55) is invertible; that is, we can reconstruct a vector
x from its transformed vector y by

x=Aly+m = A'y+m (58)
The latter equality holds because A is unitary and real, and thus orthogonal.
13.6.2.1 Dimension Reduction

We can reduce the dimensionality of the y vectors by ignoring one or more of the eigen-
vectors that have small eigenvalues. Let B be the M-by-N matrix (M < N) formed by dis-
carding the lower N — M rows of A, and assume, for simplicity, that m = 0. Then the
transformed vectors are smaller (i.c., M by 1) and are given by

¥ = Bx (59)
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but the x vectors can still be reconstructed (approximately) by

X = BYy (60)
The mean square error of this approximation is
N
MSE = 2 A (1)
k=Mst

that is. simply the sum of the eigenvalues corresponding to the discarded eigenvectors. Nor-
mally the eigenvalues vary considerably in magnitude, and the smaller ones can be ignored
without the introduction of significant error.

13.6.3 The Karhunen-Loéve Transform

Eg. (55) defines a (one-dimensional) discrete transform. It is variously called the Karhunen-
Loéve (or K-L) transform, the Hotelling transform, the eigenvector transform, or the
method of principal components. We adhere to the common practice in the literature of call-
ing it the K-L transform.

The dimension-reducing capability of the K-L transform makes it quite useful for
image compression. Multispectral images, for example, have many gray-level values at
zvery pixel, each gray-level corresponding to a different spectral band. Thus, a 1,000-by-
1,000 24-channel multispectral image can be viewed as a set of one million 24-element ran-
dom vectors (i.¢., the pixels).

The K-L dimension-reducing technique can be applied to this set of vectors. Since the
correlation between the different spectral bands of a multispectral image is commonly
rather high, many of the 24 eigenvalues will be small. This means that the stack of 24 mono-
chrome images can be represented with small error by only a few principal component
images. Each of these is computed as a weighted sum of the original 24. Further, each image
in the original set can be reconstructed, approximately, as a linear combination of the few
principal-component images. This greatly simplifies the storage and distribution of, for
example, images taken from Earth satellites.

In general, the basis images of the two-dimensional K-L transform depend upon the
statistics of the particular image being transformed and cannot be written explicitly. If the
image is a first-order Markov process, however, where the correlation between pixels
decreases linearly with their separation distance, then the basis images for the K-L trans-
form can be written expliciily [5,25]. The Markov assumption often fits commonly encoun-
tered images quite well, Further, as the correlation between adjacent pixels approaches
unity. the K-L basis functions approach those of the discrete cosine transform [1,26]. Thus,
the DCT, which is casily computed, approximates the K-L transform for commonly
encountered images.

13.6.4 The SVD Transform
Any N-by-N matrix A can be expressed as

A = UAV' (62)

where the columns of U and V are the eigenvectors of AA’, and A’A respectively, and A is
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an N-by-N diagonal matrix containing the singular values of A along its diagonal. (See
Appendix 3 for more complete coverage of the topic.) Since U and V are orthogonal,

A = U'AV (63)
Eq. (63) is thus the forward, and Eq. (62) the inverse. of a unitary transform pair. This trans-
form is called singular value decomposition (SVD) transform [27]. If A is symmetric, U= V.

Notice that, unlike the transforms discussed in earlier sections, the kernel matrices U
and V depend on the image A being transformed. In general, one must compute the eigen-
vectors of AA’ and A'A for each image undergoing the transformation.

Notice also that since A is a diagonal matrix, it has at most N nonzero elements. Thus,
we get lossless compression by at least a factor of N, and it will be greater than that if A has
some zero (or negligible) singular values. Hence, the additional computation brings with it
significant data compression.

Normally, several of the singular values are small enough to be ignored with little
error. Thus “lossy” compression is achieved by ignoring the smaller A;; values. The mean
square error that results from this truncation is simply the sum of those singular values that
are ignored.

The apparently miraculous compression power of the SVD transform is somewhat
misleading. Although the entire image can be compressed into the diagonal elements of A,
the kernel matrices U and V are unique for the image being compressed. These would have
to be transmitted, along with the image, before reconstruction could occur at the receiving
end. Possibly, however, one pair of kernal matrices could serve (approximately) for a group
of similar images.

A Numerical Example. The SVD transform is illustrated in Figure 13-7, using
a symmetric five-by-five pixel image.

210 6 14 18 14 6 147.07 0186 0638 0.241 0695 0.695
431 14 36 48 36 14 1872, 0476 0058 -0.52 -0.133 -0.128
S 4 20 AA= [18 48 65 48 18| A=|0058 | U=|0691 -0422 0587 0 0
431 14 36 48 36 14 0 0476 0058 -0.52 0.133 0.128
210 6 14 18 14 6 0 0.186 0638 0241 0.695 0.695
12585 0 0 00 01 21 0
0 1142 0 00 13 4 3
A=UAU= |0 0 0557 0 0 A=UAU= |2 4 6 4 2
0 0 0 00 13 4 3
io 0 0 00 01 210

Forward transform Inverse transform

Figure 13-7 The SVD transform of a symmetric five-by-five pixel image
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13.7 TRANSFORM DOMAIN FILTERING
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In Chapter 10, we saw that linear filtering—the action of a linear, shift-invariant system-—
can be modeled as a multiplication of the Fourier spectrum of an image by a transfer func-
tion defined in the frequency (i.e., transform) domain. While this important resuit is true
only for the Fourier transform, analogous image-filtering operations can be defined for
other transforms as well.

Like the Fourier transform, the general unitary transform expands an image as a
weighted sum of basis tmages. The forward transformation process determines the weight-
ing coefficients, while the inverse transformation reassembles the image from the expan-
sion of the basis images.

Transform domain filtering involves modification of the weighting coefficients prior
to reconstruction of the image via the inverse transform. With linear filtering, the transform
is the Fourier transform, and the modification is effected by multiplying the spectrum by a
transfer function. In the more general filtering case, the coefficient matrix is modified (by
multiplication or other means) and the inverse transform produces the filtered image.

Clearly, it is the nature of the basis vectors (and of the resulting basis images) that estab-
lishes the different behavior of the various transforms. For example, sinusoidal noise contam-
ination appears very compactly in the transform domain of a sinusoidal transform (recall
Figure 10-8) and is thus easily removed by setting the corresponding coefficients to zero. The
rectangular-wave transforms would be less well suited for this noise removal problem, since
the contamination would not be as separable from the signal in their transform domains.

[n general, if either the (desirable) signal components or the (undesirable) noise com-
ponents of the image resemble one or a few of the basis images of a paticular transform,
then that transform will be useful in separating the two. This is because those components
will be represented compactly in the transform domain. The general statement applies to
problems of noise removal and signal detection as well.

The Haar transform, for example, is a good candidate for detecting vertical and hor-
izontal lines and edges, since several of its basis images specifically match such features.

13.7.1 Edge, Line, and Spot Detection

Figure 13-8 illustrates the edge-detecting ability of the Haar transform on an eight-by-eight
image. Since the transform is separable, an image feature that is a vertical or horizontal line

) D Y S R | / 2 9.0 0 0 0 00

11 1 11 \ 2 O 00 0000

00000 — : 2830 0 0 00 00O

000 00 0 000 00 00

00 000 0 0000000

006000 0 0000000

00000 0 0O 00 00 00

00 000 10 000 00 0«

Figure 13-8 Edge detection inan

Image Harr transform eight-by-eight image
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or edge produces nonzero entries in only the first row and the first column of the transform
image, respectively.

In the Haar transform, the feature produces at most N/2 non-zero entries. The position
of the feature determines which (and how many) of the entries are nonzero. In the other
transforms, all N entries of the first row or column are, in general, nonzero.

Figure 13-9 shows several transforms of an image containing a single-pixel spike
(impulse). All N2 elements of these transforms are nonzero except for those of the Haar
transform, which has only 2N nonzero entries. Again, the location of the nonzero entries is
determined by the position of the spike.

Sine Cosine
\
) 1.0.
(a} (b)
Hadamard Harr
10 [
S
(c) (d)

Figure 13-9  Transforms of an image containing an impulse: (a) DST; (b)
DCT; (c) Hadamard: (d) Haar. The input is an eight-by-eight matrix, zero
everywhere except the upper left element, which has value eight

13.7.2 Filter Design

Because of its close association with shift-invariant linear systems, the Fourier transform
has a well-developed theoretical background to guide its use in image-filtering applications.
The other transforms are less well supported in theory, and their use is often more experi-
mental. An understanding of the similarities and differences among these transforms helps
guide the search for workable solutions.

13.8 SUMMARY OF IMPORTANT POINTS

1. The rows of an N-by-N transformation matrix are a set or orthonormal basis vectors *
for an N-dimensional vector space.
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2.

A unitary linear transformation generates a vector of N transform coefficients, each of
which is the inner product of the input vector with one of the rows of the transform
matrix.

3. The inverse transform is formed similarly, by inner products of the transform coeffi-

cignt vector with the rows of the inverse transform matrix.

. The inverse transform can also be viewed as forming a weighted summation of the

basis vectors, where the transform coefficients are the weights. .

. For a two-dimensional symmetric, separable unitary transformation, the basis images

are the outer products of the rows of the transform matrix.

PROBLEMS

1.

PROJECTS
1.

The eigenvalues of an ¢ight-channel multispectral image are (6.1 168 0.08 13 64 214 1.20.2).
What will be the RMS error if you use principal component analysis for 2:1 data compression?

. Design an 8 by 8 Haar transform filter mask that will remove small horizontal edges from an

image.

Develop a program that implements the discrete cosine transform, and use the program to dem-
onstrate highpass filtering for image enhancement.

. Develop a program that implements the discrete Hartley transform, and use the program to dem-

onstrate lowpass filtering for noise reduction.

. Develop a program that uses principal-component analysis to reduce a 24-bit-per-pixel color

image to a 16-bit-per-pixel representation and back. Produce demonstration images, and com-
ment upon the resulting degradation.

. Develop a program that implements the slant transform, and use the program to demonstrate the

removal of linear shading.

. Develop a program that implements the Haar transform, and use the program to show the edges

in an image.
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CHAPTER 14

Wavelet Transforms

14.1 INTRODUCTION

Considerable interest has arisen in recent years regarding new transform techniques that
specifically address the problems of image compression. edge and feature detection. and
texture analysis. These techniques come under the headings of multiresolution analysis.
time-frequency analysis. pyramid algorithms, and wavelet transforms [1].

In this chapter. we review some of the limitations of the traditional Fourier and similar
transforms and define three types of wavelet transforms that promise improved perfor-
mance for certain applications. We trace some of the developments that have led to the cur-
rent state of wavelet analysis, noting the similarities that tend to unify these different
approaches under the banner of wavelet transforms. Later in the chapter, we illustrate some
of the applications of wavelet transforms.

We restrict ourselves to transforming real-valued, measurable, square-integrable
functions of one and two dimensions. since these encompass the signals and images that are
of interest to us. As before. we introduce each concept in one dimension for simplicity and
then generalize it to two dimensions for application to images. We begin by introducing the
three basic types of wavelet transforms. Then we illustrate some particular wavelets and
some applications of wavelet transforms.

14.1.1 Waves and Wavelets

Recall that the Fourier transform uses, as its orthonormal basis functions, sinusoidal waves,
so called because they resemble the waves of the ocean and propagating waves in other
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media. For the integral transform, these functions extend to infinity in both directions. The
basis vectors of the discrete Fourier transform are also nonzero over their entire domain;
that is, they do not have compact support.

By contrast, transient signal components are nonzero only during a short interval.
Likewise, many important features in images (edges, for example) are highly localized in
spatial position. Such components do not resemble any of the Fourier basis functions, and
they are not represented compactly in the transform coefficients (i.e., the frequency spec-
trum), as discussed subsequently. This makes the Fourier and other wave transforms, such
as those mentioned in the previous chapter, less than optimal representations for compress-
ing and analyzing signals and images containing transient or localized components.

In fairness, we note that the Fourier transform can represent any analytic function—
even a narrow transient signal—as a sum of sinusoids. It does this, however, by intricately
arranging for the cancellation of sine waves (by destructive interference) to create a func-
tion that is zero over most of the interval. This is, of course, a valid way for an invertible
transform to behave, but it leaves the spectrum a rather confusing picture of the function.

To combat such a deficiency, mathematicians and engineers have explored several
approaches using transforms having basis functions of limited duration. These basis functions
vary in position as well as frequency. They are waves of limited duration and are referred to
as wavelers. Transforms based on them are called waveler transforms. They are also called
ondelettes in the considerable amount of French-language literature on the subject.

Figure 14-1 illustrates the difference between waves and wavelets. The top two
curves are cosine waves that differ in frequency, but not in duration. The lower two are
wavelets that differ in both frequency and position along the axis.
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- L 1 1 I 5t n Figure 14-1 Waves and wavelets

The Haar transform (see Sec. 13.5.4) is the earliest example of what we now call a
wavelet transform (2). It differs from the other transforms in Chapter 13 inthat its basis vec-
tors are all generated by translations and scalings of a single function. The Haar function,
which is an odd rectangular pulse pair, is the oldest and simplest wavelet.

14.1.2 Time-Frequency Analysis

The literature on signal processing includes considerable work regarding analyzing signals
in terms of a two-dimensional time-frequency space. This approach actually preceded
wavelet transforms, but it now fits into the same modern framework. According to it, each
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transient component of a signal maps to a position in the time-frequency plane that corre-
sponds to that component's predominant frequency and time of occurrence (Figure 14-2).

2 L L T T L
. 1

amplitude

0

-1

-2

frequency - i Figure 14-2 Time-frequency space:
(o) (a) signal; (b) representation

In image analysis, the space is three dimensional and can be viewed as an image stack.
A localized component will appear primarily at the level in the stack that corresponds to the
component’s predominant frequency. Figure 14-3 shows an image containing two local-
ized components being submitied to two bandpass filters. In this case the two filters almost
completely isolate the twe components.

This approach began with Gabor's [3] windowed Fourier transform, and led to the
short-time Fourier transform (STFT) and then to subbard coding.

14.1.2.1 Wavelets and Music

Consider the musical notation shown in Figure 14—4. It can be viewed as depicting a two-
dimensional time-frequency space. Frequency (pitch) increases from the bottom of the scale
to the top, while time (measured in beats) advances to the right. Each note on the sheet
music corresponds to one wavelet component (tone burst) that would appear in the record-
ing of a performance of the song. The duration of each wavelet is coded by the type of note
(e.g., quarter note, half note, etc.), rather than by its horizontal extent.

If we were to analyze a recorded musical performance and write out the correspond-
ing score, we would have a type of wavelet transform. Similarly, a recording of a musician’s
performance of a song can be viewed as an inverse wavelet transform, since it reconstructs
the signal from a time-frequency representation.

fixy)
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Figure 14-3  Space-frequency analysis of an image
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14.1.3 Transforms

Recall that each of the coefficients in a transform is determined by taking an inner product
between the input function and one of the basis functions. This value represents, in some
sense, the degree of similarity between the input function and that particular basis function.
If the basis functions are orthogonal (or orthonormal), then an inner product taken between
two basis functions is zero, indicating that these are all completely dissimilar. So if the sig-
nal or image is made up of components that are similar to one, or a few, of the basis func-
tions, then all but one or a few of the coefficients will be small.

Similarly, the inverse transform can be viewed as reconstructing the original signal or
image by summing basis functions that are weighted in amplitude by the transform coeffi-
cients. So if the signal or image is made up of components that are similar to one or a few
of the basis functions, then this summation needs to have only a few terms of significant
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amplitude. Many of the terms can then be ignored, and the signal or image can be repre-
sented compactly by only a few transform coefficients.

Further, if the components of interest in the signal or image are similar to one or a few
of the basis functions, then those comiponents will manifest themselves in large coefficients
for these (and only those) basis functions. They will thus be “easy to find” in the transform.
Finally, if an undesirable (noise) component is similar to one. or a few basis functions. then
it, too, will be easy to find. 't will be also easy to remove, simply by reducing (or setting 1o
zero) the corresponding transform coefficients.

We conclude from all of this that there is potential value in using transforms with
basis functions that are similar to the expected components of the signals or images to be
transformed. We also note that transient components cannot be similar to the basis functions
of the Fourier or other wave-type transforms.

14.1.3.1 Types of Transforms

Recall from Chapter 10 that there are three different, but related Fourier transtormation
techniques: the Fourier integral transform, the Fourier series expansion, and the DFT,

The Fourier integral transform associates two continuous functions (a signal and its
spectrum). It and its inverse are given in one dimension by

J2rixs)

F(s) = j Foe 794 and f(x) = r F(s)e ds )

The Fourier series expansion represents a periedic function (or a transient function that can
be considered to be one cycle of a periodic function) as a (finite or infinite) sequence of
Fourier coefficients. It and its inverse are obtained by making s = nAs a discrete variable,
so that

F, = F(nAs) = fj"(x)e”“‘”"’dx and f(x) = As 2 Fe/2x(nds0 v
0 n=0
where L is the period and As = 1/L.

The DFT represents a sampled function by a sampled spectrum, and the number of
independent samples (degrees of freedom) is the same in both domains. 1t is obtained by
making x = iAx adiscrete variable as well. If g(x) is bandlimited and sampled as required by
the sampling theorem (Sec. 12.2.4), then g; = g(iAx), and

N-1 . i N-1 ok

1 ~j2mk N 1 ]Zmﬁ

Gy = —= z g€ and g; = —z Gye 3)

"/Nx =0 A/}—Vk =0

In all three transformation techniques, sines and cosines of different frequencies form a set
of orthonormal basis functions. Also, each transform coefficient is determined by an inner
product of the function being transformed and one of the basis functions. A discrete inner
product and discrete basis functions are used for the DFT, while an integral inner product
and continuous basis functions serve for the other two transforms. In each case, the inverse
transform consists of summing basis functions whose amplitudes are weighted by the
transform coefficients. This summation becomes an integral for the continuous Fourier
transform.
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The discrete transforms discussed in the previous chapter also use discrete orthonor-
mal basis functions. Thus, they behave in a manner generally similar to the way the DFT
behaves. For most of them. the basis functions are real and the forward and inverse trans-
forms are identical.

14.1.3.2 Types of Wavelet Transforms

As with the Fourier transform, the same three possibilities exist for wavelet transforms: a
continuous wavelet transform (CWT), a wavelet series expansion, and a discrete wavelet
transform (DWT). The situation is slightly more complex, however, since the wavelet basis
functions may or may not be orthonormal.

A set of wavelet basis functions can support a transform even if the functions are not
orthonormal. This means. for example, that a wavelet series expansion might represent a
bandlimited function by infinitely many coefficients. If this sequence of coefficients is trun-
cated to finite length, then we can reconstruct only an approximation of the original func-
tion. Likewise, a discrete wavelet transform might require more coefficients than the
origina! function has sample points in order to reconstruct it exactly, or even to an accept-
able approximation.

14.1.3.3 Notation and Definitions

Next, we introduce some definitions to clarify the concept of a wavelet transform. For the
present, we restrict the discussion primarily to transforming functions of one dimension.

In order to conform with the bulk of the literature on wavelets we use j as an integer
index in this chapter. As elsewhere in the book, we also use j to represent the imaginary unit
N taking care not to use it both ways in the same equation. The distinction should be
clear from the context.

The class of functions we seek to represent by a wavelet transform is those that are
square integrable on the real line (i.e., the set of all real numbers—the x-axis). This class is
denoted as L%(R). Thus, the notation f(x) € L*(R) means

Jmlf(x)lde<m @

In wavelet analysis, we generate a set of basis functions by dilating and translating a single
prototype function, i (x), which we call a basic wavelet. This is some oscillatory function.
usually centered upon the origin, that dies out rapidly as lxl — . Thus, y(x) € LA(R).

14.2 THE CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (also called the integral wavelet transform) was intro-
duced by Grossman and Morlet {4].

14.2.1 Definition

If y(x) is a real-valued function whose Fourier spectrum, ¥(s), satisfies the admissibility
criterion [4,5]



Sec. 14.2 The Continuous Wavelet Transform 309

O
= s < o0 5
Cy J‘V,., 1o ds < (5)
then y(x) is called a basic waveler. Notice that, due to the s in the denominator of the inte-
grand, it is necessary that

Y(0) = O:?J.W w(x)dx = 0 )

Furthermore, since ¥(e) =0 as well, we can see that the amplitude spectrum of an admis-
sible wavelet is similar to the transfer function of a bandpass filter. In fact, any bandpass fil-
ter impulse response with zero mean [Eq. (6)] that decays to zero fast enough with
increasing frequency |Eq. (5)] can serve as a basic wavelet for this transform.

A set of wavelet basis functions, {,,(x)}, can be generated by translating and scal-

ing the basic wavelet, y(x), as
- w{ x-b )
Vo b(X) = T = ()
where a >0 and b are real numbers. The variable a reflects the scale (width) of a particular
basis function, while b specifies its translated position along the x-axis.

Normally the basic wavelet, y(x), is centered at the origin, so that ¥, ,(x) is centered
at x = b. Figure 14-5 shows an example of such a wavelet. This particular one is given by

W(x) = —2— (1 - et )

Jidn

The continuous wavelet transform of f(x) with respect to the wavelet y (x) is then (4,5]
Wa, b) = {f, y, ) = j Fx) W, p(x)dx &
The wavelet transform coefficients are once again given as inner products of the function

being transformed with each of the basis functions.
Grossman and Morlet [4] showed that the inverse continuous wavelet transform is

P ™" d
J(x) = E'J j W p(a, by, 5(x)db™S (10
v o o a
1.0 T T T T T T T
0.5 - b
05 1 L { L L 1 1
X — 0 2 4 [} Figure 14-5 A wavelet
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The scale factor in front of the right-hand side of Eq. (7) ensures that the norms of the wave-
let basis functions are all equal, since

=2 -

Since the basic wavelet has zero mean |Eq. (6)), all scalings and translations of it [Eq. (7))
will likewise have zero mean, and the mean of f(x) must be accounted for separately.

A2,

dx = Jalf (ol (an

14.2.2 The Two-Dimensional CWT

The continuous wavelet transform W(a.,b) of a one-dimensional function f(x) is a function
of two variables, one more than f(x). The CWT is said to be overcomplete, as it represents
a considerable increase in information content and in the volume required for data storage.
For functions of more than one variable. this transform also increases the dimensionality by
one.

If frx, ¥) 1s a function of two dimensions, its continuous wavelet transform is

Wita.b b)) = J J S Wi 0 (5 My (12

where b, and b, specify the translation in two dimensions. The inverse two-dimensional
continuous wavelet transform is

fyy = ﬁ/j J J W,(u.bl.b\,)u/dvbwb‘(x‘_\)db\dh‘% (13
i

where

N ly(-’("b\ )'_b)‘)
Vo on) = il =5 (14)

and (x, y) is a two-dimensional basic wavelet. The same generalization extends to cover
functions of more than two variables.

14.2.3 The Filter Bank Interpretation

The following exercise illustrates one way of viewing the continuous wavelet transform
We first define the general wavelet basis function at scale ¢ as

w,(x] = ﬁv(j—j) (15

This is the basic wavelet scaled by ¢ and normalized by o2, It defines a set of functions
that become broader with increasing a. We also define )

- * 1 -( x)
= —-X) = == - 1
W, (x) = Y,(-x) J&W 7 (16
which is the reflected complex conjugate of the scaled wavelet. If y(x) is real and even, as
is often the case, the reflection and conjugation have no effect.

Now we can write the continuous wavelet transform [Eq. (9)] as



Sec. 14.2 The Continuous Wavelet Transform 311

W (a,b) = J. FOW, b -x)dy = fxig, (17

For fixed a. then. W,(«, b) is the convolution of f(x) with the reflected conjugate wavelet at
scale a.

Figure 14-6 shows the integral wavelet transform as a bank of linear (convolution)
filters acting upon f(x). Each value of « defines a different bandpass filter, and the outputs
of all the filters, taken together. comprise the wavelet transform. Further, Eq. (10) becomes

1w =& j e aIevb-var% = L irgawio® ay
Cyly ) . a Cody a-
which implies that the filter outputs, each filtered again by y, (x) and properly scaled. com-

bine to reconstruct f(x). This is a statement of Calderon’s identity (6,7], which predates
Grossman and Morlet by 20 years.
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Figure 14-6 Filter bank analogy for
Walx) wddx)  the integral wavelet transform of a
- signal

Recall from the similarity theorem (Sec. 10.2.5) that

=LA
F{flax)} = ‘a)F(a) (19)
This means that

¥(s) = Fly, ()} = Ja¥(as) 0

and the center frequencies of the bandpass filters decrease as the transfer functions become
more narrow with increasing a.

14.2.4 Two Dimensional Filter Banks

Figure 14-7 illustrates the filter bank approach in two dimensions. Here, each filter y, (x.»)
is a two-dimensional impulse response, and its output is a bandpass-filtered version of the
image. (Recall Figure 14-3). The stack of filtered images comprises the wavelet transform.

Again, the redundancy is considerable. In fact, if ¥ (u,), the transfer function of
w(x, ¥), is nonzero everywhere except at the origin, one could, theoretically, recover the
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Figure 14-7  Filter bank analogy for the integral wavelet transform of an
image

original image from any one of the filter outputs by inverse filtering (e.g., by deconvolu-
tion). Alternatively, if the image is bandlimited to an interval over which at least one
¥, (u. v) is nonzero, then fix, y) could be recovered from that filter output alone. The con-
clusion, then, is that the potential value of the integral wavelet transform lies not in a com-
pact representation, but in decomposition and analysis of signals and images.

To illustrate this, suppose that the image in Figure 14-7 contained, for example, cir-
cular objects of different sizes and that the basic wavelet were selected to respond only (or
primarily) 1o circular objects of unit radius. Then an examination of the output image stack
would reveal the locations of the objects. Further, each object would appear only (or pri-
marily) in the specific output image that corresponded to its particular size.

14.3 THE WAVELET SERIES EXPANSION

14.3.1 Dyadic Wavelets

The second type of wavelet transform is somewhat more restrictive than the first. Again, a
basic wavelet is scaled and translated to form a set of basis functions. Here, however, the
scaling and translation are specified by integers rather than real numbers.

In this second definition, we restrict ourselves to forming the basis functions by
binary scalings (shrinking by factors of two) and dyadic transiations of the basic wavelet,
w(x). A dyadic translation is a shift by the amount &/, which is an integer multiple of the
binary scale factor and thus of the width of the wavelet as well. Binary scalings and dyadic
translations are illustrated in Figure 14-8.
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14.3.2 Definition

A function y (x) is an orthogonal wavelet if the set [y ,(x)} of functions defined by
wi(x) = 2 y(2x - k) Q@n

where —oo </ k < oo are integers, forms an orthonormal basis of L2 (R) [5). The integer j deter-

mines the dilation, while & specifies the translation.
The preceding wavelet set forms an orthonormal basis if, first,

(Wik- Vim) = 06,104 m (22)

where / and m are integers, ‘S;A is the Kronecker delta function, and (.. -) indicates the inner
product; and second, if any function f(x) € L*{R) can be written as

flxy = i 2 ¢ Yk (X) (23)

7= ook = oo

where the transform coefficients are again given by inner products; that is,
i = (f0. 9, (x) = 2-”2-[ FlOw(/ x—kydx (24)

Egs. (23) and (24) specify a wavelet series expansion of f (x) relative to the wavelet y/(x) [5].
Notice that here a continuous function is represented by a doubly infinite sequence,

and, in general, the transform is again overcomplete. Since the basis functions commonly

extend to infinity in both directions, 2 complete reconstruction must include all terms.

If w(x) is properly chosen, however, one might be able to truncate the series without
serious approximation error. If f{x) is of fimte duration, and the basic wavelet is well local-
ized (i.e., it approaches zero rapidly away from the origin), then many of the coefficients
with large |k will be negligible. Likewise, coefficients with large | j| will usually be small as
well, since the wavelet basis function then becomes extremely broad or narrow.

14.3.3 Compact Dyadic Wavelets
If we further restrict f(x) and the basic wavelet to functions that are zero outside the interval

[0,1), then the family of orthonormal basis functions can be specified by a single index. n;
that is,
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w(x) = 2%y(2x - k) (25)

where j and k are actually functions of ». as follows:
n=24+k for j=0,1,... k=01 ..,2"-1 (26)

For any n. j is the largest integer such that 2 <n,and k=n -2
Now the inverse transform is
O WANEY @
n=0
where it is assumed that y,(x) = 1. The transform coefficients are given by the inner product

¢ = (flx), w(x) = 2ﬂ2j FOW(2/x - kydx (28)

Here, a continuous function is being represented by a single infinite sequence, as with a
Fourier series representation. The tremendous redundancy of the integral wavelet transform
is absent. In fact, if one or a few of the w, (x) are similar to f(x) (or its major components),
then one might be able to truncate the series to a relatively few terms without appreciable
approximation error.

We have here, as well, the basis of the discrete wavelet transform. If f(iAr) is a dis-
crete function sampled with N points, where N is a power of two, and if y(x) is a compact
dyadic wavelet, then we can compute a discrete wavelet transform using discrete versions
of Egs. (27) and (28). Both equations become summations of N terms. The Haar transform
offers an example of this.

14.3.3.1 Example: The Haar Transform

The Haar transform [2,8,9] is one of the earliest examples of what we now call a compact,
dyadic, orthonormal wavelet transform. It differs from the other transforms mentioned in
Chapter 13 inthat its basis functions are all generated by translations and dilations of a basic
wavelet. The Haar function, which is an odd rectangular pulse pair, is the simplest and old-
est orthonormal wavelet with compact support.

The basic wavelet 1s progressively narrowed (reduced in scale) by powers of two.
Each smaller wavelet is then translated by increments equal to its width, so that the complete
set of wavelets at any scale completely covers the interval. As the basic wavelet is scaled
down by powers of two, its amplitude is scaled up by powers of /2., to maintain orthonor-
mality. The result of all this is a set of orthonormal basis functions (Figure 14-9). The basis
function index, as defined in Eq. (26), differs slightly from that used in Sec. 13.5.4.

14.4 THE DISCRETE WAVELET TRANSFORM

The DWT most closely resembles the unitary transforms discussed in the previous chapter.
It promises to be the most useful for image compression, processing, and analysis. Given a
set of orthonormal basis functions, one can compute the discrete wavelet transform just as
one does any other unitary transform, such as the Haar transform. Obtaining a suitable basic
wavelet, however, requires further background material.
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In this section, we first review three techniques that have led to the development of the
discrete wavelet transform: (1) filter bank theory, (2) multiresolution or time-scale analysis,
particularly using pyramid representations, and (3) subband coding. This discussion is fol-
lowed by an introduction to the discrete wavelet transform.

14.4.1 Filter Bank Theory

Workers in the area of speech analysis and acoustic signal processing have long used the
concept of a bank of bandpass filters for decomposing a signal into components at different
frequencies. Indeed, the method is a precursor to time-frequency analysis, in which the sig-
nal’s components are displayed in a two-dimensional space whose dimensions are time of
occurrence and frequency of oscillation. Here, we review the basics of that approach as a
step leading toward a discussion of the discrete wavelet transform.

Suppose we have a signal composed of two tone bursts (sinusoids of short duration)
embedded in random noise, as illustrated in Figure 14-10a. Suppose further that we wish to
analyze this signal to detect the number, frequency, and position of the tone bursts.

The Fourier transform will, of course, reflect the entire content of the signal, but often
not in a way that is easily interpreted. Position information, for example, is encoded in the

Amplitude
spectrum

0
Phase
spectrum
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Figure 14-10  Composite signal
containing two tone bursts and random
noise: (a) the three components;

(b) amplitude and phase spectra

phase spectrum in a complicated way. (Recall Figure 10-10.) While the amplitude spectrum
may show distinct peaks due to each of the transient signal components, this is reliable only
for transient detection when those components are large enough in amplitude and duration
to dominate the spectrum. Figure 14-10b, for example, does manifest distinct peaks at the
frequencies of the two tone bursts, The phase spectrum, however, gives little insight into the
iocation of these components in time. Often, the uninteresting components of the signal
ie.g.. noise) complicate the spectrum to the point that a simple frequency analysis is insuf-
ficient to resolve the signal’s components.

14.4.1.1 ldeal Bandpass Filters

Suppuse we partition the frequency axis into a set of disjoint (adjacent, nonoverlapping)
intervals and use this partitioning to define a set of ideal bandpass transfer functions, as
shown in Figure 14-11b. The corresponding impulse responses appear in Figure 14-11a.
Figure 14-12 shows the implementation of a bandpass filter bank. The input signal is fed
into each of the bandpass filters in paraliel. The corresponding outputs are g,(x). The H,(s)
are constructed so that they sum to 1 for all frequencies, and thus, the g;(x) will sum to form
f(x). That is,

DHs) = 12 Y g0 =f0) (29)
=1 i=1
Figure 1413 shows the output of three of the bandpass filters shown in Figure 14-12.
Notice that the two tone burst signals (recall Figure 14-10a) emerge from separate filters.
Further, their locations along the time axis are evident in those outputs. Thus, we have an
approach to decomposing the composite signal and identifying the components of interest.



in(x)

haf )

Hy(v

Hfsi

Hilsh

Sec. 14.4

The Discrete Wavelet Transform

T T

iy (o \/\M/’\/\/\N\N

X -
(al
- T '* T T
‘ l It | L -
0 01 02 03 04 0
§
(b)
hyo — g
Ayl —_— 21)
Ax)
hy(0) P gy(1)
hy(x P g(v)

Figure 14-11 Generating a series of
bandpass filters by partitioning the
frequency axis: (a) impulse responses;
(b) transfer functions

Figure 14-12 Implementation of a
bandpass filter bank

318 Wavelet Transforms Chap. 14

Figure 14-13  Bandpass filter outputs

Each of the bandpass filter outputs is formed by the convolution

gilx) = J f(yh(x —t)dt 30
Since H,(s) is real and even, &;(x) will be as well. Then the reflection in the convolution inte-
gral has no effect, and the filter outputs can be written as

gi(x) = J SOht=xydt = (f(1), bt - 0)) 31
Hence, each point on g;(x) is the inner product of f(¢) with a version of h;(¢) that has been
shifted to location x. We can also view {g;(x)} as a (two-dimensional) set of wavelet trans-
form coefficients, where { h;(x)} is the set of wavelets. Further, {g;{x)} is sufficient to recon-
struct f(x) exactly, in view of Eq. (29).

The message borne by Eq. (31) is a significant one. The similarity between convolu-
tion, on the one hand, and taking inner products with shifted basis functions, on the other,
is what brings the disparate pieces of the wavelet transform together into a unified whole.

14.4.1.2 Smooth Bandpass Filters

The functions A;(x) in Figure 14—11a lack one of the characteristics that good wavelet basis
functions should have: They are not well localized. That is, they do not die out quickly away
from their central region. This means that h;(x ~ x,) will respond to strong components that
are located distant from x,. It is the sharp edges of H (s) that give rise 1o the undesirable
width of A;(x).

Designing the H;1s) functions to have smoother edges will reduce the width of the
h,(x). Since the H;(s) must still sum to unity everywhere, the resulting bandpass transfer
functions will overlap at their edges. One such construction is shown in Figure 14-14. Here,
the passband edges are each a raised half-cycle of the cosine. The resulting narrowing of the
impulse responses is evident.

Figure 14-15 shows the filter bank outputs with the signal of Figure 14-10a as input
and smooth bandpass filters. Notice the improvement in localization. We have thus taken a
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Figure 14-14  Smooth bandpass
filters: (a) impulse responses:
(b) transfer functions

Figure 14-15  Smooth bandpass
filter bank output
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step toward a time-frequency analysis of the composite signal. That is, we have means of
localizing the transient components of the signal in both time (or position) and frequency.

14.4.2 Multiresolution Analysis

Many of the developments preceding wavelet analysis came in a field generally called multi-
resolution unalysis. These developments were intended to combat the limitations of the Fou-
rier transform mentioned at the beginning of the chapter. We now summarize this approach
as groundwork leading to modern wavelet analysis.

Filter bank theory offers a convenient means of representing signals composed of
oscillatory components, such as musical notes and tone bursts. These components include
several (or many} cycles of the oscillation within their duration. In image analysis, however,
the localized components of interest often are not truly oscillatory, in that they include only
one cycle or even just part of a cycle. Examples include lines, edges. and spots.

The objects in an image are observed to occur at different size scales. An edge, for
example, can be either a sharp transition from black to white or one that occurs gradually
over a considerable distance. In general, a multiresolution approach to image representation
or analysis seeks to exploit this idea.

Cartography illustrates the approach. Maps are commonly drawn at different scales.
The scale of a map is the ratio of the size of an actual territory to that of its representation
on the map. At large scales, as on a globe, major features such as continents and oceans are
visible, while details such as individual city streets fall below the resolution of the map. At
smaller scales, the details become visible and the larger features are lost. Thus, to be able to
navigate 1o a point at a distant location, one needs a set of maps drawn at different scales.

Wavelet transforms have developed along these multiresolution lines. As with time-
frequency analysis, a signal is represented in a two-dimensional space, but here the vertical
axis is scale rather than frequency. Scaling is achieved by dilating and contracting the basic
wavelet to form a set of basis functions.

The basic wavelet, y(x), is scaled as y(x/a) (which 1s broadened if a > 1 and nar-
rowed if ¢ < 1) to form a set of basis functions. At large scale a, the dilated basis functions
search for large features, while for small a, they seek out fine detail.

14.4.2.1 Pyramid Algorithms

Suppose we generated, from one 1,024-by-1,024-pixel digital image, 10 additional images
by successively averaging 2-by-2-pixel blocks, each time discarding every second row and
column of pixels. We would be left with images of 512 by 512, 256 by 256, etc., down to |
by 1. If we then performed edge detection, for example, on each image, using one of the
3-by-3 edge detection operators mentioned in Chapter 18, we would find small edges in the
original image, somewhat larger edges in the 512-by-512 and 256-by-256—pixel images,
and only the very large edges in the 16-by-16-pixel and smaller images.

The Haar transform represents the dawn of this approach from almost a century ago.
In its basis images (Figure 13-6), we see the concept of searching the image with edge
detectors of different scales. The principle of binary dilation is evident there as well.

One might be tempted to observe that all edges, large and small, appear in the original
1,024-by- 1,024-pixel image and that no change of resolution is required to locate them. The
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problem is that large edges—those manifesting a transition in gray level that spans a con-
siderable distance—are difficult to detect with conventional (smalt) neighborhood opera-
tors such as the ones discussed in Chapter 18. One could scale the operators up to detect the
larger edges, but it is more efficient to scale the image down. Using a large operator to
search a high-resolution image for large edges is computational overkill.

Several forms of multiresolution analysis have been studied under different names
over the years. Itis only in recent years, however, that the basic similarity between multi-
resolution and filter bank approaches has been recognized, and these have been unified
under the heading of wavelet transforms.

14.4.2.2 Laplacian Pyramid Coding

Burt and Adelson [ 10} introduced a pyramid coding scheme based on the Gaussian func-
tion. The image is lowpass filtered with a Gaussian impulse response, and the result is sub-
tracted from the original image. The high-frequency detail in the image is retained in this
difference image. The lowpass filtered image can then be subsampled without loss of detail.
The process is illustrated as follows.

Let f5(4, j) be the original image. and let g(i, j) be a Gaussian-shaped lowpass filter
impulse response. Then. at each step of the encoding process, the image is decomposed into
half-resolution low-frequency and full-resolution high-frequency components, f, (i, j) and
hy (i, j). respectively for the first step, by

St ) = Ufoxg](20.2)) and Ay, j) = foli. j) = [foxg} i j) (32)
This process is iterated each time on the subsampled image. After » iterations of an N-by-N
image, where N = 2", f,(i, j) is a single point. The encoded image pyramid consists of the
hy (i, j)'s and the final low-frequency image f,{i, j). This is shown in Figure 14-16.

Image decoding is done in the reverse order. Upsampling is the process of inserting
reros between sample points. Each subsamoled image, fi(1, j), beginning with the last one,
fa(, j).is upsampled and interpolated by convolution with g(i, j). Then the result is added to
the next (previous) image f; (7. j), and the process is repeated on the resulting image. This
reconstructs the original image without error {10).

Each h; (i, j) is the difference of two images obtained by convolving a single image
with Gaussians of single and double width. This is equivalent to convolving the image with
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Figure 14-16 The Laplacian pyramid coding scheme
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the difference of two Gaussians, which, in tum, approximates the “‘Laplacian of a Gaussian”
highpass filter; hence the name chosen for this pyramid coding algorithm.

Although Laplacian pyramid coding increases the number of pixels required to rep-
resent the image by 33 percent, it can nevertheless accomplish a significant degree of image
compression [10]. This occurs because the A (i, j) ithages have significantly reduced corre-
lation and dynamic range and are thus amenable to coarse quantization and even to setting
some of the pixel values to zero. Further, the design of the Laplacian pyramid provided the
inspiration that later led to the discrete wavelet transform.

14.4.3 Subband Coding

As further background leading to the discrete wavelet transform, we now describe a time-
frequency technique called subband coding. Originally developed for compact coding of
digitized audio signals, subband coding seeks to decompose a signal (or animage) into nar-
row-band (bandpass-filtered) components and represent these, without redundancy, in such
a way that it is possible to reconstruct the original signal without error [11-13].

Given a bandlimited signal f(7), that is,

F(f(O} = F(s) =0 for |s|2 5 (33)
we can sample the signal with uniform sample spacing Az to form
1
2At
(Figure 14—17a), where sy, is the Nyquist (folding) frequency. (Recall Chapter 12, Eq. 22.)

We begin the analysis by partitioning the frequency axis into disjoint subintervals.

While any subinterval length could be used, we now choose s)/2, as shown in Figure 14-17b,
for reasons that will become clear later. Here, the spectrum F(s) is periodic with period 2sy.

FUAD  i=01,.,N-1 spu<sy= (34)

14.4.3.1 The Lower Halfband

Figure 14-17b shows an ideal halfband lowpass filter, hy(iA1), so called because it passes
only the frequency band [~sa/2,541/2], which is the low-frequency half of the total frequency
band [—sy.sy]l. The impulse response and transfer function of kg are

ho(t) = sinc(nﬁ) and Hy(s) = H(Si’v) (35)

where the rectangular pulse is

1 I <%
M(x) = % Ixl = é (36)
0 |« >%
and
sinc(x) = 2000 (37
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Applying this filter 1o f(iAr) (Figure 14--17a) yields the signal g,(iAr) (Figure 14-17¢),
which is bandlimited at s = 5,/2. This is a low-resolution (blurred) version of f(ian. It
retains the basic shape of f(iAr), but has lost the details.

Since gy(iAt) has no energy above sy/2, it could be sampled with sample spacing as
large as 2Ar without introducing aliasing. In fact, we can discard every second sample and
represent g with only the remaining N/2 samples (Figure 14-17f). This process is called
subsampling or decimation.

We can model subsampling as first multiplying the signal by a subsampling function
that drives the odd-numbered samples to zero and then discarding the odd-numbered sam-
ples. Such a subsampling function

£ian) = 101+ cos2msyian)] (38)
and its spectrum
F(s) = %|5(3)+5(x—s,v)+6(s+s~)] (39)

are shown in Figure 14-17d.

When we multiply the signal gy (iAr) by f,(iAr), we convolve its spectrum with F, (s).
The result is to make the spectrum symmelric in such a way that its pericd is reduced from
25y 10 5y, as shown in Figure [4—17e. Its amplitude is also cut in half; we write

Fi(s) * Gols) = %Go(x) + %Go(s Fs)+ %Go(s~s,v) (40)

Clearly, we can now discard the odd-numbered sample points without loss of information
(Figure 14-17f). This reduces the folding frequency to sy/2 and leaves us with a signal that
is properly sampled with sample spacing 2At.

No information has been lost in the process of subsampling g (iAt). To see this, notice
that we could recover g, (iAr) from the subsampled signal in Figure 14-17f simply by (1)
computing its (N/2-point) discrete spectrum, (2) padding it with zeros from sy/2 10 s to
reconstruct Gy (s) (Figure 14-17c), and (3) taking the inverse (N-point) DFT of G(s) to
reconstruct go (iAr), the signal shown in Figure 14-17c. While this is not the preferred
method, it argues that subsampling g,(iAf) produces no loss of information.

A simpler way to recover gy (iAr) can also be seen in Figure 14~17. We first upsample
the encoded lowband signal (Figure 14-17f) by inserting the zero-valued odd-numbered
samples (to form Figure 14—-17¢). Then we filter that signal with 2A4(iAr), the ideal halfband
lowpass filter (Figure 14-17b). This will reconstruct the spectrum, and hence the signal, in
Figure 14-17c, thereby recovering g,(iAt).

In the frequency domain, we write

Fi(s) ¥ Gy(s) X Hy(s) =

1 1 1 sy _ 1 al1)
[5G0 (5) + 3Gy (s +5) + 3Gy (s - s | x n(SiNJ = 16,19
Notice that the lowpass filter impulse response, ki (iAt), is sinc (7x/2At), which has zero-
crossings at even multiples of the sample spacing, except at zero (Figurel4—17b). Thus. it
interpolates the intermediate (odd-numbered) values of g, (iA1), where the zeros are located,
and leaves the even-numbered samples alone.
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14.4.3.2 The Upper Halfband

Turning now to the upper halfband of f(iAr) (Figure 14-18a), we can isolate the energy
there with an ideal halfband bandpass filter (Figure 14—18b). This filter’s impulse response
and transfer function are, respectively,
. ! s
= “SINC| T sy =1-1 = 42
hy(r) = (1 smg(n’zm) and H,(s) = 1 n(_w) (42)
where I1(x) is as in Eq. (36).

The filter produces a signal, g, (iAr), whose spectrum is nonzero only in the upper half-
band (Figure 14-18c). This signal contains exactly the high-frequency information that was
eliminated from f(iAt) by the lowpass filter in Figure 14-17b. Thus, go(/Ar) and g, (iAr), taken
together. contain all the information that was present in the original signal, f(iAr). In fact,

fUAL = gy(iAt) + g1 (iA1) = f(iAt) * hy(iAt) + f(iA1) * hy(iA1) 43)

since
Hy(s)+ H(s) = 1 ()
Figure 14-18d shows the subsampling function f,(iAr) that was used in the analysis in Sec
14.4.3.1. When g, (iAr) (Figure14-18c) is subsampled by £, (iAf), its spectrum is convolved

with F(s). This fills the interval [-sy/2,55/2] with a replicate of its spectrum and produces
the spectrum shown in Figure 14-18e. We write

F(s)* G(s) = %G,(s) + %G,(.& +5y) + %Gl(.sas,\() (45

This spectrum is now periodic with period s,/2 and could be sampled at spacing 2Ar without
aliasing. Thus, we now have another signal that is confined to the lower halfband, and it can
be subsampled as before (Figure 14-18f).

This leaves the N-point signal f(iAr) encoded into two N/2-point signals. We have
seen that g, (iAf) can be recovered from the encoded lowband signal. Itremains only to show
that g, (iAt) can be recovered from the encoded highband signal to see that f(iAr) [and hence
(1] can be reconstructed without error.

Figure 14-18e shows the upsampled highband signal. Its spectrum is identical to that
in Figure 14-18f, except that, after upsampling, the folding frequency is once again sy. We
can reconstruct G (s), and thus g, (iAr) (Figure 14-18c), simply by filtering this upsampled
signal with 2k, (iAr) (Figure 14-18b) to eliminate the low-frequency energy. We write

F(s)* Gi(s) x H\(s) =
[%G, (5) + 3G, (s+5,) +3G (s —s | x 1 n(é’” =16, @6)

Thus, we have, in two-channel subband coding, an invertible representation of the signal in
terms of two subsampled discrete filter outputs, and it is without redundancy (i.e., not over-
complete).

14.4.3.3 Aliasing the Upper Halfband

Clearly, subsampling g, (iAr) by discarding every other sample point will result in aliasing.
The energy at frequencies between s,/2 and sy will be aliased down to the interval [0,sy), as
indicated in Figure 14-19a. This process, however, is nondestructive, since that interval is
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Figure 14-18 Subbund coding, the upper halfband: (a) a sampled signal and its
bandlimited spectrum: {b) the ideal halfband highpass filter; (c) the highpass filtered
signal; (d) the subsampling function; (e) odd sample points replaced with zeros; (f) odd
sample points discarded
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Figure 14-19  Aliasing the upper halfband: (a) aliasing the spectrum in

Figure 14-18(c); (b) the result of aliasing
already vacant. It produces the spectrum shown in Figure 14-19b, which is bandlimited at
sy/2 and contains all the energy of g, (iAr).

[ronically, aliasing, the bugaboo that usually threatens our amlity 1o process contin-
uous signals and images digitally, now comes to our aid. It is only necessary to subsample
£ (iAt) to obtain the upper subband coded signal. Furthermore, upsampling followed by fil-
tering with 2k, (iA?), recovers g, (iAr).

14.4.3.4 Subband Coding and Decoding

Two-channel subband coding, then, requires only filtering f(iAt) with hg(iAr) and A, (iA1),
followed by subsampling cach output. This yields the two half-length subband signals

gothAL) = Z_/(iA:)M((w +2k)Af) @7y
and

2kAr) = 2]"([At)h.((—i+2k)At) (48
Reconstruction is effected by upsampling the lower and upper subband signals, interpolat-
ing them with 2/, (iAr) and 2 (iA1), respectively, and adding them together. This is given by

SUAD = 2} [gkAnhy((=i+2k)A1) + g, (kAtyh (- i + 2k)A1)) “49)
k
and is illustrated in Figure 14-20.

We have a slight problem at the midfrequency point s = $,/2. since encoding and
decoding entails filtering friAtf) twice, once with Ay(iAt) and once with A, (iAr), and since
Hy(sp/2) = 1/2 and H,(s,/2) = 1/2. This problem could be avoided by using 71(+}) = J}
in Eq. (36). In the next section, where we use more general bandpass filters, we handle the
situation explicitly.

Rian
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Figure 14-20 Two-band subband coding arid reconstruction

We could have chosen to partition the frequency axis into M shorter intervals of length
2s,5/M, producing M subband signals of N/M points each, as is cothmonly done in subband
coding. Different frequency components then show up in separate subband channels. Since we
are moving toward the DWT, however, we stick with the choice of two subbands (M = 2).

14.4.4 The Fast Wavelet Transform Algorithm

Mallat [ 14] defined a discrete wavelet transform algorithm that is more efficient than com-
puting a full set of inner products. It applies two-band subband coding in an iterative fashion
and builds the wavelet transform from the bottom up, that is, computing small-scale coef-
ficients first.

After the first step of subband coding, as outlined in Sec. 14.4.3, the lower subband
signal, go(iAt), is once again subjected to halfband subband coding. This leaves us with the
N/72-point upper halfband signal and two N/4-point subband signals corresponding to the
first and second quarters of the interval {0, sy].

The process is continued, at each step retaining the upper halfband signal and further
encoding the lower halfband signal, until a one-point lowband signal is obtained. The trans-
form coefficients are then the lowband point and the collection of subband-coded upper
halfband signals. This is shown in Figure 14-21. The first N/2 coefficients come from the
upper halfband of F (s), the next N/4 points from the second quarterband, etc.

£(2ian go(diAr) 23:(8iAn

Figure 14-21 The discrete wavelet transform algorithm

The impulse response, A;, doubles in scale at each iteration. Thus, we have an orthonor-
mal wavelet transform. The basig wavelet is h(f) = 8(f) - sinc(ar), and the basis functions are
{272h(2/t - n)} [15]. Thus, subband coding, which is basically a time-frequency transform
technique, has been employed to define a time-scile wavelet transform.

The foregoing algorithm is sometimes referred to as the fast wavelet transform
(FWT), or Mallat’s herringbone algorithm, due to the appearance of the diagram in
Figure 14-21. The inverse transform is obtained by reversing the process, as shown in
Figure 14-22.
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Figure 14-22 The inverse discrete wavelet transform

14.4.4.1 Basis Functions

We see in Figure 14-21 that each set of transform coefficients is obtained by convolving
f(iA?) repeatedly with A, (iAr) and then once with k) (iAr). Thus, the basis functions of this
wavelet transform are #1,(iAf) and other functions derived by convolving h (iA1) repeatedly
with hy(iAr). This is explored in more detail next.

14.4.5 Discrete Wavelet Transform Design

We are now prepared to approach the design of a basic wavelet for use in a discrete wavelet
transform. As we saw in Sec. 14.4.1, it is not necessary that the filters in a filter bank imple-
mentation be ideal lowpass and bandpass filters. Similarly, for the DWT, we can use any
pair of subband coding filters that allows Eq. (49) to hold.

Writing Eq. (49) in the frequency-domain, we have

Fis) = 2] 360 Ha(s) = 3G (5)Hy )|
(SO0)
1
= 2[ JFO (s H) + SFOH, (H, )]
which means that

F(s) = F(s) |H}(s) + Hi(5)] (51

and the two filter transfer functions must satisfy the condition
Hi(s)+ H3(s) = | for 0<s| <spy (52)

The transfer functions are squared here because f(r) is convolved twice with each filter,
once during coding and once during decoding. This resolves the problem that was noted in
Sec. 14434,

Suppose Hy(s) is a smooth-edged lowpass transfer function that we wish to use in a
wavelet transform. Clearly, the corresponding H, (s) is given by

Hi(s) = |- Hi(s) (53)
Thus, a well-selected lowpass filter is all that is required to design a discrete wavelet
transform.
14.4.5.1 Mirror Filters

Comparing Figures 14-17b and 14—18b, we see that, for the case of the ideal bandpass filter,
hy(iAt) can be viewed as h,(iAr), shifted by an amount syalong the frequency axis. Accord-
ing to the shift theorem (Sec. 10.2.3)
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F U Hs—a)} = 2™h(1) = FHH(s -5}
2 L ):'A/
= ! KAl = (~1)A(iAD
and such a half-period shift of the spectrum can be effected simply by changing the sign of
the odd-numbered samples of the signal. Note the use of the imaginary unit in Eq. (54)
We can use this approach in the design of more general subband filters. Selecting
h| (iAt) so that

(54)

(N~ 1=0DA1 = (1Y he(iAr) (55)
where N is the length of Ay (iAr), we obtain the corresponding highpass filter. The filter
h(iAn) is called the mirror filter of hy(iAr). If hy(iAr) is of short duration, we can be assured
that h (A1) will be short as well.

The symmetry property that H,(s) must have in order for Eq. (53) to hold, and for this
entire approach to work. is

o SN ) 2f SN
H(,[~2-+3)_1—H(,(—2— .‘) (56)

14.4.5.2 The Scaling Vector

To develop a discrete wavelet transform, then, we need only a discrete lowpass filter impulse
response hy(k) that meets certain conditions [ 16]. This impulse response is sometimes called
a scaling vector.

From hy(k) we can generate a related function ¢ (#), called the scaling function. We can
also generate hy (k) and, from it and ¢ (2), the basic wavelet, y(1). If the scaling vector has only
a finite number of nonzero entries, then @(t), ¥ (1), and the resulting wavelets will all have
compact support { 16]. That is, they will be zero outside arelatively short interval on the r-axis.

Actually, if we have either A, (k) or ¢(r), we can use it to generate the other. It is usu-
ally easier to stant with hy (k), which must satisfy Eq. (56). Let the scaling vector be a
sequence such that

> hok) = ¥2 and 3 ho(kyhy(k +21) = &1 (57)
k k
Then there exists a scaling function

o) = 2;.0(/()(;)(2;-1() (58)
k

that can be built as a weighted sum of half-scale copies of itself, using hy(k) as the weights.
From the observation in Sec. 14.4.4.1. ¢ (1) can also be computed numerically [16] by
repeated convolution of (k) with scaled versions of the rectangular pulse function (Figure
14-23); that is,

$(x) = lim n;(x) (59)
where

n(x) = ﬁZhO(n)n,,,(zx- n) (60)

"
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Figure 14-23 Constructing the scaling function (after Daubechies { 16])

is a piecewtise constant approximation to ¢(1) and
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2
o(x) = M(z) = x| =% 61y

[T

|
(I >§

Notice that the first iteration creates a piecewise constant function having the values of

hg(k). Further, the resolution of the approximation doubles, and the approximation becomes
smoother, with each iteration. Nine iterations, for example, will take a four-point sequence
into a 1,024-point sampled function, and this is adequate for most digital implementations.
The scaling function ¢(f) is, then, a continucus function that has the same general shape as
the discrete lowpass filter impulse response (k).
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Tf. on the other hand, we start with a scaling function ¢ (). it must be orthonormal
under unit shifts: that is.

(@t -m), Pt -n)) =3, , (62)
Then hy(k) can be computed from
hatk) = (@, 0(1). @04 (D) (63)
where
@)= 2Fe2i-k)  j=01.. k=01..2-1 (64)

If the scaling vector has only a finite number of nonzero entries. then the resulting waveliets
will have compact support [16].

If a desired scaling function @(r) s not orthonormal, it can be used to generate one
that is orthonormal by proper normalization of its spectrum, d(s) 7). That is,

Cd(s)

} Z @(: -2nn)
14.4.5.3 The Wavelet Vector

Once we have both ¢(r) and hy(k) in hand, we continue the development by defining a dis-
crete highpass impulse response called the wavelet vector as

O(s) = (65)

where C is a constant.

hk) = (=D*hg(-k+ 1) (66)
and, from that, a basic wavelet
wu) = D (K)o - k) (67)
k

from which an orthonormal wavelet set
;1) = 27w~ k) (68)
follows.

14.4.5.4 Computing the Wavelet Transform

Giventhe set of orthonormal wavelets, the wavelet series expansion of the bandlimited con-
tinuous function f(1) is

= j Sy (r)dr and  f(1) = ZC,.L Wi k(1) (69)
el Jok
and the discrete wavelet transform of the sampled functiog;is
G = Zf(iAr)wj_k(iAr) and f(iAf) = ch_‘ ¥, 1(iAr) (70)
i ik
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The coefficients and summations can also be indexed by the single integern=0, 1, ... N -1,
where

n=24+k for j=0,1,.,log2(N)-1 k=01,..,2/-1 (70

We refer to this as the top-down algorithm, since it computes large-scale coefficients first.
By contrast, Mallat’s herringbone algorithm computes small-scale coefficients first.

The design task, then, involves first finding a sequence hy(k) that satisfies Eq. (56)
and then constructing the corresponding scaling function, or choosing an orthonormal scal-
ing function and determining hy (k) from Eq. (63). A scaling function can be made orthonor-
mal by Eq. (65). Then the wavelet vector, A, (k), is obtained from Eq. (66) and the basic
wavelet from Eq. (67).

The discrete wavelet transform can be implemented either directly, by Eq. (70), or
with the FWT herringbone algorithm. The latter does not require explicit construction of the
scaling function and wavelet, and it is more computationally efficient.

To be mathematically precise, the conditions in Eq. (57) establish that the wavelets
{y, x(t)} constitute a tight frame and thus will support an invertible transform. They are not,
however. adequate to guarantee that these basis functions will always be orthonormal. Law-
ton [17,18] and Cohen {19] give strict orthonormality conditions on & (k), but the ditfer-
ences between a tight frame and an orthonormal transform are so slight that digital
implementations are not affected. Thus, we can be satisfied using Eq. (57).

14.4.5.5 Examples
We illustrate the construction of a wavelet ransform with three examples.

Example 1. Using ideal lowpass and bandpass filters, we have [15]

hy(k) = v%s'mc(ng) and hy(k) = J28(k) — ho(k) 72)
and
@(t) = sinc(mt) and w(z) = 2¢(21) - ¢(1) (73)

This gives a discrete wavelet transform based on sinc wavelets (Figure 14~11). Notice that
these wavelets do not have compact support.

Example 2. If we let

1
—_— =0,1
hy(k) = ﬁ k and A (k) =

0 otherwise

74)

otherwise

then y(r) is the Haar function, and we are led to the Haar transform. This scaling vector has
two nonzero entries, and, as expected, the Haar transform does have compact support.

Example 3. The sequence hy(k), having four nonzero elements and given by
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+J3 k=0

(B+43) k=1
Wk = 3.5 k=2 (75)
(-3 k=3
0 otherwise

satisfies Eq. (56) and is thus a scaling vector {16]. Its scaling function and wavelet, con-
structed by the procedure outlined in Figure 14-23, are shown in Figure 14-24. This is one
of a family of finite-length sequences that give rise to orthonormal wavelets having compact
support. The family is discussed further in the following section.

L e

0

|
[
!

Figure 14-24  Daubechies’ (a) scaling function and (b) wavelet for r=2
(after [ 16])

14.4.5.6 Orthonormal Wavelets with Compact Support

Daubechies [16] has constructed a family. {,w(x)}. of orthonormal wavelets having com-
pact support. For each integer value of the index r, the set of wavelets

{0} = {(27w(2x-k)} (76)

where j and k are integers. forms an orthonormal basis. Further. ,y(x) is zero outside the
interval [0,2r ~ 1], its first » moments vanish. that is,

j Xwx)de =0 n=0.1.....r 77

and its number of continuous derivatives is approximately /5. This describes a rather well-
behaved. or regular, group of functions. Interestingly, | ¥ (x) is the basic wavelet of the Haar
transform.

Table 14-1 shows the sequences hg(k) that generate the orthonormal wavelets yor
r=3,57. and 9. The construction technique was outlined in Sec. 14.4.5. Figure 14-25
shows plots of the corresponding wavelets. Notice that these functions become both broader
and more regular with increasing r.
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Figure 14-25 Orthonormal wavelets for (a) r =3, (b) r=5.(¢c)r=7, and(d) r=9

(after (16])

TABLE 14~1 DISCRETE FILTER SEQUENCES FOR THE ORTHONCRMAL
WAVELETS IN FIGURE 14-25 (r=3,5,7 AND 9; FROM [16))

3327 806Y 4599 -.1350 -.0854 0352

A601 6083 7243 (1384 2423 0322 0776 0062 -.0126 .0033
0779 3965 7291 4698 -.1439 -2240 0713

0806 —.0380 -.0l66 0126 .0004 -0018 .0004

0381 2438 6048 6573 (1332 2933 -0968 .1485 0307

-0676 0003 0224 -0047 —0043 0018 0002 0003 0000

14.4.6 The Two-Dimensional Discrete Wavelet Transform

The concepts developed for the representation of one-dimensional signals generalize easily
to two dimensions [5,7,14,16]. As with unitary image transforms, we consider the case
where the two-dimensional scaling function is separable; that is,

O(x, ¥v) = ¢(x)p(v) (78)
where ¢ (x) is a one-dimensional scaling function. If y(x) is its compagion wavelet (Eq.67).
then the three two-dimensional basic wavelets

YLy = ¢0p) YR = w(0ey) v = wowy) (79
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establish the foundation for a two-dimensional wavelet transform. Note that the superscript
is used here as an index rather than an exponent. In particular. the set of functions

(W a0} = {2y (x=2mv-2m)}  j20 =123 (80)
where j. [, m, and n are integers. is an orthonormal basis for L>(R?).

14.4.6.1 The Forward Transform

We begin with an N-by-N image, f)(x. y), where the subscript indicates scale and N is a
power of two. For j = 0, the scale is 2 = 2° = 1, and this is the scale of the original image.
Each larger integer value of j doubles the scale and halves the resolution. Some of the lit-
erature uses j to index the resolution rather than the scale. In that case j < 0, and its sign in
the equations that follow is reversed.

The image can be expanded in terms of the two-dimensional wavelets as follows. At
each stage of the transform, the image is decomposed into four quarter-size images. as
shownin Figure 14-26. Each of the four images is formed by inner products with one of the
wavelet basis images. followed by subsampling in x and v by a factor of two. For the first
stage (j = 1), we write

fSim.ony = (j,(x,¥). 9(x~2m, y —2n))
fi0mony = (f0n v whix—-2m. v - 2n))
Filmony = (fi0u v w3 (x=2m.y = 2n)
Fimony = (f(0,3), Wi x = 2m, v - 2n))

For subsequent stages (j> 1), fU.(x, y) is decomposed in exactly the same way to form four
smaller images at scale 2! [Figure 14-26(c)). The final result is an arrangement like that
of the Haar transform, as shown in Figure 14-26(d).

Writing the inner products as convolutions, we have

(81)

flotmn) = {[fg,(x, NP5 )] 2m, zn)}

‘

f_l,..(mv") = )', [f'z'/(-x.,\') = y'(-x, i\'):|(2m. 2n)}
) (82)

{ [f;,(-f‘ V) *yi-x, —.\')] (2m, 2:1)}

fimn)

(
) r
ff,<.(rn,n) J{ ;f;,(vx,y) * yd(-x, —\'):[(2m, 2n)}
and the same four subsampled filtering operations are required at each stage.
Since the scaling and wavelet functions are separable, each convolution breaks down
into one-dimensional convolutions on the rows and columns of f?‘(x, ¥). Figure 14-27
shows this in diagram form. .
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Figure 14-26 The two dimensional discrete wavelet transform: (a) original;
(b first., (¢) second. (d) third step

At stage |, for example, we first convolve the rows of the image f, (x, v) with i (—v)
and with A, (~x) and discard the odd-numbered columns (counting the leftmost as zero) of
the two resulting arrays. The columns of each of the N/2-by-N arrays is then convolved with
ho(-x) and with A, (~x), and the odd-numbered rows are discarded (counting the top row as
zero). The result is the four N/2-by-N/2 arrays required for that stage of the transform.

The two-dimensional separable wavelet transform thus can be computed quickly. The
transform process can be carried to J stages, where the integer J < log, (V) for an N-by-N
pixel image. If the transform coefficients are computed with floating-point accuracy, the
inverse transform can reconstruct the original image with little degradation.

Figure 14-28 shows from where in the frequency plane each of the four next-higher
scale images come, if we were to use sinc wavelets (that is, ideal halfband lowpass and
bandpass filters). At each scale, f 2,(x, ¥) contains the low-frequency information from the
previous stage, while f),(x, ¥), f2(x, ¥), and f2(x, v) contain the horizontal, vertical,
and diagonal edge information, respectively. )
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Figure 14-27 The DWT image decomposition step
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) o ) Figure 14-28 DWT decomposition
in the frequency domain

14.4.6.2 The Inverse Transform

Inversion of the transform is done by a process similar to that just outlined [$.7.14.16]. This
process is diagrammed in Figure 14-29.

At each stage (e.g., the last). we upsample each of the four previous stage arrays by
inserting a column of zeros to the left of each column. Then we convolve the rows either with

- hy(xyor with /1, (x), as shown in the figure. and add the N/2-by-N arrays together in pairs. The

two resulting arrays are then upsampled to size N by N by adding a row of zeros above each
row. The columns of these two arrays are then convolved with li;(x) and with h, (x). as
shown. The sum of the two resulting arrays is the result for that stage of the reconstruction.
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columns rows rows columns Gaussian-like pulse. Figure 14-31 shows the corresponding (last) stage of the inverse dis-
crete wavelet transform of the same image. (Note: Optionally, one can reverse the order of

T rocessing rows and columns in both the forward and inverse transforms.)
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Figure 14-30 Example of computing the two-dimensional discrete wavelet transform
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Figure 14-32 shows an example of separable two-dimensional wavelets [20]. These
were constructed from Daubechies’ r = 2 wavelet and scaling function (Figure 14-24) by
Eqgs. (78) and (79).

e = S

Figure 14-32 Separable two-dimensional wavelets constructed from Daubechies' r = 2
wavelet and scaling function (Courtesy Marcus Gross afid Lars Lippert, reprinted by
permission from [20])

14.4.7 Biorthogonal Wavelet Transforms

The functions that qualify as orthonormal wavelets with compact support lack desirable
symmetry properties. It would be convenient, for example, if (1) could be an even or an
odd function. By using two different wavelet bases, y(x) and ¥ (x) —one for decomposi-
tion (analysis) and the other for reconstruction (synthesis)—we can have symmetrical
wavelets with compact support [5,7,21,22,23]. The two wavelets are duals of each other,
and the wavelet families { ulj,‘(x)} and { l}ljk(x)) are biorthogonal; that is,

(Wiko Vo) = 8,10 m (83)
Then we have
o = S, Y (x) and dj i = (f(x) v () (84)
for the decomposition, and
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f® = Y oavia® = Y dub ) (85)
ok ik
for the reconstruction. Either wavelet can be used for the decomposition, provided that the
other one is used for the reconstruction. The biorthogonal wavelet transform allows the use
of symmetric (even or odd) wavelets having compact support.

14.4.7.1 Implementation

The one-dimensional biorthogonal wavelet transform requires four discrete filters (impulse
response vectors). We must choose two lowpass filters (scaling vectors), hy(n) and ho(n) ,
whose transfer functions satisfy
Hy(0) = Ho(0) = 1 and Hy(sy) = Ho(sy) =0 (86)
where sy = 1/2Ax is the folding frequency. From these, we generate two bandpass filters
(wavelet vectors), as before, by half-period shifts of their transfer functions {recalt Eq. (54)}:
) = (~1)hy(1=n)  hy(n) = (=1)"ho(1 = n) 87
Now we can implement the FWT herringbone algorithm using these four filters, as shown
in Figure 14-33.

by —O— hy

B ]
A iy

Figure 14-33  One decomposition step and one reconstruction step of the
biorthogonal wavelet transform

v

14.4.7.2 Biorthogonal Wavelets

The conditions upon biorthogonal wavelet filters are
Shotn) = Fhotmy = 2 and Yk =Y hi(n) =0 (88)
n n n n

and the perfect reconstruction property requires that
Ho(s)Ho(s) + H (s)H () = Ho(s) Ho(s) + Ho(s = sy)Hyls —sy) = 1 (89
The two scaling functions are given. in the frequency domain, by
D(25) = Hyls)Dls) = n Hy(s12") and ®(2s) = Hy(s)P(s) = nHo(m"; (90)

n=1 n=0

and the wavelets are then

wix) = A/EZh,(n+l)¢(2,\’—n) and Y(x) = ﬁEiﬁ(:H— e2x-n) 1)

" n
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144.7.3 Constructing Biorthogonal Wavelets

Biorthogonal wavelet design requires developing discrete impulse responses (scaling vec-
tors) fy(n) and ho(n) whaose transter functions satisfy Eq. (86) and (89). This is an active
area of research, and several authors have catatogued such {ilters and the corresponding
biorthogonal wavelets.

Cohen, Daubechies, and Feauveau [21]. for example, select ¢(x) as a B-spline function
(e.g., the triangle function) and develop Hy(s) as a polynomial in cos(s). Vetterli and Herley
[22] present approaches based on the theory of diophantine equations and on the theory of
continued fractions. Generally, using langer impulse responses gives rise ta more regular
wavelets, that is. those having a larger number of derivatives and vanishing moments. Table
14-2 presents three pairs of scaling vectors, and Figure 14--34 shows the corresponding bior-
thogonal wavelets, constructed by the procedure outlined in Figure 14-23.

TABLE 14-2 DISCRETE FILTER SEQUENCES FOR THE BIORTHOGONAL
WAVELETS IN FIGURE 14-33 (FROM[21] AND {22]).

Laplacian _
analysis filter: A, = ~2{-.05 25 6 .25 -.03|

Laplacian
synthesis filter:h, = J2[—.0107 -0536 2607 6071 2607 —.0536 -.0107|
Spline 2 filter:  h, = J2[.25 .5 251

Spline 4 filter: iy = %[3 6 —16 38 90 38 —16 —6 3]’

18-point

analysis filter: A, = [0012 -.0007 -.0118 0117 0713 -.0310 ~2263 .0693 7318
J318 0693 2263 —0310 0713 0HT7 -0118 -.0007 .0012]°

|&-point

synthesis filter:y, = [.D012 0007 ~.0113 —0114 0235 0017 -.0444 2044 6479

5479 2044 0444 0017 D235 -0114 -01D 0007 0012}

14.4.7.4 Two-dimensional Biorthogonal Wavelets

The biorthogonal wavelets for the forward two-dimensional transform are given by Eq.

(79), as before. For the inverse transtorm, they are

Py = 90w Py = pney)  ¥ix ) = B0w)

(92)

The implementation of the two-dimensional biorthogonal FWT is a straightforward exten-

sion of the orthonormal case.

14.5 WAVELET SELECTION

The ideal basic wavelet would be an oscillatory function of brief duration (i.e., having com-
pact support or small amplitude outside a short interval) where all dyadic translations of
binary scalings of the function are orthonormal. The Haar function illustrates this. Other
available wavelet functions may fail to meet all these criteria.

First, while the basic wavelet must go to zero as |x| — o at least as fast as 1/x in order
to meet the admissibility criterion, many wavelets still have infinite, rather than compact,
support. This means that they are nonzero over the entire real line. except for their zero-
crossings. It may be that dyadic translations of the wavelet at each scale are orthogonal. but
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(e) "

Figure 14-34  Examples of biorthogonal wavelets: (a) Laplacian pyramid
wavelet [21}; (b) linear spline function wavefet [21]; (¢) 18-point linear phase
wavelet [22]

wavelets at different scales are not. Similarly. it may be that different scales of the wavelet
are orthogonal, but some or all dyadic translations at the same scale are not.

Notice that some wavelet transforms (e.g., the CWT) are overcomplete, while others
(e.g., the DWT) are not. For overcomplete transforms, the restrictions on the basis functions
are relatively mild. For transforms involving little or no redundancy, such as the orthonormal
discrete wavelet transform, the restrictions placed on basis functions are much more severe.

The biorthogonal DWT requires two scaling vectors and two wavelet vectors rather
than one each, but this does not increase the computational burden of the process. The
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biorthogonal transform, however, affords a much wider choice of wavelet shape than the
orthonormal transform, so it is preferable in many applications.

The choice of a basic wavelet is usually governed by the application. For lossless
compression. for example. an orthonormal or biorthogonal basis is desirable or required,
since the objective is to represent the function exactly and compactly. An overcomplete
transform increases the amount of data required to represent the function exactly. If, on the
other hand, the goal is lossy compression, the detection of specific components such as
edges in an image, or noise removal, then it is more important to select a wavelet that is sim-
ilar to the components of interest.

Wavelet transforms offer the promise of compact representation and efficient detec-
tion of image components that match the waveshape of the chosen wavelet. The orthonor-
mal wavelet transform is inherently compact, but it does not behave well under slight shifts
of the image components [24]. An image component that matches a wavelet will appear
compactly in the transform if it happens to align with one of the dyadic positions of the
wavelet, but not otherwise. For this reason, non-orthonormal transforms often perform bet-
ter in detection tasks.

14.6 APPLICATIONS

Although wavelet transforms are relatively new on the image processing scene, they have
already begun to see application in practice.

14.6.1 Image Compression

The discrete wavelet transform decomposes an image into a set of successively smaller
orthonormal images. Further, while the gray-level histogram of the original image can be of
any shape, those of the wavelet transform images are commonly unimodal and symmetrical
about zero [14]. This simplifies an analysis of the statistical properties of the image.

Often, one can either coarsely quantize or eliminate entirely those coefficients having
small value. Mallat and others have studied the possibility of reconstructing an image from
only the zero-crossing locations of its wavelet transform [25]. While perfect reconstruction
is generally impossible [7], many images can be adequately approximated by this highly
compact coding.

14.6.2 Image Enhancement

The DWT decomposes an image into components of different size, position, and orienta-
tion. As with linear filtering in the Fourier frequency domain, one can alter the amplitude of
coefficients in the wavelet transform domain prior to obtaining the inverse transform. This
can selectively accentuate interesting components at the expense of undesirable ones. Fig-
ure 14-35 shows an example of edge-specific contrast enhancement [26,27]. Notice how
the four peaks in the histogram are separated by the process.

14.6.3 Image Fusion

Image fusion combines two or more registered images of the same object intoa single image
that is more easily interpreted than any of the originals. This technique finds application in
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A

Figure 14-35 Image enhancement by multiscale gradient: (a) original: (b) enhanced by
histogram equalization; (c) enhanced by scale-variable edge stretching. Grgy-}evel
histograms appear below each image (Courtesy Jian Lu, reprinted by permission from [26])

multispectral image interpretation, as well as medical imaging, where images of the same
body part are obtained by several different imaging modalities.

Figure 14-36 shows two examples of image fusion using a wavelet transform [28]. In
each case, the two images were combined in the transform domain by taking the maximum-
amplitude coefficient at each coordinate. An inverse DWT of the resulting coefficients then
reconstructed the fused image. In the first case, the process combined the in-focus informa-
tion from the two input images. In the second case, the anatomic information of the MRI
image was combined with the functional information of the PET scan to produce a conve-
nient composite.

14.7 SUMMARY OF IMPORTANT POINTS

1. A basic wavelet is an oscillatory function that dies out as |x| — ee. Its spectrum resem-
bles the transfer function of a bandpass filter.

2. A set of basis functions for a wavelet transform can be generated from dilations and
translations of a basic wavelet.

3. The continuous wavelet transform represents a signal as a function of two variables:
time and scale. It represents an image as a function of three variables: two for spatial
position and one for scale.
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Figure 14-36 Wavelet transform image fusion: (a). (b) images taken at different focus settings:
(c) fused image: (d) MRI image: () PET image: (f) fused image (Courtesy Henry Hui Li. reprinted
by permission from [28}))

4.

bd

The wavelet series expansion represents a periodic or finite-length signal with a series
of coefficients.

. The discrete wavelet transform represents an N-point signal with N coefficients. It

represents an N-by-N image with N2 coefficients.
The Haar transform is the simplest discrete wavelet transform.

The DWT can be implemented directly or, indirectly, by the fast wavelet transform
(FWT, or herringbone) algorithm.

. The separable two-dimensional DWT can also be implemented by the FWT algorithm.

Biorthogonal wavelet systems permit the DWT to use less restricted (e.g., symmetric)
wavelets with compact support.

PROBLEMS

| B

2.

Which wavelet transform would you expect to perform best in detecting lines in an engineering
drawing? Why?

Which wavelet transform would you expect to perform best in compressing fingerprint images?
Why?
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. Which wavelet transiorm would you expect to perform best in image fusion? Why?
. Which wavelet transform would you expect te perform best in detecting stars in a telescope

image? Why?

. Which wavelet transtorm would you expect to perform best in segmenting aerial photographs on

the basis of texture? Why?

Develop a program implementing the continuous wavelet transform, and use the program to
locate the notes in a digitized recording of a simple song.

. Develop a program for computing a wavelet series expansion of a signal, and use the program to

compress a signal,

. Develop aprogram for computing the discrete wavelet transform of a signal, and use the program

to locate transient components in a signal.

Develop a program for computing a continuous wavelet transform of an image, and use the pro-
gram to locate the spots in a simple image.

Develop a program for computing a wavelet series expansion of an image, and use the program
{0 COMPress an image.

. Develop a program for computing the discrete wavelet transform of an image, and use the pro-

gram to locate edges in an image.
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CHAPTER 15

Optics and System Analysis

15.1 INTRODUCTION

So far in Part 2. we have developed a set of analytical tools that will allow us to analyze the
components commonly used in digital imaging. Now we apply those tools to develop ways
to quantify the performance of digital image-processing systems.

Two circumstances often arise that require a workable method for system analysis,
One is when we are called upon to select or configure a digital imaging system for a par-
ticular type of use. Here, a suitable sct of components or an entire system must be selected
from a set of alternatives, usually in light of cost constraints.

The other circuinstance arises each time a system user approaches a new problem.
Normally, the user has control over only one link in the image-processing chain: the com-
puter program that performs the digital processing operations. The performance of the other
system components, from the digitizer to the display, is usually preset by hardware design,
although selection options may be available. Proper maintenance is also required for best
performance.

One must be able to specify what effect the hardware portion of the system will have
upon an image. so as to compensate for these effects in software. In this way, the processing
program can be fashioned to accomplish a given goal. without having concomitant degra-
dations spoil the project.

Before a particular digital imaging problem can be approached propetly, one must
confirm that the instrumentation in use is adequate for the task. In particular, the resolution,
magnification, number of pixels. pixel size, and pixel spacing must be appropriate for the
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tasks at hand. There should be a balance among the optics (camera, telescope, microscope.
etc.). the image sensor (camera), the image digitization, storage and display hardware, and
the algorithims used for processing and quantitative analysis of the digital images. In this
chapter, we seek a set of workable guidelines for establishing such a balance.

A detailed analysis of all aspects of an image-processing system can become quite
complex. and this extends beyond our scope. The approach used here is to make a few
well-founded assumptions that lead to simple and broadly applicable rules of thumb. If nec-
essary, a margin of safety can be added to guard against error in the underlying assumptions.
In most cases of practical interest. the resulting accuracy will prove adequate.

15.1.1 Performance Analysis of a Digital Imaging System

The question we address here is. How can one analyze a system to determine whether it ts
adequate and cost effective for carrying out the image processing and quantitative image
analysis projects for which 1t is intended”? We seek to establish a balance among the various
components in the imaging chain. so that the overall performance is adequate for the task
and none of the components represents overkili compared to what is required to do the job.

We address the topics of spatial resolution and image sampling, with the goal of
establishing a balance between the performance of each of the system components and that
of the overall system. The aim is to relate the performance of the various components to that
of the system as a whole.

Resolution. Considerable confusion often arises around the concept of resolution.
To avoid this confusion, one needs a clear definition of what resolution is and a clear under-
standing cf the goal of any analysis of the resolving power of an imaging instrument.

For our purposes, the key resolution question is: Will the system adequately repro-
duce the small detail in the objects of interest? This question can be answered readily if we
first have a concise, quantitative answer to another question; How well does the system
reproduce objects of different sizes? Then, assuming that we know the size of the detail of
interest. we can obtain an answer to the key question of resolution.

To approach the latter question, we apply the tools of linear system theory (Chapter 9)
to those components of the system that precede the actual sampling (i.e., the conversion
from analog to digital form). These components can be assumed to behave as linear, shift-
invariant system components, in which case linear system theory is applicable.

In particular, we analyze the image-forming optics and the image sensor (camera) to
determine the effective size and shape of the scanning spot. From this come the imaging
system point-spread function and its equivalent, the imaging system MTF. The latter forms
the quantitative specification of resolution we require for the resolution portion of the
analysis.

Sampling. The key question regarding the parameters of the sampling process can
be stated as: How many pixels are required, and what must their spacing be, to ensure that
the digitized image adequately represents the content of the optical image? This involves an
entirely different set of considerations from those associated with resolution. Sampling is an
extremely nonlinear process, and failing to distinguish between sampling and resolution
considerations can create considerable confusion.
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To approach the sampling question, we apply the sampling theorem (Chapter 12) to
the analog-to-digital conversion step. This yields a simple way to determine whether the
pixel spacing is small enough, and it describes what happens if it is not.

Image Display. The third key gquestion in digital imaging system analysis can be
stated as: Will the displayed image adequately represent the objects of interest? In applica-
tions involving only quantitative analysis, image display may be of little consequence or
even unnecessary. In other applications—particularly those involving image processing
and human interpretation—it is a vital element. As before, image display involves consid-
erations different from those of resolution and sampling, and it deserves a separate analysis.

We consider the image display process to be an interpolation step and again apply the
sampling theorem. This yields a way to determine whether the display process is adequate
and gives guidelines for improvement when it is not.

Practical Considerations. Ouce each of the three aforementioned basic pro-
cesses has been analyzed, one can combine the three results to determine whether the over-
all system design is balanced and adequate for the specific applications for which it is
intended. Finally, one must assess the effect of each of the assumptions and approximations
that have been made in the analysis and the effect that noise in the system will have.

In earlier chapters, we developed tools to describe the effects of sampling, interpola-
tion, and linear filtering. Before we can analyze complete systems, we need a method to
describe the effects of the lenses that are usually a part of the system. In the following sec-
tion we develop techniques for analyzing the performance of optical systems, and in the
remainder of the chapter we apply acollection of techniques to the analysis of complete dig-
ital imaging systems.

15.2 OPTICS AND IMAGING SYSTEMS

Optical imaging systems play an important role in digital imaging because they almost
always appear at the front end (and frequently at both ends) of an image-processing system.
If photography is involved prior to scanning, then another lens system must be included in
the analysis.

Optical systems produce two effects upon an image: projection, as discussed in Chap-
ier 2, and a degradation due to the effects of diffraction and lens aberrations. Projection
accounts for inversion of the image in its coordinate system (i.e., a 180-degree rotation) and
for magnification. The field of physical optics—particularly, diffraction theory—provides
the tools to describe 1image degradation that is due to (1) the wave nature of light and (2) the
aberrations of imperfectly designed and manufactured optical systems. Accordingly, we
next present a brief development of important points from physical optics. For a more
detailed treatment of optical system analysis, the reader should consult an optics text. (See
Appendix 2.)

15.2.1 Basics of Optical Systems

Figure 15-1 shows an optical system consisting of a simple lens. A point source at the origin
of the focal (object) plane produces a spot image at the origin of the image plane. The image
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Focal plane Image plane

Figure 15-1 A simple imaging system

produced by a point source is called the point-spread function (PSF) in optical terms. 1t will
take on its smallest possible size if the system is in focus. that is, if

1,11 (n
. d, d f
where fis the focal length of the lens. By this nomenclature, the focal plane is that planc in
the object space that forms an in-focus image on the image plane. This differs from the term
focal plane shutter that is used \n photography to describe a shutter located at the film
(image]j plane.

Itis intuitively clear that increasing the intensity of the point source causes a propor-
tional increase in the intensity of the spot image. This means that the lens is a two-
dimensional linear system. It follows that two point sources produce an image in which the
two spots combine by addition.

If the point source moves off the z-axis to a position (x,. y,), then the spot image
moves to a new position given by

x; = -Mx, v = -My, )
where
d
M= 3
d, 3

is the magnification of the system.

. For reasonably small off-axis distances in well-designed optical systems, the shape of
the spot image undergoes essentially no change. Thus, the system can be assumed to be shift
invariant (or, in optics terminology, isoplanatic), as well as linear, and the PSF is then its
impulse response.

15.2.1.1 Linearity

An opaque object illuminated from the front (epiilluminated) or a light-absorbing object
illuminated from behind (transilluminated) can be thought of as a two-dimensional distri-
bution of point sources of light. The image of such an object is a summation of spatially
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distributed psf spots. This means that the image can be described as a convolution of the
vbject with the PSF of the optical system.

' Furthermore, an isoplanatic optical system can be completely specified by either its
two-dimensional pst or its two-dimensionai optical transfer function (OTF). The OTFis the
two-dimensional Fourier transform ot the PSF. Eq. (2) accounts for the projection per-
formed by the optical system, while convolution with the PSF accounts for the loss of detal
that is inherent in the imaging process.

15.2.1.2 Shift Invariance

Physical lens systems are not truly shift invariant. Typically. image sharpness degrades
(i.c.. the PSF expands) as one moves oft the axis, but the shitt variance s a gradual phe-
nomenon. For a high-quality lens. the PSF, though not an impulse. at least is nonzero only
over a small region. Since the shift variance is a gradual phenomenon, we can assume that
each point is surrounded by a neighborhood of shift invariance. In the field of optics, these
neighborhoods are called isoplanatic patches. Thus. if not globally shift invariant, the opti-
cal system at least can be assumed locally shift invariant over the small extent of the PSE,
and convolution is stifl a valid model tocally.

To an approximation that we can use routinely, an optical imaging system i~ &
two-dimensional, shift-invariant linear system. H necessary, we can model the system with
a PSF having a spatially variant parameter. While this technigue canr account for most typ-
ically encountered anisoplanatism, it is usually unnecessary in the analysis of high-quality
lens systems.

15.2.1.3 Basic Relations

Eqs. (1) and (3) give rise to a set of formulas that are useful in the analysis of optical sys-
temns. In particular,

dd, d, M
= A - T g T 4
/ d+d, M+1 d’M+I
fd; . !
= LY - e (%)
a7
and
fd, (M +1)
= = f— 6
d, 4 -f f M (6)

15.2.2 Coherent and Incoherent [llumination
In Figure 15-1, the point source emits a spherical light wave. The E-field amplitude as a

function of time and space can be written as

- = Qs 2t 3 ﬂ'_))
u(x,_).\_.l)—;cosL—2ﬂ1+2)r(lt+ 7 ] (7)

where
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r= Jet+yie? 8)

A is the mean wavelength of the light, ¢ is the speed of light, and ¢(z) accounts for the phase
fluctuation with time. Usually, this is random. Note that ¢(r) also accounts for the band-
width of quasi-monochromatic light. For convenience, we define the wave number, which
is actually a frequency variable, as

2n \
k=22 9)
1 (9)
and move to complex exponentials as before. Now Eq. (7) becomes
- = A ks gk ler+ 9(0)] \
u(x,y, z,t) = Re Ze e «10)

In this section, we are concerned with the spatial distribution of light intensity in the spot
image. We shall, for the time being, drop the ®e{ } and the time-varying components as
being understood.

Under monochromatic illumination, the object is a spatial distribution of point
sources at the same temporal frequency ¢/A. If all the point sources have a fixed phase rela-
tionship, the illumination is called coherent. They may still fluctuate randomly, but they
remain in synchrony, preserving fixed relative phase. If, on the other hand, the point sources
vary in phase independently of each other, the illumination is called incoherent. In that case.
the phase of each point source varies independently of its neighbors.

In most instances. the human eye or some other time-averaging sensor makes ultimate
use of the image. Under time averaging, the random fluctuations of ¢(¢) are averaged out.

In coherent illumination, since the point sources fluctuate in unison, the fixed phase
relationship permits stable patterns of constructive and destructive interference to exist
among the point images. These stable patters of interference are apparent to a time-averaging
sensor. Thus, for coherent illumination. the convolution operation must be performed on the
complex amplitude of the electromagnetic waves.

In incoherent illumination, the random relative phase relationships cause interference
phenomena to average out to no net effect. Thus, the point images add statistically. This
behavior is modeled accurately if the convolution is performed on an intensity (amplitude
squared. or power) basis. Hence, in coherent illumination an optical system is linear in com-
plex amplitude, while in incoherent light the system 1s linear in intensity.

15.2.3 Image Quality Factors

The two factors that limit the image quality of an optical system are lens aberrations and dif-
fraction effects. Carefu! lens design can minimize, although never completely eliminate,
aberrations. Diffraction effects result from the wave nature of light and the finite size of the
lens. Since image-processing equipment usually employs high-quality optics with reia-
tively low aberration levels, itis often diffraction that places the upper limit on image qual-
ity. In the next section, we derive the PSF of an aberration-free (diffraction-limited) optical
system and indicate how to account for aberrations. We will be able to specify an optical
system by its diffraction-limited PSF, by manufacturer-supplied PSF data, or by an exper-
imentally determined PSF.
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15.3 DIFFRACTION-LIMITED OPTICAL SYSTEMS

Since we have argued that, to a reasonable approximation, an optical system is a shift-
invariant linear system, we need only to find an expression for either the PSF or the transfer
function of the system. In Figure 15-1, the point source emits an expanding spherical
wave, part of which enters the lens. The high refractive index of the lens stows the wave.
Since the lens is thicker near the axis than near the edges. axial rays are slowed more than
peripheral rays. In the ideal case, the variation in thickness is just right to convert the
expanding spherical wave into another spherical wave converging toward the image point.
Any deviation of the exit wave from spherical form is, by definition, due to aberration.
Thus, a diffraction-limited optical system produces a converging spherical exit wave in
response 1o the diverging spherical entrance wave of a point source.

15.3.1 Lens Shape

For a thin, double-convex lens having a diameter that is small compared to its focal length,
the surfaces of the lens must be spherical to produce a spherical exit wave. Furthermore, the
focal length f of the lens is given by the equation

jl:mA”(_L-LJ (o

where n is the refractive index of the glass and R, and R, are the radii of the front and rear
spherical surfaces of the lens [1].

For lens diameters that are not small in comparison to £, spherical lens surfaces are not
adequate to produce a spherical exit wave. Such lenses do not converge peripheral rays to
the same point on the z-axis as they do near-axial rays. This phenomenon is called spherical
aberration, since it is an aberration resulting from the (inappropriate) spherical shape of the
lens surfaces. High-quality optical systems employ aspheric surfaces and multiple lens ele-
ments to reduce spherical aberration.

15.3.2 Apertures and the Pupil Function

In Figure 15-1, the spot image formed by the truncated converging spherical wave is
exactly the PSF of the system. Figure 152 shows a different, but equivalent, way to create
the same image. Here, a converging spherical wave is truncated by an opaque screen con-
taining an aperture. The aperture represents the extent of the lens in Figure 15-1. More com-
plicated optical Systems may contain several lenses and apertures, or stops. All apertures,
however, can be projected through to the exit pupil to establish an effective exit aperture of
the system. In Figure 15-2, the aperture represents the effective exit aperture of any
aberration-free lens system.

The spatial distribution of transmittance in the screen containing the aperture is the
pupil function. Thus, for a circular aperture of diameter a centered on a coordinate system

(x4» V). the pupil function is
2.2
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For ordinary apertures, the pupil function assumes only the values 0 and 1. It is possible,
however, to implement variable transmittance pupils using photographic or metal film dep-
osition techniques.

For aberration-free systems, the pupil function is real valued; otherwise it would dis-
turb the spherical shape of the exit wave. Complex-valued pupil functions are used to model
optical systems with aberrations.

While the analysis that follows permits the use of arbitrary pupil functions, the case of
most practical importance is the circular aperture.

The E-field of the unit-amplitude converging spherical wave in Figure 15-2 can be
written as

w(xi, ¥, %) = I]_?e_j” (13)

using the conventions described in connection with Eq. (10). R is the distance of the point
(x;» ¥,» 2;) from the origin of the image plane. In order to determine the distribution of light
on the image plane, we shall make use of an important principle of wave motion.

15.3.3 The Huygens-Fresnel Principle

One of the most interesting and useful properties of optical wave propagation is embodied
‘n the Huygens-Fresnel principle. This principle states that the field produced by a propa-
gating wave front is the same as that which would be produced by an infinity of secondary
point sources distributed all along that wave front [1]. In the case of a wave propagating
through an aperture, the field at any point behind the aperture is the same as that which
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would be produced by filling the aperture with secondary point sources of the proper ampli-
tude and phase. Mathematically, the Huygens-Fresnel principle says that the field at the
point (x;, y;) in the image plane is given by

wixy) = 5 J _[ k(kgr Vo) e cos (8)dx, dy, (14)
A

(See Figure 15-3.) The term u,(x,, y,) is the field in the aperture, and the integration is per-
formed over the aperture. The distance from the point of interest at (x;, y)) to the point (x,, v,)
in the aperture is r, while 81is the angle between the line connecting those two points and the
normal to the plane of the aperture.

For our purposes, 8 is smalf enough that cos (6) can be assumed to be unity. We can
extend the integration limits of Eq. (14) to infinity if we multiply the converging wave by
the pupil function. This effects truncation by driving the field to zero everywhere in the
pupil plane except inside the aperture. Under these conditions, Eq. (14) becomes

VT Vo krl ke
ui(x;, y;) = j_;"-[,,, J-Vm[’(xay )’”)l—ze /kk;e-’ dxndyu (15
This distance from the convergence point at the origin of the image plane to the point (x,, ¥,)

in the aperture is
R = [2+\2+d? (16)

and the distance from (x,. y,) to (x;, ) 1s

ro= JOg-x) (- v - d? an

In Eq. (15), the terms 1/R and 1/r are well approximated by 1/d;. In the exponentials, how-
ever, the terms R and r have the large coefficient £, and we must use a better approximation.

15.3.4 The Fresnel Approximation

We can factor 4, out of Egs. (16) and (17) and write them as

Pupil plane

XA

Image plane

Figure 15-3 Imaging geometry
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R = d, H(d,-)+(d, (18)
and

- 2 - 2
rea i (A () (19

i i

The binomial series expansion of the square root is

2
Nl+g = I+l§’—%+'~ lgl <1 20

If we use only the first two terms of the expansion, we produce the Fresnel approximations
[1] to the distances in Eqgs. (18) and (19):

2 2
a5 2

i

=%\ 1 ¥i-¥ 2
~d ( i u) ‘( ¢ ”):| 2
r I[l+ ——d +2 d. (22)

i

15.3.5 The Coherent Point Spread Function

Substituting the foregoing approximations into Eq. (15) produces

B A V_a) ’
ui(x;,v;) = jldiz"iwj-mp(xu,yn)e |:l +2(d,) +(di j]

r , ) (23)
jd | | 1(/‘:"%) ()”—ya)
x ¢ ] +3 e + 4 dx,dy,
After expanding the exponents and collecting terms, we can write Eq. (23) as
GKRAYF +57) poe g
wilx, yi) = s I I Py, y)e AN g gy 24)
JjAdy cood e
If we make the variable substitutions
b X f_ e
X, d hA id, (25)

then Eq. (24) becomes
i) = Bennines “‘f’j J' P(Adixg, Adyy)e RS g gy (a6)

We now have the extremely important result that the coherent PSF is, aside from a complex
coefficient, merely the two-dimensional Fourier transform of the pupil function.

The complex exponential coefficient in Eq. (26) affects only the phase in the image
plane, and this is ignored by commonly used image sensors. Thus, for our purposes, the
term in front of the integral is merely a complex constant.
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In Figure 15-2, the point source is on the z-axis. The preceding development can be
done with the source located off the axis, and it produces the same result, although shifted
as dictated by Eq. (2). This means that, under our assumptions, the system is indeed shift
invariant. As the image point moves off the axis, however, the assumptions begin to break
down. Thus, the PSF of an imaging system does indeed change (for the worse) in the periph-
ery of the field. It is customary, however, to specify an imaging system by its on-axis PSF.

Eq. (26) gives the amplitude distribution in the image plane produced in response to
a point source at the origin of the focal plane. The complex terms in front of the integral
relate the brightness of the image to that of the point source and describe the phase varia-
tions in the image plane. Since typical image sensors ignore phase information, it is of little
interest to us here. Furthermore, the overall brightness of the image is most easily deter-
mined by a separate analysis, taking into account that portion of the source radiation inter-
cepted by the lens. Thus, the only parameters of interest to us are those that affect the quality
of the image-—namely, the shape of the PSF.

We can simplify the notation considerably if we give up absolute amplitude calibra-
tion and ignore the terms in front of the integral. Then we can write the convolution relation
between the object (subscript o) and the image (subscript i)as

w(x;, i) = j j h(x, = X, ¥; = Yo us(Mx,, My,)dx, dy, 27)

where the impulse response is given by
h(x, ¥) = F{p(Adux,, Adiy,) } 28

(n Eq. (27), the term u,(x,, y,) is the amplitude distribution of the object, and u,,(Mx,, My,)
is the object after projection without degradation into the image plane. Thus, we can con-
sider imaging as a two-step process: geometrical projection, followed by convolution in the
image plane with the PSF. The magnification factor M is negative unless the coordinate
axes in the image plane and focal plane are rotated 180 degrees with respect to each other.

Frequently, it is most convenient to perform our analysis in the focal (object) plane.
In that case, we can assume that convolution with the psf occurs in the focal plane and
merely substitute df for di in Eq. (28). We then convolve the resulting psf with the
unprojected object u,(x,,, v.}.

15.3.6 The Coherent Optical Transfer Function

The transfer function of an optical system is merely the Fourier transform of the impulse
response in Eq. (28). This, however, is itself a Fourier transform—that of the pupil function.
Transforming a function twice merely reflects it about the origin, so the coherent transfer
function is given by

H(u,v) = p(-Adu, -Ad;v) (29)

In the common case of symmetrical apertures, the 180-degree rotation has no effect. Thus,
the pupil function, properly scaled, is the coherent OTF.
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15.3.7 The Incoherent Point-Spread Function

A distribution of point sources described by Eq. (10) is adequate to model three kinds of
illumination: monochromatic, narrow-band spatially coherent, and narrow-band incoher-
ent. For monochromatic illumination, ¢(¢) is constant. If the light is spatially coherent, ¢(r)
is random, but bears a fixed relationship to all other points in the image. In the case of inco-
herent light, ¢(¢) is random at each point and independent of its neighbors. In this case, the
observed intensity at a point (x,. y;) is

L(x, v = 8{w(x, y)ui (%, y)} (30)

where the expectation operator £{ } represents the time average over a period that is long
compared with the vibration period of the light source. Since the ;(x;, y;) that results from
a point source at the origin of the focal plane is given by Eq. (27), we can substitute into
Eq. (30) to obtain

Ii{x, y) = 8{'[ I h(x; = Xy, yi — ) u,(Mx|, My,)dx, dy,
o €N
XJ. j R (x = x5y = 220w (M Xy, My,)dx, d)’z}

Since A(x, y) is independent of time, we can rearrange Eq. (31) to yield

1(x;, y) =J J J. J A(x = xy, ¥ = y)R*(x, = x5 ¥~ ¥2) a2

X & u,(Mx), My )ut(Mx;, Myy) Ydx, dy, dx, dy,

The expectation term is merely the temporal cross-correlation function of u,, at the points
(x1, y1) and (x,, y,). Since, in the case of incoherent illumination, the cross-correlation of dis-
tinct image point sources is zero, this is a spatial impulse. Furthermore, if x| = x, and y; = y,, the
value of the expectation term is merely the intensity of the image at that point. This means that

E{u,(Mx), Mypuwh(Mxy, My2)} = 1,(Mxy, My,)8(x; - x5, 1= ¥2) (33)
Substituting this into Eq. (32) and carrying out the integration to eliminate the variables x,
and y, produces

L = [ [I0Ge=s - 1. Ms My, as, (4)
where the variables x,, and y, have been substituted for x; and y,.

Eq. (34) is atwo-dimensional convolution integral. It indicates that, under incoherent
ilumination, the system is linear in intensity, and the PSF is the squared modulus of A(x,v),
the coherent PSF. This, in turn, is the inverse Fourier transform of the pupil function, given
by Eq. (29). Thus, the incoherent PSF is the power spectrum of the pupil function.

15.3.7.1 Circular Aperture

For alens with a circular aperture of diameter « in narrow-band incoherent light having cen-
ter wavelength A, the PSF is
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{3

where J; (x) is the first-order Bessel function of the first kind [1]. The constant r, a dimen-
sional scale factor, is

h(r) = 12 (35)

rp= — (36)

and r is radial distance measured from the optical axis of the image plane; that is,
r= Jxt+yi (37)

15.3.8 The Incoherent Optical Transfer Function

The normalized Fourier transform of the incoherent PSF is called the incoherent OTF.
Since the incoherent PSF is the power spectrum of the pupil function, the autocorrelation
theorem implies that the incoherent OTF is the normalized autocorrelation function of the
pupil function:

J J. p(Adix, Ad;y)p(Adix — u, Ad;y - v)dx dy
Ry ).
R,(0,0) ~

OTF(u,v) = (38)

I j p*(Ad;x, Ad,y)dx dy

15.3.8.1 Circular Aperture

For alens with a circular aperture of diameter ¢ in narrow-band incoherent light having cen-
ter wavelength A, the OTF is [1]

H{q) = %{cos"[%} - sin [cos"[%ﬂ} (39)

where ¢ is the spatial frequency variable, measured radially in two-dimensional frequency
space. It is given by

g = Jut+v? (40)
where « and v are spatial frequencies in the x and y directions, respectively. The parameter
£ called the optical cutoff frequency. is determined from

1 a

f. = il v (41)

Figure 154 jllustrates, for circular and rectangular apertures, the relationships among the

pupil function and the coherent and incoherent point-spread and transfer functions. Notice

that under coherent illumination the OTF is flat out to the cutoff frequency, while under

incoherent illumination it drops off monotonically. Notice also that the cutoff frequency in
incoherent light is twice as high as it is in coherent light.

(N3
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Figure 154  Optical properties of rectangular and circular apertures
15.3.9 Optical Transfer Function Design

If the exit pupil of an optical system is an aperture, the pupil function p(x, v) takes on only
the values O and I. We can thus exert some control over the OTF by careful selection of the
aperture. In fact, since photographic-or metal film deposition techniques can be used to
implement pupil functions that take on intermediate values, we can exert considerable con-
trol over the OTF.

For example, Frieden [2] has computed the circular pupil functions that maximize
the OTF at particular frequencies. Several of these functions and the corresponding OTFs
are shown in Figure 15-5. Notice that the circular aperture is very nearly optimal for max-
imizing the OTF at midrange frequencies, and little improvement by control of the pupil
function is possible. To maximize the OTF at lower frequencies, we let the transmittance
of the pupil fall off with increasing radius. This is called apodization. A central stop of
appropriate diameter is nearly optimal for maximizing the OTF at frequencies above the
midrange.

15.3.10 The Optical Transfer Function and the
Modulation Transfer Function

The complex-valued OTF specifies how well the iens can reproduce, in the image plane,
sinusoidal features that occur in the focal plane. The modulus (magnitude) of the OTF is the
modulation transfer function (MTF) discussed in Chapter 2.

High-quality lenses are designed to introduce a minimum of phase shift and often can
be assumed to be phaseless. This means that the OTF reduces to a (real-valued) MTF. For
many purposes, then, one can use the terms OTF and MTF more or less interchangeably. As
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stated before, the value of the MTF at a particular frequency is the factor by which the
contrast of sinusoidal features in the image at that frequency is multiplied in the imaging
process. .

Symmetry. Since the OTF is the two-dimensional Fourier transform of the PSF,
then if the PSF is an even function (i.e., symmetrical about the x- and y-axes), the OTF will
be real valued and, likewise, an even function. Since the lens is circular, the image it forms
of a point Source is likewise circularly symmetrical. Thus, a phaseless system, a circular
PSF and a circular, real-valued OTF go hand in hand.

In the equation in Figure 15-5, it is evident that the cutoff frequency can be improved
(increased) by going to a larger aperture or a shorter wavelength.

Since the PSF and the OTF are related by the two-dimensional Fourier transform,
having either enables onc to obtain the other.

15.4 IMAGING SYSTEM ABERRATIONS

In earlier discussions, it was mentioned that an aberration-free optical system produces a
spherical exit wave. Aberrations in the optical system cause the exit wave to depart from its
ideal spherical shape. This can be modeled as before, using Figure 15-2, if we generalize
the pupil function by defining it as

pla y) = Tlx, y)el¥inn 42
where T(x, y} is, as before, the ransmittance of the pupil and W(x, y) accounts for the aber-
rations. W(x, y) is the path length difference, in wavelengths, between the actual and the
ideal (spherical wave) propagation paths from the point (x, y) in the aperture to the origin of
the image plane.

15.4.1 Lens Aberrations

Proper choice of the aberration function W (x, y) allows one to model the effects of spherical
aberration, defocus, astigmatism, coma, field curvature, and image distortion [3). Field cur-
vature refers to the situation in which the surface of proper focus is a curved surface rather
than the (flat) image plane. Astigmatism refers to the condition wherein rays coming through
the exit pupil on the x,-axis are not focused to the same point as those coming through on the
y,-axis. Distortion causes straight lines in the focal plane to be imaged as curved lines in the
image plane. Coma refers to the situation in which rays from a single point in the focal plane,
but passing through opposite sides of the aperture, converge to different points in the image
plane.

While a complete study of optical aberrations is beyond our scope, two results from
that field are of interest. First, there exists no transmittance function T(x, y) that can drive
the OTF negative. Second, no aberration function W(x, y) can increase the OTF at any fre-
quency, but aberrations can indeed drive the OTF negative [3].

Figure 15-6 illustrates the effect of spherical aberration on the OTF [4]. [n this case.
there is a path length difference of A between axial and marginal rays, The image plane is
located midway between the marginal and axial focal distances.
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Figure 156 Effect of spherical aberration on the OTF (after O"Neill [4])
15.4.2 Defocus

Figure 15-7 illustrates the effect of various amounts of defocus [5,6]. Here defocus is
measured in units of wavelengths of defocus error (path length difference between axial
and marginal rays), not by the out-of-focus distance itself. The defocus OTF is symmet-
rical in defocus error; that is, an equal amount of positive and negative defacus produces
the same OTF. However, since defocus error is monotonic, but not linear, with defocus
distance, the OTF is not the same for equal distances in front of and behind the image
plane.

1.0

0 defocus

f —

Figure 15-7 Effect of defocus on the OTF (after Stokseth, {5])

Notice that, for the targer amounts of defocus, the OTF goes negative at some fre-
quencies. The effect of that is a black-for-white reversal of structures of that frequency in
the image. This is iflustrated in Figure 15-8. Frequency increases toward the center of the
spoke target (a) and the phase reversals are evident in the defocused image (b). The phe-
nomena of defocus and depth of field are discussed in more detail in Sec. 22.2.5.
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Figure 15-8 Phase reversals due to defocus: (a) in-focus image of a spoke target;
(b) defocused image (courtesy Prof. 1. T. Young, from [7])

15.5 IMAGING SYSTEM RESOLUTION

Figure 15-9 illustrates, in more detail than Figure 154, the point spread function of
diffraction-limited optical systems with circular and rectangular exit pupils.
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Figure 15-9  Summary of aperture properties
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The Rayleigh Distance. For alens with a circular aperture, the first zero of the
image plane PSF occurs at a radius
Ad
7y = 1.22— (43)
a
which is called the radius of the Airy disk (after G. B. Airy {8]). According to the Rayleigh
criterion of resolution (after Lord Rayleigh [9]), two point sources can just be resolved if
they are separated. in the image. by the distance & = r,,. (See Figure 15-10.)

Figure [5-10 The Rayleigh
Distance resolution criterion

In the terminology of optics, the Rayleigh distance defines circular resolution cells in

the image, since two point sources can be resolved if they do not fall within the same res-
olution cell.

The Abbe Distance. To a good approximation, the half-amplitude diameter of
the central peak of the image plane PSF is given by the Abbe distance (after Emst Abbe),
Ad;

a

D = (44)
With cameras imaging approximately planar objects, as in aerial photography and satellite
imaging, and in microscopy, it is convenient to perform size calculations in the focal plane,
rather than the image plane as above, since that is where the objects of interest reside. This
involves a 180-degree rotation and a scaling by the factor M (Eq. (3)). The pixel spacing and
resolution can then be specified in units of meters on the Earth’s surface, micrometers at the
specimen, etc. Spatial frequencies can then be specified in cycles per meter, cycles per
micrometer, etc., respectively, in the focal plane.

15.5.1 Cameras

When working with camera lenses, normally d>> d; =f, and the magnification M << 1 (Eq.
“3)). It is conventional to specify the aperture diameter by using the f-number:

= flg (45)
The f-number, or f-stop. of a lens is often written as f15.6, for example, which means that
a =fi5.6. The f-stop settings on camera lenses are commonly marked off in powers of the
square root of two. This way, a one-stop change either doubles or halves the aperture area
and, thus, the light intensity at the film (i.e., the exposure).
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The incoherent optical cutoff frequency in the image plane coordinate system of a
camera is

fe = alAd; = L/(Af#) (46)
The Abbe distance in the image plane is
rg = Ad/la=Af# (47)
and the Rayleigh distance (resolution cell diameter) in the umage plane is
& = 1.22AdJa=122f# (48)

These approximations usually serve well, except in the case of macro (close-up) photogra-
phy. where d; becomes significantly greater than f.

15.5.2 Telescopes

A telescopic imaging system aimed at a planet’s surface may be treated as a camera system
using the preceding formulation, although the surface may have to be modeled as spherical
rather than planar. (See Chapter 8.) In stellar astronomy, however, the separation between
objects is commonly specified in angular units (degrees. minutes, and seconds) rather than
in linear measure.

Stars are, for practical purposes, point sources. That is, the image size of astar is many
times smaller than the PSF of even the best telescope optics. Thus, each star produces in the
image plane, not its own image, but a copy of the optical system’s PSF. Itis then the size of
the PSF that determines how close together two stars can be (in angular measure) and still
be resolved in the image as separate entities.

It is conventional to specify telescopes by their aperture diameter and f~number
(Eq. (45)). As with camera systems, d; >> d, = f. and this approximation is almost always
valid. Under these conditions, the incoherent optical cutoff frequency in the angular coor-
dinate system centered on the telescope (in cycles per radian) is

fo=ald (49)
while the angular Abbe distance (in radians) is
ry = Ala (50)
and the angular Rayleigh distance (in radians) is
8= 1.22%/a oh

15.5.3 Microscopes

In optical microscopes, d, 1s fixed by the optical tube length of the microscope. The mechan-
ical tube length—the distance from the mounting flange of the objective lens to the image
plane—is commonly 160 mm. The optical tube length, however, is usually between 190 and
210 mm, depending upon the manufacturer. In any case, d; >> d; = fand M >> 1, except
when a fow-magnification objective lens (less than {0x} is tn use. Normally, it is the objec-
tive that determines the quality of the image, provided that the remaining optical compo-
nents in the instrument are clean and properly aligned.
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It is customary to specify the objective, not by focal length and aperture diameter. but
by power (i.e., magnification, Eq. (3)) and numerical aperture, which is defined as

NA = nsin(@) = al2d;=al2f (52)

where n is the refractive index of the medium (air, water, or immersion oil) located
between the specimen and the lens, and & = arctan(a/2d)) is the angle between the optical
axis and a marginal ray from the origin of the focal plane to the edge of the aperture. The
approximations in Eq. (52) assume small aperture and high magnification, respectively.
Microscope manufacturers commonly engrave the magnification power and numerical
aperture on their objective lenses, and the actual focal length and aperture diameter are lit-
tle used.

Often, the objective lens forms an image directly on the image sensor, and the pixel
spacing scales down from the sensor to the specimen by a factor approximately ¢qual to the
objective power. In other cases, additional magnification is introduced by intermediate
lenses located between the objective and the camera. The microscope eyepicces, which
figure into conventional computations of “magnification,” have no effect on pixel spacing.
Ideally, one would measure, rather than calculate, pixel spacing in a digital imaging
microscope.

Since d; = f, the resolution parameters are simpler if we scale them to the focal (spec-
imen) plane rather than working in the image plane. For a microscope objective, the inco-
herent optical cutoff frequency in the focal plane coordinate system is

fo = MalAd; = alAd, =2NA/A (53)
the Abbe distance is

_1l,di_ .4 A .
n=ate =AY T A 54

and the Rayleigh distance (resolution cell diameter) is
8 = 1.22r; = 0.61A/NA (55)

The foregoing approximations begin to break down at low power and high NA, which
normally do not occur together. One can compute and compare f and a. or the angles
arctan(a/2dy) and arcsin(NA/n), to quantify the degree of approximation.

15.6 THE ANALYSIS OF COMPLETE SYSTEMS

We now have the tools to describe the effects of optics, sampling, filtering, and interpola-
tion. In the remainder of this chapter, we apply this collection of technigues to the analysis
of complete digital imaging systems.

In this context, we seek methods to determine whether a particular system is adequate
and cost effective for carrying out the image-processing and quantitative image analysis
projects for which it is intended. We seek, as well, a balance among subsystem components
so that the overall performance of the system is adequate and no, component represents seri-
ous overkill.
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15.6.1 Resolution

Before we can develop a coherent approach to specifying the resolution of an imaging sys-
tem, we must state some definitions. These are by no means standard in the field, but they
form a workable basis upon which we can proceed.

15.6.1.1 Definitions

By resolution, we mean the ability of the imaging system to reproduce the contrast of
objects of various sizes. Of particular interest are the smaller objects, since they are fre-
quently the most troublesome. The term contrast refers to the differences in intensity within
an object or between the object and the surrounding background. If an object were to lose
comntrast as a result of the imaging process, it would appear fainter in the image than it actu-
ally was in real life. If its contrast were reduced to zero, it would disappear.

The most useful way to quantify the concept of object size is by spatial frequency, in
cycles or line pairs per unit of length. For our purposes, the most convenient expression of
the resolution of an imaging system is its MTF. Since this is a real-valued function, it
accounts only for the loss of contrast of objects during the imaging process, and not for any
positional (phase) shift. The complex-valued transfer function accounts for both and can be
used if necessary.

Commonly, however, the components of a digital imaging system can reasonably be
assumed (0 be phaseless, shift-invariant, linear systems. The transfer function of a phaseless
component is real valued (rather than complex valued) and is simply the MTF. Thus, the
MTF tells all there is to know about a phaseless, shift-invariant, linear system, and it serves
as a very convenient specification of resolution.

15.6.1.2 The Imaging System MTF

Digital imaging systems usually consist of a cascade of components through which the
image passes sequentially. The MTFs of these subsystems combine by multiplication to
form the averall MTF of the system. Thus, if the MTFs of the individual components are
known, the MTF of the entire imaging system can be determined by multiplying the indi-
vidual MTFs together.

The individual MTFs usually take on values less than unity over most of the fre-
quency range. Hence, their product will be everywhere less than the smallest MTF, and the
overall resolution of the system will be (perhaps considerably) worse than the weakest link
in the imaging chain.

Often, the components that are critical to resolution are those located between the
objects of interest and the analog-to-digital converter. For this reason, we use the imaging sys-
tem MTF as the basic specification for the resolution of a digital imaging system. By defini-
tion, this is the composite MTF of all the linear components in front of the analog-to-digital
converter.

The imaging system MTF of a digital imaging system is often determined principally
by two components: the primary imager (lens or mirror) and the image sensor (camera). The
primary imager is the main camera lens, telescope or micrescope objective lens, or tele-
scope mirror. In general, there may be several lenses. filters, mirrors, and beam splitters in
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the optical path from object to sensor. The primary imager. however, together with the cam-
era, is ordinarily the component that limits resolution and determines the overall quality of
the image.

Ideally (for best resolution), the PSF would be extremely narrow and without side
lobes. From Eq. (35), we see that the scale factor ry is a specification of the PSF width. It
becomes smaller with larger aperture, and it takes on smaller values at shorter illumination
wavelengths (Eq. (36)). The side lobes cannot be eliminated.

15.6.1.3 Aperture, Wavelength, and Resolution

In Figures 15—4 and 15-9, the PSF has its first zero at a radius of 1.227,. According to the
Rayleigh criterion of resolution, two point sources can just be distinguished if they are sep-
arated, in the focal plane, by that distance. (Recall Section 15.5.) Thus, a common way to
specify the resolution of an imagirig system is the Rayleigh criterion. Notice that resolution
improves (ry becomes smaller) at shorter wavelength and with larger aperture.

Another way to specify the resolution of a lens is by the diameter of the central peak
of the PSF. To a good approximation, the equivalent diameter of the PSF is also given by the
Rayleigh distance. Thus, like resolution, the PSF diameter becomes smaller at shorter
wavelength and with larger aperture.

To understand better how a larger aperture improves resolution, consider the opera-
tion of a microscope. As light parallel to the optical axis enters the specimen from below,
the small structures therein cause the light to be bent, due to the phenomenon of diffraction.
The smaller the structures, the greater is the angle of diffraction. For structures below some
limiting size, the light diffracted by them will exit the specimen at such an angle that it will
not enter the lens aperture and thus will not contribute to the formation of the image.
Increasing the diameter of the aperture will allow light diffracted by smaller structures to
contribute to the image.

15.6.2 Pixel Spacing

We have covered separate analytical techniques for the separate considerations of resolu-
tion, sampling, and display. Now we combine these to specify the complete digital imaging
system.

For microscopes, as well as for cameras imaging two-dimensional objects, it is
most convenient to refer all measurements to the focal (object) plane. This is easily done
if the appropriate magnification factors are known. These factors can be calculated or
measured with the aid of a calibration standard. Angular measure is most convenient for
telescopes.

Figure 15-11 shows the three parameters that should be well matched at the focal
plane. Here, = 1/T represents the highest spatial frequency of interest that is present in the
specimen. T is the period of the smallest detail of interest in the specimen. In the figure,
noise dominates the spectrum at ftequencies above F. F, = 1/Ax is the sampling frequency,
where Ax is the sample spacing, and f. is the cutoff frequency of the imaging system MTF.

As a rule of thumb, the diameter W of the scanning spo! (the imaging system PSF),
referred to the focal plane, should be no larger than one-half of 7. This means that one
scanning spot would fit within one half-cycle of the highest frequency sine wave. A larger
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Figure 15-13  Resolution and sampling parameters in the frequency domain

scanning spot is prone to reduce the contrast of the image detail, due to its action as a low-
pass filter.

15.6.2.1 The Nyquist Sampling Criterion

No matter how high the frequencies present in the object, no information above the cutoff
frequency of the imaging system MTF will be presented to the digitizer. This frequency, in
turn, can be no higher than the cutoff frequency of the OTF of the primary imaging lens or
mirror. Thus, if we set the folding frequency (half the sampling frequency) equal to the OTF
cutoff frequercy, aliasing will be avoided, and proper interpolation can reconstruct the image
from its sample points without error. Setting the folding frequency at the highest frequency



Sec. 156 The Analysis of Complete Systems 375

present in the image 15 called sampling according to the Nyquisr eriterion. This places the
pixcl spacing at Af#/2 for cameras, at A/2¢ (in radians) for telescopes. and at A/4NA for
microscopes,

15.6.2.2 The Rayleigh Sampling Criterion

The Rayleigh resolution eriterion vields a shightly relaxed specification for pixel spacing. If
the sample spacing is one-half the Rayleigh distance, then pixels will fall alternately upon
and hetween (just resolvable) point sources separated by that distance in the image. In this
case. the point sources can be resolved in the digital image. The pixel spacing will be
0.61 Af# for cameras. .61 A/a (in radians) for telescopes, and 0.305A/NA for microscopes.
This value is 22 percent larger than the Nyquist criterion. It places the folding frequency at
82 percent of the OTF cutoff frequency. Aliasing is possible in this case, but given the low
magnitude of the upper 18 percent of the OTF (particularly if aberration is present), it is
unlikely to be significant in many practical cases.

15.6.2.3 Oversampling and Resampling

Oversampling can be used as a remedy for display with a suboptimal spot shape (Chapter 3)
and for object measurement errors that result from making the image discrete. To display
good-quality detail (with an inherently Gaussian display spot), it may be necessary to over-
sample the image by a suitable factor o1 to resample the image by digital interpolation prior
to displaying it. (See Chapter 3.) In addition, 0 obtain accurate measurement data from the
objects in the digitized image, it may likewise be necessary to oversample or resample the
image prior to the analysis. or te build resampling or curve fitting into the measurement
algorithms.

As an example of the latter, consider the problem of measuring the perimeter of an
object in a digitized ymage of a microscopic specimen. If one programs a straightforward
perimeter-tracking algorithm that merely sums the center-to-center distances of adjacent
pixels on the boundary, one obtains, in actuality, the perimeter of a polygon that approxi-
mates the shape of the object. If the pixel spacing is chosen merely to satisfy the Rayleigh
criterion or the Nyquist criterion, this approximation may lead to unacceptabie errors. The
problem can be overcome if the algorithm instead fits arcs of curves (e.g., quadratics or
cubics) through the boundary points and measures perimeter distance along these. This
topic is addressed in Chapter 19.

15.6.3 The System MTF

Figure 15-12 shows a linear system model of a typical digital image-processing system. If
we assume that each link in the chain is a shift-invariant linear system, then the entire pro-
cess can be modeled with a single PSF or transfer function. The MTFs combine by multi-
plication, and the PSFs combine by convolution. The accuracy of the analysis will depend
on how well the assumptions of linearity and shift invariance fit each component.

The PSF or the transfer function of each component can be modeled analytically,
determined experimentally, or taken from manufacturers’ specifications. The lenses, for
example, can be assumed diffraction limited, the display spot can be assumed Gaussian, and
the MTF of the film is supplied by the manufacturer. The computer operation may or may
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Figure 15-12 The elements of an image processing system

not be linear, but this is the only subsystem in Figure 15-12 that is directly under the user’s
control.

Frequently, it is useful to reduce the system in Figure 15-12 to that shown in Figure
15-13. Here, all subsystems not under user control have been combined into an overall sys-
tem PSF, corresponding to the overall system MTF.

k(x.y)
input System Computer Qutpm
image response process * image
K(u,v)

Noise

Figure 15-13  An equivalent system to that in Figure {5-12

Component MTFs commonly take on values that decline (below unity) with increas-
ing frequency. When they combine, by multiplication, into the overall system MTF, the
result will normally be narrower than the MTF of any single component. When the com-
ponent PSFs combine, by convolution, the result will normally be broader than the PSF of
any single component. Thus, a collection of components, all having acceptable-looking
PSFs and transfer functions, may well combine to produce a system with disappointing
performance.

15.6.4 Noise Considerations

In Figure 15~13, the computer processes not the original input image, but that image
degraded by the system characteristics and contaminated with noise. In fact, noise is intro-
duced at every step in the process. Image sensor noise is usually the prime offender, exclud-
ing noise that may already be present in the input image. We can assame that the noise is
introduced at any position in Figure 15-12, provided that we account for the modification
of its power spectrum as it is filtered by the various linear subsystems.
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In Figure 15-11, the amplitude of the specimen is shown to fall off with increasing
frequency, while that of noise does not. This is typical of actual specimens and the common
noise sources, most of which can be assumed to be white noise. Thus, thete are three ways
to lose the fine detail in a specimen: to have it attenuated by the imaging system MTF (too
low resolution), to have it corrupted by aliasing (toc coarse sampling), and to have it buried
in noise. In the last case, it is necessary to eliminate the offending sources of noise before
proceeding with the design.

One potentially devastating noise source is the analog video recorder. The best situ-
ation is to avoid recording altogether and digitize the analog signal as close to the image
sensor as possible. A second choice is to use a video recorder of instrumentation quality.
Only when it is absolutely necessary or when image quality requirements are not critical
should one consider the use of a videocassette recorder. Such a device alters the video signal
in ways that severely degrade the quality of the digital image that can be obtained.

Noise reduction technigues are treated in Chapters 11 and 16. For now, it suffices to
say that it serves no purpose to accurately image, sample, and display frequencies at which
the signal is buried by noise. One should, however, ensure that high-frequency noise not be
present ininstances where it can be aliased down to frequencies at which signal information
is present.

15.6.5 System Design

in a well-balanced system, (1) the noise will dominate only at frequencies above the highest
frequency of interest in the image, and (2) the imaging system MTF will pass information
at frequencies where the subject has content that is of interest and attenuate information at
frequencies where the subject’s detail is buried by noise. Following that, (3) the sampling
frequency will be chosen to be high enough to prevent aliasing.

This principle can also be stated in the spatial domain: In a well-balanced system. (1)
the size scale of the noise will be smaller than the smallest detail that is of interest in the sub-
Ject, and (2) the imaging system PSF will be smaller than the detail that is of interest in the
subject, but larger than the size scale of the noise. Following that, (3) the sample spacing
will be chosen to be small enough to prevent aliasing,

15.7 EXAMPLES

In the remainder of this chapter, we consider two examples of image-processing systems
and determine their overall PSFs and MTFs. For this exercise, we ignore the effects of sam-
pling and truncation.

15.7.1 A Film-to-Film System

Figure 15-14 diagrams an image-processing system that uses photographic film for both
input and output. We reduce the system in this figure to the system in Figure 15-13 by com-
bining all the transfer functions, except the computer process, into a single equivalent trans-
fer function. We assume that the input and output lens systems are diffraction limited, the
sampling aperture is square, the amplifier has a single-pole lowpass characteristic, the dis-
play spot is Gaussian, and the MTF of the film is supplied by the manufacturer. The overall
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Figure 15-14 A film-to-film system

transfer function K (u, v) is merely the product of the individual transfer functions, and the
overall PSF k(x, y) is its inverse Fourier transform.

Figure 15-15 shows the component PSFs and transfer functions and the overall PSF
and transfer function. The equations for the component PSFs and transfer functions are
listed in Table 15-1. Notice that the system PSF is broader, and the MTF narrower, than the
respective PSFs and MTFs of any of the components.

The PSFs, and thus the transfer functions, of the two lenses and the display spot are
circularly symmetric. We assume that the MTF of the film can be approximated by a prod-
uct of hyperbolic secant functions. The sampling aperture and the amplifier are character-
ized by impulse responses separable in the x- and y-directions. Since the image is scanned
in the x-direction, g(x, y} is a lowpass filter in the x-direction and an impulse in the
y-direction.

TABLE 15-1 POINT SPREAD FUNCTIONS AND TRANSFER FUNCTIONS

Point-spread functions Transfer functions
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Figure 15-15 Components of the system response

Before the transfer functions and PSFs of the various components can be compared,
they must be projected into a consistent frame of reference. Figure 15-16 illustrates how the
various intermediate image planes can be projected back into the input plane. Magnification
factors, based on the overall size of the image, allow projection of the PSFs into the image
plane. Since the amplifier processes an electrical signal, its magnification factor reflects a
change from time to space. If the scanning mechanism operates at 1 line per millisecond,
then every second at the amplifier corresponds to 50 meters at the input plane.

Using the magnification factors in Figure 15-16 to project the assumed PSFs and
transfer functions into the image plane produces the functions summarized in Figure 15-15.
As that figure shows, the transfer function of the complete system is narrower, and the PSF
broader, than their counterparts for any system component.

In Figure 15-15, the OTF of the entire system is the product of the component transfer
functions. It is obvious, for example, that while the camera lens plays a significant role in
limiting the overall frequency response, the display lens does not. Also, the amplifier, which
has a small effect in the x-direction, need not appear at all in an analysis of the y-direction.
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15.7.2 A Microscope Digitizing System

As a second example, consider the system shown in Figure 15-17. This system consists
of a digitizing television camera mounted on a microscope and can be modeled as in
Figure 15-18. The specimen is imaged by a 100x microscope objective with numerical
aperture 1.25.
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Figure 15-17 A microscope-television digitizing system
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Figure 15-18 Linear components of the microscope digitizer

Figure 15-19 shows a two-dimensional analysis producing the overall PSF and trans-
fer function of the system. If noise is introduced at the sensor, its power spectrum will be
modified by the transfer function of the amplifier.
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Figure 15-20 shows the u-axis components of the various transfer functions in the
microscope digitizing system. If the specimens of interest are circular spots that can be
modeled by a 1-micron-diameter Gaussian spot, their spectrum is shown in the figure as
S(u). Since the transfer function of the system stays above 0.5 out to f;, the frequency limit
of the specimen, we would conclude that this system is probably adequate to digitize these
specimens.

15.8 SUMMARY OF IMPORTANT POINTS

1. Lenses and other optical imaging systems can be treated as two-dimensional shift-
invariant linear systems.
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Figure 15-20 A one-dimensional analysis of the microscope digitizer

. The assumptions mvolved in the linear analysis of optical systems begin to break

down as one moves off the axis, particularly for wide-aperture or poorly designed
optical systems.

. Coherent illumination can be thought of as a distribution of point sources whose

amplitudes maintain fixed phase relationships among themselves.

. Incoherent illumination may be viewed as a distribution of point sources, each having

random phase that is uncorrelated with its neighbors.

. Under coherent illumination, an optical system is linear in complex amplitude.
. Under incoherent illumination, an optical system is linear in intensity (amplitude

squared).

. The point-spread function of an optical system is finitely broad because of two

effects: aberrations in the optical system and the wave nature of light.

. An optical system having no aberrations is called diffraction-limited because its res-

olution is limited only by the wave nature of light (diffraction effects).

A diffraction-limited optical system transforms a diverging spherical entrance wave
into a converging spherical exit wave.

The pupil function gives the transmittance of the plane containing the aperture of the
optical system.

The coherent point-spread function is merely the Fourier transform of the pupil func-
tion [Eq. (28)}.

The coherent transfer function has the same shape as the pupil function [Eq. (29)].
The incoherent PSF is the power spectrum of the pupil function [Eq. (34)).

The optical transfer function is the autocorrelation function of the pupil function [Eq.
(38)).

A diffraction-limited optical system has a real-valued pupil function.

Aberrations in an optical system can be modeled by introducing a complex compo-
nent into the pupil function [Eq. (42)].
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17. Careful selection of the pupil function can increase the transfer function at specific
spatial frequencies (Figure 15-5).

18. The transfer function of a diffraction-limited optical system can never go negative.

19. Aberrations in an optical system can never increase the modulation transfer function.
but can drive the optical transfer function negative.

20. Complete image-processing systems may be modeled as a cascade of linear sub-
systems, each having an assumed or experimentally determined PSF.

21. The Guassian display spot is improperly shaped for image display. This can be over-
come by resampling to simulate a sin{x)/x-shaped display spot.

22. The Nyquist criterion sets the pixel spacing so that the folding frequency is at the
highest frequency present in the image. This is typically taken as the optical transfer
function cutoff frequency.

23. The Rayleigh criterion sets the sample spacing at half the resolution cell diameter.

24. Ina well-balanced system, the modulation transfer function will pass the frequencies
corresponding to image detail of interest. while blocking high frequencies that are
dominated by noise. The sample spacing will be small enough to avoid aliasing.

PROBLEMS

1. A reconnaissance aircraft flying at an altitude of 10,000 meters carries a camera with an ff = 5.6,
150-mm focal length lens pointing vertically downward. The image falls on a 2.0-cm-square,
1.024-by-1,024 CCD image-sensing array with square, full-area pixels. Sketch the lens OTF and
the sensor MTF on the same image-plane frequency axis, and mark the folding frequency. Sketch
the Jens and sensor PSFs on the same focal-plane axis. According to the Rayleigh criterion, could
this lens resolve red (4 = 0.65 p) campfires separated by 2 meters? 4 meters? 8 meters? In the dig-
itized image, could vou resolve and count campfires separated by 2 meters? 4 meters? 8 meters®
If you replaced the CCD chip with one that sampled according to the Nyquist criterion, what
would its pixel spacing have to be?

2. An astronautorbiting at an altitude of 320 miles uses a camera with an f716, 100-mm focal lengith

lens and a blue (A = 0.45 p) filter pointing vertically downward. The 24-mm-by—36-mm film

image is digitized to 682 by 1,024 pixels. Sketch the lens OTF on the focal-plane frequency axis,
and mark the folding frequency. Sketch the lens PSF on the image-plane axis. According to the

Rayleigh criterion, could this lens resolve oil well fires separated by 200 meters? 400 meters?

1,000 meters? In the digitized image. could you resolve and count oil well fires separated by 200

meters? 400 meters? 1,000 meters? If you rescanned the film according to the Nyquist criterion,

what would the pixel spacing be?

A microscope uses a 100x, 1.2-NA objective lens. A 10-pm-long test target covers a distance of

80 pixels in the digitized image. What is the pixel spacing at the specimen? Using green (4= 0.55

um) incoherent light. what is the Rayleigh resolution limit? What is the OTF cutoff frequency?

Will the pixel spacing permit resolving objects at the Rayleigh limit? What maximum pixel spac-

ing (at the specimen) would? Will this pixel spacing avoid aliasing? What maximum pixel spac-

ing (at the specimen} would? Sketch the OTF, and mark the cutoff frequency and the sampling
and folding frequencies corresponding to the three pixel spacings mentioned above. Sketch the

PSF, and show the three pixel spacings on the same scale.

4. Using the microscope objective mentioned in Problem 3, could you resolve micronuclei (tiny
dots) separated by 0.1 micron? by 0.2 micron? by 0.4 micron? By approximately whai factor

»
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would the lens attenuate the contrast of rod-shaped bacteria 0.1 micron in diameter, separated by
0.1 micron? Capillaries 0.2 micron in diameter, separated by 0.2 micron? Arterioles I micron in
diameter separated by 1 micron? Veins 50 microns in diameter separated by 50 microns?

. A microscope uses a 10x,0.45-NA objective lens. Ithas a 1,024-by-1,024 CCD camera with 6.5-

micron pixel spacing. What is the pixel spacing at the specimen? Using red (A = 0.65 um) light,
what is the Rayleigh resolution limit? What is the OTF cutoff frequency? Will the pixel spacing
permit resolving objects at the Rayleigh limit? What is the maximum pixel spacing (at the spec-
imen) that would? Will this pixel spacing avoid aliasing? What is the maximum pixel spacing (at
the specimen) that would? Sketch the OTF, and mark the cutoff frequency and the sampling and
folding frequencies corresponding to the three pixel spacings mentioned above. Sketch the PSF.
and show the three pixel spacings on the same scale.

. Using the objective mentioned in Problem 5, could you resolve micronuclei (tiny dots) separated

by 0.2 micron? by 0.5 micron? by 1.0 micron? By approximately what factor would this lens
attenuate the contrast of rod-shaped bacteria 0.1 micron in diameter, separated by 0.} micron?
Capillaries 0.2 micron in diameter, separated by 0.2 micron? Arterioles 1 micron in diameter sep-
arated by 1 micron? Veins 50 microns in diameter separated by S0 microns?

. Suppose you have a 35-mm slide that shows the White House Christmas tree at night. The slide

was taken with a 135-mm f73.5 lens from a distance of 200 meters. You wish to digitize the film
without aliasing any information in the image. What is the maximum pixel spacing you can use
when scanning the film? If the tree is 30 meters tail, how large must the (square) digital image be?
Assuming no image degradation due to the film or image motion, how close together can lights
on the Christmas tree be and still be counted as separate?

. Suppose you have a 3-inch f711 telescope. Can you split (resolve) Alpha Centauri? Zeta Aquarii?

The double, Epsilon in Lyra? Eta in Orion? Tau Cygni? Lambda in Cassiopeia? Lambda Lupi”
Epsilon Ceti? (See table below)

. Suppose you borrow an 8-inch f18 telescope from a friend. Which of the double stars mentioned

in Problem 8 can you now split?

Which of the double stars mentioned in Probiem 8 can the 100-inch telescope at Lowell Obser-
vatory split?

Which of the double stars mentioned in Problem 8 can the 200-inch telescope at Palomar Obser-
vatory split?

Suppose a colleague of yours visited Palomar Observatory, attached a CCD camera to the 200-
inch telescope, and digitized images of the star field near the Horsehead Nebula in Orion. In one
of the images, you notice the A and B stars of the trapezium, Theta Orionis, at (x,y) locations
(235,416) and (565,676), respectively. You wish to map the positions of stars in that region of
Orion to the full resolution of the Palomar telescope. Compare the pixel spacing to the Rayleigh
and Nyquist criteria. Can you use the digital images supplied by your friend in your research?
The Hubble Space Telescope has a primary mirror diameter of 2.4 meters. It has four wide-field
cameras, all with a pixel spacing of 1.0 arc second, and four planetary cameras, ail with a pixel
spacing of 0.0436 arc second. Prior to its repair, the telescope had 0.51 of spherical aberration
and 1.24 of defocus, where A = 0.547  is the reference wavelength. (Recall Figure 15-7.) The
net effect of these flaws was to increase the diameter of the telescope’s PSF approximately five
times. Which of the double stars mentioned in Problem 8 were the Hubble telescope optics capa-
ble of splitting? Which ones could be split in a digitized wide-field image? In a planetary camera
image with 4-by-4 binning (pixel averaging)? With 2-by-2 binning? Without binning? Sketch the
PSF of the lens and the binning processes on the same scale.

Repeat Problem 13 for the situation subsequent to repair of the Hubble Space Telescope optics.
Assumé diffraction-limited conditions.
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Stellar Object Angular Separation (arc-seconds)
Alpha Centauri 15
Theta Orionis A-B:8.7.B-D:19.2,C-D:13.2, C-A: 12.9
Epsilon in Lyra 22,3035
Zeta Aquarii 1.7
Eta in Orion 1.4
Tau Cygni 0.9
Lambda in Cassiopeia 0.5
Lambda Lupi 0.2
Epsilon Ceti 0.1
PROJECTS

1. Generate an image of uncorrelated, random noise using a random number generator to assign
gray levels to pixels. Compute the autocorrelation function and power spectrum of the noise.

2. Generate an image of uncorrelated, random white noise using a random number generator to
assign phase values to the complex spectrum of the noise. Compute the autocorrelation function
and power spectrum of the noise.

. Use the image of Project 1 or 2 to identify a digital filter.
. Use the image of Project 1 or 2 1o identify an imaging system.
- Generate an image of a horizontal frequency sweep target.

3
4
S.
6. Generate an image of an omnidirectional (circular) frequency sweep target.
7. Use the image of Project 5 or 6 1o identify a digital filter.
8. Use the image of Project 5 or 6 1o identify an imaging system.
9. Usean image of an edge to determine the MTF of a telescope, camera, or microscope objective lens.
10. Use an image of an edge to determine the defocus MTF of a telescope, camera, or microscope
objective lens, for several values of defocus.
1. Design a digital filter to deconvalve the effects of a 50-mm, f/8 camera lens when the pixe! spac-
ing is 25 microns at the image sensor. Limit the gain of the filter to 8.0.

12. Design a digital filter to deconvolve the effects of a 100x, 1.2-NA microscope objective lens
when the pixel spacing is 15 microns at the image sensor. Assume incoherent green (A = 0.55
micron) light. Limit the gain of the filter to 5.0.

13. Develop and test an autofocus algorithm. Use a convolution filter to simulate different
amounts of defocus on a test image. and plot your focal sharpness parameter versus the amount
of defocus.

14. Develop and test an autofocus algorithm. Digitize a scene with a camera, telescope, or micro-
scope, with different amounts of defocus, and plot your focal sharpness parameter versus the
amount of defocus.
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Part 3
CHAPTER 16

Image Restoration

16.1 INTRODUCTION

Historically, a large portion of digital image-processing activity has been devoted to image
restoration. This work includes both research in algorithm development and routine, goal-
directed image processing. Many noteworthy contributions in-digital image processing
have been made in the latter area as well as the former. In this chapter, we address some of
the more useful techniques.

By image restoration, we mean the removal or reduction of degradations that were
incurred while the digital image was being obtained. These degradations include the blur-
ring that can be introduced by optical systems, image motion, and the like, as well as noise
from electronic and photometric sources. While image restoration could be defined to
include many of the techniques discussed in Part 1, we take it to signify a more restricted
class of operations.

The aim of image restoration is to bring the image toward what it would have been if
it had been recorded without degradation. Each element in the imaging chain (lenses, film,
digitizer, etc.) contributes to the degradation. Partial restoration of the lost image quality
can serve as anything from a cosmetic frill to a matter of vital importance, depending upon
the application. An example of the latter case is the lunar and planetary imaging missions of
the space program.

In this chapter, we consider several approaches to image testoration. We also consider
the system identification and noise-modeling problems. For a more thorough coverage of
these subjects, the reader should consult a textbook or survey in the field [1-7,17].
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16.1.1 Approaches and Models

The task of restoring a degraded image can be approached in one of two basic ways. If little
is known about the image, one can aitempt to model and characterize the sources of degra-
dation (blurring and noise) and implement a process designed to remove or reduce their
effects. This is an estimation approach, since one attempts to estimate what the image must
have been before it was degraded by relatively well-characterized processes.

" If, on the other hand. a great deal of prior knowledge of the image is available, it might
be more fruitful to develop a mathermatical model of the original image and fit the model to
the observed image. As an example of this case, assume that the image is known to contain
only circular objects of fixed size (e.g., stars, grains, cells, etc.). Here, the task is one of
detection, since only a few parameters of the original image are unknown (number, posi-
tion, amplitude, etc.).

Approaching the image restoration problem presents several other choices as well.
First, the development can be done using either continuous or discrete mathematics. Sec-
ond, the development can be carried out in either the spatial or frequency domain. Finally,
while the implementation must be done digitally, the restoration can be effected in either the
spatial domain (e.g., via convolution) or the frequency domain (via multiplication).

Fortunately, we have now identified a set of conditions that, if maintained, render the
various approaches essentially equivalent. Thus, we can use whichever approach best suits
our requirements and constraints, as long as we are mindful of the underlying assumptions.

Often, two or more approaches lead to the same restoration technique. The methods
that perform well in practice are basic to this problem. One of them always seems to be wait-
ing for us at the end of each journey, no matter in which direction we start or what kind of
map and compass we use.

In this chapter, we review several of the more important image restoration techniques
that have proved useful in practice. We begin with classical, continuous frequency domain
approaches in roughly the chronological order of their development and application to digital
imaging. We follow that examination with a discrete spatial domain approach that tends to
unify the preceding results into a common framework. Next, we consider the practical
aspects of dealing with space-variant blurring and nonstationary noise. Then we look at
restoring bandlimited images beyond their cutoff frequencies and conclude with a discussion
of ways to determine the parameters of the degradation and to implement the restoration.

16.2 CLASSICAL RESTORATION FILTERS

In this section, we use the system shown in Figure 161 to model image degradation and
restoration. The image f(x, y) is bluried by a linear operation h(x, y), and noise n(x, y) is
added to form the degraded image w(x, y). This is convolved with the restoration filter
g(x. y) 1o produce the restored image f(x, ) .

[ ]
wixy)

frvy——  hixy) —— gxy) - — flxy)

n(x,y}

Figure 16-1 Continuous image restoration mode}



Sec. 16.2 Classical Restoration Filters 389

Linear system theory was used routinely in electrical filter design for many years
before digital image processing became popular. It was applied widely to optics, digital signal
processing, and other fields. Deconvolution, for example, has long been known in electrical
filter design and time series analysis. Even the minimum mean-square estimator (Sec. 11.5.2)
was worked out by Norbert Wiener in 1942 [8]. Thus, many of the techniques first applied to
digital image restoration were generalizations of one-dimensional methods already in use in
analog and digital signal processing. Even when specialized, new techniques were devel-
oped, they drew upon the classical frequency domain approach.

16.2.1 Deconvolution

In the mid-1960s, deconvolution (inverse filtering) began to be applied broadly to digital
image restoration. Nathan used two-dimensional deconvolution to restore images from the
early Ranger, Surveyor, and Mariner planetary exploration missions [9). Since the signal
spectrum normally dies out with frequency faster than that of the noise, the high frequencies
are often dominated by noise. Nathan's approach was to limit the deconvolution transfer
function to some maximum value (Figure 16-2).

During the same period, Harris deconvolved the blurring due to atmospheric turbu-
lence in telescope images using an analytical model for the PSF [2], and McGlamery

Theoretical
response

h—s 200 ke
(a)

Actual response

h—> 200 k¢

inverse
response

I
1 I
Corrected :

response

h—— 200 ke Figure 16-2 Deconvolution (from
(d) Nathan [9])
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deconvolved atmospheric turbulence using an experimentally determined PSF | 10]. Since
then, deconvolution has become a standard technique for image restoration. Figure 16-3
illustrates the improvement that is possible in an image when this technique is carefully
implemented.

Figure 16-3 Deconvolution of a Survevor image: (a) before; (b) after (Courtesy NASA-JPL)

16.2.2 Wiener Deconvolution

In most images, adjacent pixels are highly correlated, while the gray. levels of widely sep-
arated pixels are only loosely correlated. From this, we can argue that the autocorrelation
function of typical images generally decreases away from the origin (Figure 16-4). Since
the power spectrum of an image is the (real and even) Fourier transform of its autocorrela-
tion function, we can argue that the power spectrum of an image generally decreases with
frequency.

Typical noise sources have either a flat power spectrum or one that decreases with fre-
quency more slowly than typical image power spectra. Thus, the expected situation is for
the signal to dominate the spectrum at low frequencies while the noise dominates at high
frequencies. Since the magnitude of the deconvolution filter generally increases with fre-
quency, the filter enhances high-frequency noise. The early attempts at deconvolution han-
dled the noise problem by ad hoc and intuitive methods.

Helstrom [11] adopted the minimum mean-square error estimation procedure and
presented the Wiener deconvolution filter, which has the two-dimensional transfer function

H*(u, v)P((u, v)
|H (u, vI2P (1, v) + Py(u, )

Gu,v) = [§)]

and can also be written as

H*(u, v)
(H (u, )I* + Py, )IP (1, v)

Gu,v) = )
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Figure 164 The noise problem in deconvolution

where P, and P, are the power spectra of the signal and noise, respectively. This filter was
developed in Chapter [1 for one dimension.

Slepian [12] extended Wiener deconvolution to account for a stochastic PSF (e.g.,
due to atmospheric turbulence). Later, Pratt {13} and Habibi [14] developed means 10
increase the computational efficiency of Wiener deconvolution. (See {4} for a review of
deconvolution techniques.)

Wiener deconvolution affords an optimal method for rolling oft the deconvolution
transfer function in the presence of noise, but it is plagued with three problems that limit its
effectiveness. First, the mean square error (MSE) criterion of optimality is not particularly
good if the image is being restored for the human eye [4,15]. The problem is that the MSE
criterion weights all errors equally, regardless of their location in the image, while the eye
is considerably more tolerant of errors in dark areas and high-gradient areas than elsewhere.
In minimizing the mean sguare error, the Wiener filter also tends to smooth the image more
than the eye would prefer.

Second, classical Wiener deconvolution cannot handle a spatially variant blurring
PSF. This occurs with coma, astigmatism, curvature of field, and with motion blur that
involves rotation.

Finally, the technique cannot handle the common case of nonstationary signals and
noise. Most images are highly nonstationary, having large flat areas separated by sharp tran-
sitions (edges). Furthermare, several important noise sources are highly dependent on local
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gray level (signal-dependent noise). Inthe next two sections, we examine alternatives to and
improvements upon Wiener deconvolution.

16.2.3 Power Spectrum Equalization

Cannon [16] showed that the filter which restores the power spectrum of the degraded
image to its original amplitude is

Pyu,v) 1

[H(u, V)PP (1, v) + Py, )

Like the Wiener filter, this power spectrum equalization (PSE) filter is phaseless (real and
even). It is applicable for phaseless blurring functions, or phase may be determined by other
methods [17].

The similarity between the PSE filter [Eq. (3)] and the Wiener deconvolution filter
{Eq. (1)] 1s clear. Both filters reduce to straight deconvolution in the absence of noise, and
both cut off completely in the absence of signal. The PSE filter, however, does not cut off
at zeros in the blurring transfer function F(u, v).

The image restoration power of the PSE filter is quite good, and int some cases the PSE
filter may be preferable 10 Wiener deconvolution. The PSE filter is sometimes called a
homomorphic filter [18].

Gu,v) = [ 3)

16.2.4 Geometric Mean Filtérs

Consider the restoration filter transfer function given by

Gy < | Hwn | H* (4, v) e @
. 1H(u, v)I2| L (@, v+ 1P, (u, v)IPp(u, v)

where o and y are positive real constants. This filter is a generalization of the filters previ-
ously discussed. The transfer function is parameterized in crand y. Notice that if = 1, Eq.
(4) reduces to a deconvolution filter. Also, if @ =14 and y= 1, it reduces to the PSE filter of
Eq. (3).

Notice in addition that if & = 4, Eq. (4) defines a filter that is the geometric mean
between ordinary deconvolution 4and Wiener deconvolbition. Thus, a third name for the filter
in Eq. (3) is the geometric mean filter. It is common practice, however, to refer to the more
general filter in Eq. (4) as the geometric mean filter.

If & =0 in Eq. (4), the result is the parametric Wiener filter

H*(u, v)
(H (u, )2+ yP,(u, vV)IP (1, v)

If y= 1, this becomes the Wiener deconvolution filter of Eg. (2), while y= 0 reduces it to
straight deconvolution. In general, ¥ may be selected for any desired amount of Wiener-
type smoothing.

Eq. (4) represents a very general class of restoration filters applicable in cases involv-
ing linear, space-invariant blurring functions and additive, uncorrelated noise. Andrews
and Hunt [17] have examined the restoration power of the filter in Eq. (4) under conditions

Gu,v) = { )
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of slight blurring and moderate noise. They show that, under these conditions. straight
deconvolution is least desirable, and Wiener deconvolution produces lowpass filtering
more severe that the human eye desires. The parametric Wiener filter with ¥ less than unity
and the geometric mean filter with the same constraint seem to produce more pleasing
resuits.

16.3 LINEAR ALGEBRAIC RESTORATION

Scene

Ay

Andrews and Hunt [17,19,20) advanced an approach to the image restoration problem that
is based on linear algebra. This approach may be more appealing to persons who prefer
matrix algebra to integral calculus and discrete mathematics to the analysis of continuous
tunctions. It offers a unified development of restoration filters, including those previously
mentioned, and it yields insight into the numerical aspects of the image restoration problem.

Because of the size of the vectors and matrices involved, the linear algebraic approach
may not lead to an efficient implementation. Insiead, a restoration technique developed by
this approach may be most etficiently implemented by other means.

16.3.1 The Discrete Restoration Model

Figure 16-5 shows the model we shall use in the development of discrete spatial restoration
techniques. The top row indicates the desired (but impossible) situation, that is, an ideal
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Figure 16-5 Model for linear algebraic restoration
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digitizer operating on f(x, y), the undegraded continuous function that represents the phys-
ical scene that gives rise to the image. This produces the padded, row-stacked N*-by-1 col-
umn vector f, containing the desired (N-by-N) digital image. This column vector format for
storage of a digital image was discussed in Sec. 9.3.4.

The second row of the figure models what actually happens when an image is digi-
tized and restored. The scene function f(x ,y) is blurred by a linear operation A(x, y), and
then a two-dimensional noise image n(x, y) is added, forming g (x, y). Then an ideal digi-
tizer forms the padded, row-stacked column vector g, which contains the observed
(recorded) N-by-N digital image. This is then subjected to a restoration operation that pro-
duces f, which is an approximation to f, the desired result.

While the blur is linear, it may or may not be shift invariant. If it is, it amounts to a
convolution of f(x, y) with the PSF h(x, v). If there is actually more than one blurring oper-
ator in the imaging chain. as is normally the case, these operators are assumed to be com-
bined into h{x, y). Likewise, multiple noise sources are assumed to be combined into
n{x, y). This model still is not all encompassing, since it does not account for nonlinearities
or signal-dependent noise.

The third row of the figure shows the model that we analyze here. An ideal digitizer
forms f, as before, but this is subjected to a discrete linear operation H. A discrete noise
image, encoded in the padded, row-stacked column vector n, is added, producing the
observed image g, likewise in vector form. A discrete restoration operation again produces
the estimate f.

The formation of the observed image vector now can be expressed compactly as

g=Hf+n 6)
where g, f, and n are N>-by-1 column vectors and H is an N%-by-N? matrix. If the blur is shift
invariant, H is a block-circulant matrix. Again, the digital images of interest are N by N after
padding with zeros as required.

Notice that we are now modeling with discrete operations the degradations that took
place before the image was converted into digital form. This has two ramifications. First, we
should be able to create very impressive simulated examples with this model, since we can
design the degradation process and implement it with precision. Restoration becomes
merely a numerical exercise, for example, if we selectan invertible degradation process.
We doit, we undo it, and we recover the original to within round-off error.

Second, we now have the task of modeling the (continuous) degradation processes
with discrete operations. This is similar to the earlier situation in which we had to ensure
that our discrete processing of sampled data preserved the integrity of the underlying con-
tinuous functions. The effectiveness of an image restoration endeavor hinges upon the accu-
racy with which the degradation process is modeled.

16.3.2 Unconstrained Restoration

Ifn=00r if we know nothing about the noise, we can set up the restoration as a least squares
minimization problem in the following way. Let e(f) be a vector of residual errors that
result from using f as an approximation to f. Eq. (6) then becomes

g = Hf = Hf+e(f) or e(f) = g-HF %)
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and we seek to minimize the objective function
W) = lehl’ = lg-nfl* = (g- Hi)'(g-n) ®

where [a] = A/a’—a denotes the Euclidean norm of a vector, that is, the square root of the
sum of the squares of its elements. A

This means that we wish to select f so that if it is blurred by H, the result will differ
from the observed image g by as little as possible in the mean square sense. Since g itself is
simply f blurred by H, this is a satisfying approach. If f and £, both having been blurred by
H, are nearly equal, then f may be a good approximation to f.

Notice that this formulation is somewhat different from that used in the development
of the Wiener filter in Sec. 11.5.2. There, we sought to minimize the difference between the
restored signal and the original. Here, we are satisfied to minimize the difference between
the blurred original and a similarly blurred estimate of the original. We cannot expect the
results of these two formulations to be the same.

Setting 10 zero the derivative of W(f ) with respect to f produces

WO - Hg-HE = 0 ©)
of
and solving for £ yields
f= (HH)'Hg=H'g (10
where the latter equality holds because H is a square matrix.

Eq. (10) identifies the inverse filter. With shift-invaniant biur, H is block circulant,

and this can be shown to specify deconvolution, given in the frequency domain by

Glu, v)
H{u.v)
If H(u, v) has zeros, H is singular, and neither H™' nor (H'H)™' exists.

Fu,v) = (1)

16.3.3 Constrained Least Squares Restoration
We can rearrange Eq. (6) as

g-Hf = n (12)

One way to account for the noise term is to introduce into the minimization the constraint
that the norms of each side of Eq. (12) be the same; that is,

lg - Hil* = Iny? (13)
Now we can set up the problem as the minimization of
wb) = lofl’ + Aclg - mffl* - Inf?) (14)

where Q is a matrix we select to define some linear operator on f and A is a constant called
a Lagrange mulniplier. The ability to specify Q gives us flexibility in setting the goal of the
restoration.

As before, we set to zero the derivative of W(f) with respect to f:
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w (b
of
Solving for f then yields

= 2Q'Qf-2AH (g~ Hf) = 0 (15)

f= (HH+yQ'Q)'Hg (16)
where y= 1/Ais a constant that must be adjusted so that the constraint of Eq. (13) is satisfied.
This is the general equation for the solution to constrained least squares restoration.

16.3.3.1 The Pseudoinverse Filter

If we let Q = I, the N°-by-N? identity matrix, then we are seeking to minimize the norm of
f subject to the noise constraint of Eq. (13). Eq. (16) then becomes

f= (HH+)'Hg an
Notice that if we set y=0, this reduces to the inverse filter of Eq. (10).

16.3.3.2 The Parametric Wiener Filter
We can treat f and n as random vectors and select Q to be the noise-to-signal ratio
Q= R}WR,"/Z (18)

where R, = &{ff‘} and R, = &{nn‘} are the signal and noise covariance matrices, respec-
tively. Then the solution [Eq. (16)] becomes

f= (HH+ yR/'R,) 'HYg (19)
By assuming shift invariance and stationarity, and by using the matrix Fourier transform,
one can easily show that this leads to the parametric Wiener filter of Eq. (5). While yis an
adjustable parameter, notice that with y= 1, we have the classical Wiener filter that was
shown in Sec. 11.5.2 to minimize the mean square difference between the original and
restored images.

The foregoing linear algebraic development, using the minimization of Eq. (14) with
the criterion of Eq. (18) for the case of shift-invariant blurring, has led us back to the same
frequency domain specification for the Wiener filter that we developed in Chapter 11.
Notice. however, that it is that earlier development, and not the one presented here, that
shows this filter to be the one that makes the restored image look most like the original (in
the mean square sense). While the latter development yields the same answer more quickly,
it does not speak as strongly for the resulting optimal filter.

16.3.3.3 Smoothness Constraints

Restoration commonly involves inverse filtering a noisy, blurred image. Inverse filtering
often emphasizes small details. Frequently, the blur matrix suffers from ill conditioning and
may even be singular. Minimization seeks to create a restored image that, when blurred,
resembles the noisy, blurred original. [c.f., e.g., Eq. (8)]. Fer these reasons, the restored
image can suffer from large artifactual oscillations. One way to combat this is to select Q so
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as to enforce some degree of smoothness on the restored image. Then Eq. (14) seeks an esti-
mate that is smooth, unblurred, and noise free.

Let Q correspond to a highpass convolution filtering operation, such as the Laplacian,
which is a spatial second derivative; that is,

. F P ‘
VUuJ>=b;+54ﬂn» 20)
In Eq. (14), the term
lofl = t'Q'of @n

is the average of the squared, highpass-filtered estimate. The block-circulant matrix Q
embodies the appropriate highpass convolution kernel, such as

0-10
pxy) = |-1 4 —| (22)
0-10

which is a discrete approximation to the Laplacian. Then, from Eq. (16), the frequency
domain specification of the (shift-invariant) restoration is

H*(u,v)
|H (e, v)I* + AP (u, v

where P(u, v) is the transfer function of the highpass filter implemented by Q. For the
Laplacian, this is

Fu,v) = [ :]G(u, v) (23)

P(u,v) = —4*(u? +v?) 24
but other highpass transfer functions could be used as well. The value of ycontrols how
strongly the constraint enforces smoothness upon the estimate, and the shape of P(u, v)
determines how strongly the different frequencies are affected by the smoothness
constraint.

16.4 RESTORATION OF LESS RESTRICTED DEGRADATIONS

In this section, we consider situations that are not restricted to shift-invariant blurring and
stationary signals and noise.

16.4.1 Spatially Variant Blurring

While optical defocus and linear motion blur are spatially invariant linear operations, astig-
matism, coma, curvature of field, and rotary motion blur are spatially variant. A direct and
effective restoration method for correcting these degradations is coordinate transformation
restoration. The approach involves using a geometric transformation on the degraded
image that makes the resultant blurring function spatially invariant. This is followed by an
ordinary spatially invariant restoration technique and then by a geometric transformation
that inverts the first such operation and puts the image back into its original format.
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Robbins and Huang [21,22] have applied this technique to coma, and Sawchuk has
applied it to nonlinear motion blur [23,24} and to astigmatism and curvature of field [25].
For these spatially variant degradation sources, the required geometric transformations are
known, and the restoration is quite effective.

16.4.2 Temporally Variant Blurring

The diffraction-limited resolution of a 200-inch telescope is approximately 0.05 second of
arc. Under unfavorable conditions, however, atmospheric turbulence can reduce this reso-
Iution to about 2 sec of arc. Viewing stars through a turbulent atmosphere is similar to
watching a point source of light through a moving textured-glass shower door.

With short exposures, atmospheric turbulence produces a speckle pattern due to
phase distortion in the nonuniform atmosphere above the telescope. With longer exposures,
atmospheric turbulence causes the speckle pattern to “dance’ as the atmosphere undergoes
change. Thus, long exposures integrate the dancing speckles to produce a large blur, much
larger than the diffraction-limited PSF of the telescope. Since long exposures are required
for photographing faint stars, atmospheric blurring (the so-called seeing conditions) place a
limit on Earth-based astronomical resolution.

Time averaging in the spatial domain is equivalent to averaging complex spectra in
the frequency domain. The time-averaged transfer function so obtained goes to zero at fre-
quencies well below the diffraction limit of the telescope. Thus, in the presence of random
phase distortion, time averaging does more harm than good.

Labeyrie [26,27] has shown experimentally that the time-averaged power spectrum of
a point star image goes out to the diffraction limit. This means that the random phase fluctu-
ations in the atmosphere average out in the power spectrum of the image. His restoration tech-
nique (speckle interferometry) consists of obtaining time-averaged power spectra of both the
astronomical object of interest and a reference point star. He effects deconvolution by divid-
ing the object’s power spectrum by that of the point star. The result is an estimate of the dif-
fraction-limited power spectrum of the unknown object. This can be inverse transformed to
cbtain the autocorrelation function of the object. Since phase information has been lost in the
power spectrum, the object cannot be reconstructed exactly, but the autocorrelation function
is adequate for identifying double stars and some other bodies that may be of interest.

Knox extended Labeyrie’s technique to recover the phase information and obtain dif-
fraction-limited images even under relatively poor seeing conditions [28,29]. Like Labey-
rie, he used an ensemble average of short-exposure spectra to determine the power spectrum
of the object. Phase information is obtained from the ensemble autocorrelation of the instan-
taneous power spectra {29,30].

16.4.3 Nonstationary Signals and Noise

The filters discussed earlier in this section all involve the assumption of stationary signals
and noise. For an image to be stationary, the locally computed power spectrum would have
to be the same (or approximately so) over the entire image. Unfortunately, this is often not
the case. Most images are, in fact, highly nonstationary. Consider, for example, a photo-
graph of the human face. The power spectrum of alocal area containing the forehead would
show much less high-frequency energy than the power spectrum of an area containing the
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eyes. A very large class of images can be modeled as a collection of regions of relatively
constant gray level, separated by boundaries with relatively high gradient. Aerial photo-
graphs of farmland are but one example.

Several common noise sources cannot be modeled accurately as stationary random pro-
cesses. Film grain noise, for example. is almost nonexistent in the low-density (least exposed)
areas of a photographic negative, but the noise level increases with increasing density. Density
digitizers, which follow an intensity detector with a logarithmic amplifier, produce a higher
noise level in dark areas, where the small-signal gain of the logarithmic amplifier is greatest.

It is clear that, while the generalized Wiener filter is superior to straight deconvolu-
tion, it does not represent an upper limit on accuracy in image restoration.

16.4.3.1 Matrix Formulation

In Chapter 9, imposing the constraint of shift invariance allowed us to reduce the super-
position integral to a simple convolution. If we do not impose shift invariance, the super-
position that models image degradation can be written in matrix notation as

W =FS+N (25)

where the model of Figure 16-1 has been made discrete [ 17). For digital images of N-by-N
pixels, the matrices W, S. and N are N-by-1 column vectors formed by padding and row
stacking (Sec. 9.3.4). The degradation matrix F is N2 by N2 It is an N-by-N block matrix
composed of N-by-N blurring functions. This means that each pixel of S(i,k) is degraded by
convolution with a separate N-by-N blurring function. If the blurring function is shift invari-
ant, then F is block circulant.

A minimum mean square estimator can be derived for this matrix formulation. For the
generalized geometric mean filter, the restored image is given by

Z = [(F¥F)"'F¥']*[(F¥F + Y[ 6,1 ', ]) 'F*')' °W (26)

where ¢, and ¢, are the covariance matrices of the signal and noise, respectively.

Notice that Eq. (26) is the matrix algebraic equivalent of Eq. (4). Notice also that if
N = 1,000, the matrix F has a trillion (10'?) elements. Furthermore, if the degrading func-
tion has zeros, F will be singular. Clearly, Eq. (26) represents a formidable computational
task. Under certain simplifying assumptions, it can be reduced to manageable computa-
tions, and some impressive examples have been generated [17]. However, the full power of
this formulation has yet 10 be exploited in routine applications.

16.4.3.2 Local Stationarity

While images are seldom stationary in a global sense, they frequently can be assumed
locally stationary. This means that the local power spectrum (computed over a small win-
dow) changes slowly as one moves the window within the image. In certain images this
assumption might be quite good and in others marginal or questionable, but it represents a
significant improvement over the assumption of global stationarity.

In most practical image restoration applications, the restoring PSF is relatively small
compared to the size of the image. If the image is generally stationary in regions covering
at least the extent of this PSF. then the assumption of local stationarity may well be justified.
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One way to implement restoration under a model of local stationarity is to use the
Wiener filter or its generalization [Eq. (4)], where the power spectra of the signal and/or the
noise are functions of position in the image. However, unless these power spectra can be
modeled by simple formulas having few spatially variant parameters, the computational
expense will be relatively high. Furthermore, it is necessary to determine the local power
spectrum throughout the image before the filter can be spatially parameterized.

A simple approach is to use the generalized geometric mean filter of Eq. (4), where
the parameters yand o are spatially variant and derived from the image. However, that
equation is written in the frequency domain. If the restoration is implemented by convolu-
tion, o and ydo not appear as simple parameters in the convolution kernel.

A simpler method is to specify analytically a convolution kernel having one or more
image-derived spatially variant parameters. This represents a computational simplification,
since only a new convolution kernel needs to be computed, from a stored equation, at each
pixel position.

16.4.3.3 Power Spectrum Parameters

Let us model the signal and noise as being space variant but locally stationary. By this, we
mean that there are two scales in the image: On a small scale the image is stationary, but on
a large scale it is not.

To illustrate, suppose we estimate the local power spectrum of the image at the point
(xy, y1) by computing the squared magnitude of the two-dimensional Fourier transform of a
relatively small rectangular piece of the image centered on (x,, y;). Suppose we then do the
same thing using an identical window centered on a second point (x,, ¥,). If the two points
are relatively close together, the estimated power spectra will be approximately equal, even
if the two windows do not overlap. On the other hand, if the two points are widely separated
in the image, the estimated power spectra will not necessarily agree. While this concept
involves some approximations, it does allow us to extend previously developed techniques
to account for common forms of space variance.

If the signal and noise are uncorrelated, then the local variance of the observed image
is the sum of the signal and noise component variances; that is,

ol(x,y) = 0(x, ¥)+ 02(x, y) 27

where the variances are computed over a relatively small local window centered on (x, y).

Let us assume that the noise is locally white with zero mean and power (mean square
amplitude or variance) proportional to local mean gray level. Then the noise power spec-
trum and variance are related by

Polu, v, 3, 3) = Po(0,0,x,5) = 07(x.5) = Nof(x.y) (28)
where Ny s a constant and u,,(x, y) is the average gray level computed over some local win-
dow centered on (x, y).

Let us also assume that the signal power spectrum is separable into a prototype power
spectrum Py(u, v) times a spatially variant factor; that is,
Pyu, v, x, ) = fx y)Po(u, v) (29)

The resulting signal variance iy
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ol(x,y) = Ry(D,0,x,¥) = J. j f(x, y)Polu, vidudv = f(x, )Ry (30)

where R, is the volume under the prototype power spectrum.
Solving for the space-variant factor produces
2 2 .
o;(x, v (X, ¥) - Nop, (x,
Foy = Z) Q) Mot ) 30
Ry Ry

where Eqgs. (27) and (28) have been used. The signal power spectrum can now be written in
terms of the local mean and variance of the observed image:

Pylu,
Pt v, x,y) = “(“ Y (6205, ) - Nojty (x, 1)) (32)

We can now write a signal—dependent spaually variant generalized Wiener filter by substi-
tuting Egs. (28) and (32! into

(33)

Fru )| Fr@ P }"“
(Fu L LFG, V2P 4 ¥P,

The spatially variant parameters ,,(x, y) and o2 (x, y) must be computed from the input
image. This means that the restoration must be preceded by a step that computes a mean
image and a variance image from the input image. To implement Eq. (33) directly still
would represent considerable computational expense.

G(u, v, x,y) = [

16.4.3.4 Image Partitioning

A more practical solution is to produce a two-dimensional histogram of u,, (x, y) versus
(:l'l2 (x, y) and look for clusters of pixels in mean versus variance space. The space can then be
partitioned into areas containing these clusters. The resulting regions could be mapped back
into the image to define regions of relatively constant mean and variance. Then a restoration
filter can be designed and implemented on each such region. In this way, spatially variant res-
toration would be only a few times more expensive than simple stationary restoration.

For example, one could partition the degraded image into disjoint regions having four
types of content. The four regions would correspond to the four possible combinations of
high and low mean gray levels with high and low signal variance. Four image restoration fil-
ters would be used, each in its appropriate region. If the fiiters’ zero frequency responses
were all equal, the boundaries between the regions would have, at most, slope discontinu-
ities. This means that the boundaries would not be highly visible in the processed image.

Where more exact restoration is required, one can divide the range of mean and signal
variance into smaller intervals. While this technique is several steps removed from full-
fledged spatially variant restoration, it can produce a significant improvement over using
the assumption of global stationarity.

16.4.3.5 Noise Power Ratio

Recall from Eq. (4) that the generalized Wiener filtet responds only to the ratio of noise-to-
signal power. The signal and noise power spectra do not appear independently in the filter
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equation. A simplified restoration procedure results if we assume that. throughout the
image, the signal and noise power spectra change in amplitude, but not in functional form.
This means that the SNR function (of spatial frequency) also changes only in amplitude
throughout the image.

If the noise is locally white, and its signal-dependent amplitude is given by Eq. (28),
we can write the ratio of the noise-to-signal power spectra as

Pylu, v, x,y) _ RyNy [ , Mlx y) } _ R

N()
= NPR(x, v 34
Piluvix,y) Pyl v} o2(x, v) - N, (x, ) ) et

Py(u, v)

where NPR (1, y), which is the term in brackets, is called the noise power ratio. Itrepresents
the spatial variability of the ratio of power spectra and is easily computed from the mean and
variance images of the degraded image. Note that Eq. (34) is written as a product of fre-
quency-dependent and position-dependent terms.

The function NPR(x. v) can be viewed as an image itself. Its gray level represents the
spatially variant noise-to-signal power ratio. This, in turn, is sufficient to specify the spatial
variation of a restoration filter, under the current set of assumptions. One could use thresh-
olds on NPR(x, y) at several gray levels to partition the degraded image into regions of
roughiy similar SNRs. A different restoration filter could then be used in each of these
regions.

16.4.3.6 Linear Combination Filters

There is another way to use the NPR image to guide spatially variant restoration. This tech-
nique is relatively inexpeasive and implements a smoothly space-variant restoration PSF.
Suppose we generate a mask function m(x, y) by normalizing NPR(x, y) to the range {0,1].
Then the value zero corresponds to the minimum, and unity to the maximum, noise-to-sig-
nal power ratio in the i image. Next we design two restoration filters, g, (x, y) and g, (x, v) that
correspond to the cases of low and high NPR(x, y), respectively.

We now convolve the image with the two restoration filters. These operations are
given by

e v) = wilx y) *gi(xy) (35

and

(X ¥) = wilx ¥) * ga(x, ¥) (36)

where g, (x, y) and g,(x, y) are the stationary restoration filters resulting from Eq. (4) under
high noise and low noise conditions, respectively. The restored image is

2(x v} = m(x )z ) + [ =-mx vzp(x, y) (37)
The final restoration can also be written as
2xy) = wln ) * {m(x, ¥)g(x y) + [| - m(x, ¥)1ga(x, )} (38)

Hm(x, y)is slowly varying compared to the extent of the restoration filter impulse responses,
it may be assumed locally constant. Under this assumption, multiplication approximately
commutes with convolution, and the equivalent space-variant restoration PSF is

glx, ¥) = m(x. ¥y g (x,¥) = g206,¥)] + ga2(x, ) (39
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Linear combination restoration consists of the following steps. First. the degraded image is
processed to obtain a local mean gray-level image and a local variance image. Next, the
mask function m (x, y) is formed by normalizing NPR(x, y). [See Eq. (34).] Then, stationary
filters g, (x, y) and g,(x, v) are designed for the two cases corresponding to the lowest and
highest SNRs existing in the image. Two partially restored images 2, (x, ¥) and z,(x, y) are
formed by convolving the input image with each of the restoration filters. The final restored
output is formed by

zlx, vy = mix, ¥) Lz (% y) - 2200, )] + 22(x, ) (40

Linear combination restoration implements the smoothly spatially variant impulse response
of Eq. (39) and avoids partitioning the image and the accompanying risk of visible region
boundaries. Somewhat more complex than globally stationary restoration, linear combina-
tion restoration involves four local operations (calculating the mean, calculating the vari-
ance, and two convolutions) and the algebraic operations of Egs. (34) and (40). Although
not an optimal filter, a linear combination restoration filter exhibits the desired behavior.
That is, it smooths most in areas of low SNR ratio and least where the SNR is high.

16.5 SUPERRESOLUTION

In Chapter 15, we saw that the incoherent transfer function of an optical system is the auto-
correlation function of the pupil function. This implies that the transfer function is neces-
sarily bandlimited; that is, it goes to zero for all frequencies above some cutoff frequency
established by the diffraction limit of resolution.

Clearly, deconvolution could hope torestore the spectrum of an object only out to, but
not beyond, the diffraction limit. Energy at frequencies beyond the diffraction limit, it
would appear, is hopelessly lost. Resolution beyond the diffraction limit is theoretically
possible, however, due to a useful property of the Fourier transform. Restoration procedures
that seek to recover information beyond the diffraction limit are referred to as superresolu-
tion techniques. The method they employ is also called the extrapolation of bandlimited
Sfunctions.

16.5.1 Analytic Continuation

If a function f(x) is spatially bounded (that is, is zero outside some finite interval), then its
spectrum F(s) is an analytic function. Being analytic imposes a severe constraint upon how
“wiggly” a function can be. A well-known property of analytic functions is that if such a
function is known over a finite interval, then it is known everywhere [31]. This means that if
two analytic functions agree exactly over any given interval, then they must agree every-
where and must be the same function. Stated in yet a different way, given a curve defined
over a particular interval, no more than one analytic function can be fitted exactly to the given
curve over that interval. The process of reconstructing an analytic function in its entirety,
given the values of the function over a specified interval, is called analytic continuation.

Since an image is necessarily spatially bounded, its spectrum must be analytic. Ignor-
ing noise for the moment, the spectrum of an image can be determined over the interval
from zero to the diffraction limit. Thus, it is theoretically possible to reconstruct the analytic
spectrum everywhere, or at least at some frequencies above the diffraction limit.
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It was pointed out in Chapter 12 that a truncated (spatially bounded) function cannot
be bandlimited. However, diffraction-limited optical systems attempt to enforce band-
limitedness upon truncated functions. It is this incompatibility between spatial bounding
and bandlimiting that superresolution techniques attempt to exploit.

16.5.2 Harris’ Technique

Harris [32] questioned whether the diffraction limit is a theoretical upper limit on resolution
or merely a practical limitation. He showed that no two spatially bounded objects produce
identical images unless the objects themselves are identical. From this, it follows that, under
noiseless conditions, any recorded image can correspond to one and only one object. Thus,
it should be possible to reconstruct that object in infinite detail from its diffraction-limited
image.

In this section, we present the superresolution technique advanced by Harris [32} and
restated by Goodman {33]. The technique involves applying the sampling theorem, with
domains reversed, to obtain a system of linear equations that can be solved for values of the
signal spectrum outside the diffraction-limited passband. It also yields further insight into
the effects of sampling and truncation.

Figure 166 shows a function and its spectrum. Since f(x) is spatially bounded, we
can apply the sampling theorem as before, but with the time and frequency domains
reversed. The sampling theorem states that £(s) can be completely reconstructed from a
series of equally spaced sample points provided that they are taken no more that 1/27 apart.
The reconstruction can be expressed as

. sin(2zsT)
2nsT

which accounts for sampling F(s) every 1/2T and then interpolating to recover the function.
Writing the Shah function as an infinite sum of impulses, we obtain

Fisy = {INQ2sT)F(s)] 41)

2nsT

. 1
F(s) = [z O(s - 2nTYF(5) *MS_T’ (42)

and exploiting the sifting property of the impulse produces

- sin(QasT ~2nT)
$) = Fi2 —_—
Fisy = 3, FRaT)»=mmanr “»

= —oe
Suppose f(x) is passed through a linear system that passes no energy above some trequency
Sm- Deconvolution can recover the signal such that the spectrum is known exactly for
frequencies out to s,,. Thus, ditect measurement followed by deconvolution (if necessary)
recovers the spectrum for frequencies less than s,,.

fix) F(si

fe——T—| function and its spectrum

Figure 16-6 A spatially bounded
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Suppose that F(s) is sampled so that M sample points fall within the passband —s,, < 1 T 0.5
5 <5, (Figure 16-7). Suppose further that we desire to determine F(s) over the range —s,, to
sy, Where n implies some larger number N of sample points. Then an estimate of the spec- @ fx) Fo ®)
trum, bandlimited at s, (which is larger than s,,) can be computed from
N . 0
N sin(2sT - 2nT)
F@=Fe) = 3 F@n) 2nsT - 2nT @ 0 5 0 T 20 0
. n=-N  —> . —
If we compute F(s), we have successfully extended the band limit of the function from s,,
out 1o ,,. T 0.5 T T T
- 24X ] Gl sy
o O0F ‘ @
0
o I 1 o
o 5 0 10 20 30
x —* s d
1 T 0.5 T T T
je——M sampie points —|
. Figure 16~7 Sampled spectrum = G (s)
je————— N sample points —————]| representation © 0s &l ] :> s o
. . A . 0 e
Eq. (44) may be viewed as a linear equation in 2N + 1 unknowns. The unknowns are 0 e
the values of F(2nT) at the sample points. Since the spectrum in known for |s] < s,,,, We can 5 L L -+ L
generate a system of 2/ + | linear equations in 2N + | unknowns by selecting 2N + 1 fre- 3 0 10 __;0 30
quencies within the passband and substituting the known values of F(s) into Eq. (44). T g
Classical techniques can be used 10 solve the system of linear equations for the | ; 05 | r —
unknown values of the spectrum. These values can then be substituted into Eq. (44) to gen-
erate an estimate of the spectrum that is bandlimited at a frequency higher than the diffrac- s - 2:(x) Gyls)
tion limit of the imaging system. (6] ; T c:] (h)
In practical cases, N may be relatively large and the tinear equation solution compu- 0 S
tationally expensive. Since the spectrum of real fynctions is Hermite (the left half is the 0 - ‘ | . .
complex conjugate of the right half; see Chapter 10), this cuts the number of equations in 5 0 10 20 30
half. Furthermore, since the spectrum is already known below the diffraction limit, only v — 5
those points falling between s,, and 5, must be computed.
16.5.3 Successive Energy Reduction
There is an iterative, and possibly more practical, approach to recovering the high-fre- 1 0.5 T T T
quency portion of the spectrum of a spatially bounded image. It involves successively
enforcing space-limitedness upon the image, while keeping the known low-frequency por- i &1l Gid9) o
tion of the spectrum intact. o
Figure 16-8 illustrates the process in one dimension. We begin with f(x), a triangular 0 | 0
pulse (a) that represents the actual object and (b) its true spectrum, F(s), out to some fre- — : L L
quency s,,. In(d), Gy(s) is the spectrum of F(s) after it has been lowpass filtered by the trans- 0 3 0 10 2 30
fer function of the imaging system, which is bandlimited at s,, > s,. For this example, we x s —*

Figure 16-8  Successive energy reduction: (a) actual object and (b) its
spectrum; (¢) recorded image with (d) spectrum that has been bandlimited by
the imaging system: (e) space-limited image; (h) spectrum restored to match
(d) within the passband; (i) image and (j) spectrum after five iterations,

assume an ideal lowpass transfer function. Figure 16-8(c¢) shows gg(x), which corresponds
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to the recorded image. The only thing we know with a high degree of accuracy, then, is
Go(s) within the passband |s] < s,,,.

Notice that bandlimiting the spectrum causes g,(x) no longer to be space limited. The
first step of the restoration is enforcing space-limitedness upon go(x) by setting it to zero
outside the domain of the pulse. This forms g; (x), shown in (e), and G, (s} is its spectrum (f).
G (s) looks more like F(s), but it no longer conforms to Gy(s) within the passband.

The second step involves replacing the values of G,(s) with those of Gy(s) inside the
passband, to form G, (s), shown in (h). This further improves the approximation. An inverse
transform yields g,(x), shown in (g), which is a better approximation to f(x), but is no longer
space limited.

The two steps of (1) enforcing space-limitedness upon g;(x) and then (2) restoring the
correct values to G, (s) within the passband (using Gy(s)) are repeated alternately. Figure
16-8 (i) and (j) show the results after five iterations. Each step reduces the energy of the
error [34:8.18] given by

E= '[ ) [f(x) - gi(x)|dx (45)

Figure 16-9 shows how g;(x) and G;(s) converge toward f(x) and F(s), respectively. The
convergence generally becomes rather slow after the first few steps.

1 T T T 0.6 T T

04

0.5
0.2

(a) (b)

Figure 16-9 Convergence of successive energy reduction; g;(x) and G,(s)
converge to f(x) and F(s), respectively, with increasing

16.5.4 Practical Considerations

Any digital implementation of the extrapolation of an analytic function must be done care-
fully. The original image must be digitized with a very low noise level. It also must be over-
sampled by at least the factor by which its bandwidth is to be extended, and probably
considerably more. In order to calculate the spectrum with fine resolution, one must com-
pute the Fourier transforms over a domain much larger than the extent of the image. Finally,
to avoid accumulating errors in the many forward and inverse transforms, one must employ
a high degree of numerical precision.

There are various other approaches to reconstructing an imaged object with resolu-
tion beyond the diffraction limit. These include the use of prolate spheroidal wave
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functions [35-40], linear mean square extrapolation [34], and superimposed sinusoidal
masks [41). Several researchers have considered the effect of noise on the reconstruction
process |38-40].

While some authors present impressive one-dimensional simulations of these tech-
niques, practical examples have been rare. Whereas only one analytic function can exactly
match a given function over a specified interval, many different analytic functions can
approximate the given function very closely within the interval and then diverge signiti-
cantly from it outside the interval. Andrews and Hunt {17] refer to “the myth of superreso-
lution” and argue that noise constraints preclude any practical extension of resolution
beyond the diffraction limit. Only with very high quality (low-noise) image digitization and
careful computation can significant improvement be expected.

16.6 SYSTEM IDENTIFICATION

Before image restoration can be accomplished, the PSF of the blurring function must be
known. In some cases, it is known in advance, but in others it must be determined experi-
mentally from the degraded image. In this section, we consider methods for determining the
PSF and MTF of an imaging system.

16.6.1 System Identification by Calibration Targets

In many cases, the transfer function of a4 system can be measured directly, once and for all,
before the system is put into use. Suppose that for the system in Figure 16-10, the impulse
response A(x. y) is unknown and must be determined. We can find the transfer function
directly from

Glu,v)

Flu,v)

i f(x, v) 15 a suitable test signal. Ideally, F(u. v) should not have zeros. If it does, and if

H(u, v) can be assumed relatively smooth, we can still solve Eq. (46) by numerical
techniques.

H(u vy =

(46)

fxy) —— hix,y) [— g(v))

R Figure 16-10 A linear system

16.6.1.1 Point Source Targets

If it were possible to input an impulse (or point source), then the output would be the
impulse response (i.e., the PSF). While an impulse is physically impossible, we could get by
with a pulse that is narrow compared to the PSF itself. Stars can be used to measure the PSF
of a telescope, except that blurring by the atmosphere makes the PSF appear larger than it
is. A bright point source LED can be employed with camera lenses. and small fluorescent
beads are a possibility for identifying a microscope objective. In general, however, direct
measurement of the PSF of optical systems—particularly bright-field microscopes—with
point source targets is impractical, and other means must be employed.
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16.6.1.2 Sine Wave Targets

Perhaps the most reliable means for determining the transfer function involves the use of
sinusoidal input functions. Suppose the input is

flx,¥) = cos (2msyx) (47)

which is a vertical bar pattern with a sinusoidal profile. (Recall Figure 11-1.) Since this
input is also constant in the y-direction, the output is

8(x,y) = H(sp0)cos (27spx) (48)
and the output spectrum is given by
G(u,v) = H(500) [ 8(u - 59) + (s + 50)] 5(v) (49)

This is an even impulse pair located on the u-axis at u = ts,.

By repeating this procedure with many different frequencies at many different orien-
tations, one can determine the transfer function to any desired degree of accuracy. Again,
for circularly symmetric or separable transfer functions, the required amount of work is
considerably reduced. In fact, the entire job can be done with one input image containing
vertically and horizontally oriented sinusoidal bar patterns at several different frequencies.
Such an input image is called a sine wave target. Since such targets are difficult to generate,
particularly in small sizes required for measuring the PSF of a microscope, bar targets are
sometimes used to measure the square wave response of the system, and this in turn is used
to approximate the transfer function.

16.6.1.3 Line Targets

Suppose the input to the system is a line of infinitesimal width lying along the y-axis. We
can express this as

flxy) = 8x) (50)
which may be thought of as the product of a delta function in the x-direction and a constant
(unity) in the y-direction. Then the output is given by the convolution

20 y) =J' j h(p. 9)8(x - p)dp dq =J' h(x, y)dy D

and the output spectrum is

G(u,v) = H(u, v)8(v) = H(u, 0)8(v) (52)
Thus, the line input function has the effect of integrating out the y-component of the impulse
response. By the projection property of the two-dimensional Fourier transform mentioned
in Chapter 10, the spectrum of the output is merely the transfer function evaluated along the
u-axis.

If h(x, y) has circular symmetry, then the transfer function H (x, v) can be completely
determined from the line-spread function produced by an input line at any orientation. If
h(x, y) is separable into a product of a function of x times a function of y, then the vertical
and horizontal line-spread functions of the system are adequate to determine the transfer
function.
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W hix v asymmetricat. the rotation property of the two-dimensional Fourier truns-
form implies that we can take line-spread functions at every angle of orientation, transform
them to obtain profiles of A (u, v) at every angle, and thus reconstruct the transfer function.
This technique forms the basis of computerized axial tomography, discussed in Chapter 22.

16.6.1.4 Edge Targets

Suppose the input contains an abrupt transition from low to high amplitude along the y-axis.
This input can be expressed as a step function in the v-direction times a constant in the
v-direction and can be written as

flyy = ulx) (53)
where «1x) is the unit step function introduced in Chapter 9. Since the edge function is the
integral of the line input, and convolution commutes with differentiation and integration.
the edge-spread function is the integral of the line-spread function. Thus, one can differen-
liate the edge-spread function and proceed as before. Alternatively, we can make use of the
property that integration merely introduces a coefficient 1/j2rs into the Fourier transform.
Thus,

_ Hu, 0)5(v)

G }
Hu, v) J2nru

(54)
from which the transfer function may be determined for nonzero u.

16.6.1.5 Frequency Sweep Targets

Another input that, like the sine wave target. avoids the necessity of transforming the output
to determine the transfer function is the frequency sweep target. For purposes of illustration,
consider the one-dimensional linear system in Figure 16-11.

The input is a harmonic signal whose frequency increases linearly with distance from
the origin. A harmonic signal with frequency ax is given by

fix) = gf2mas (55)
The output signal is given by the convolution

e(x) = j h(.”(,;me 1)"” - e}lﬁﬂ::j h(t)eﬂ"“ﬁ(' JAmaxs gy (56)

8x)

/-Htlm)

Figure 16-11  System identification with a frequency sweep input
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where the second form is obtained by expanding the square in the exponential. If we make
the substitution

=2ar  dv=2adt t=2 dr=sids (57)
2a 2a
and recognize the input signal in fron of the integral sign, we obtain

RI%Y

gl = ﬁ_l;f(”,‘. II(%)('/”'\ Rugmi2nsi s (58)
~C x¢ -

We can now recognize the integral in Eq. (58) as the Fourier transform of a product. This
can be written

g(x) = J-,f(x)ﬁ{h[—j-)ef’“z’zA (59)
2a 2a s
If the impulse response goes 10 zero outside the interval ~T'to T, then
h( %) =0 l>2aT (60)
Za
Furthermore, if
(2&7')2 2
5 2aT? « 1 61)
then
e Is| € 2aT (62)
and the output reduces to
gl = ELuf(x)2aH12ax) = f(x)H(2ax) (63)

which is merely the input in an envelope that is the transfer function.

The assumption in Eq. (61) can be interpreted in two ways. First, it implies that the
impulse response is narrow compared to the first cycle of the frequency sweep. By the sim-
ilarity theorem, this is equivalent to assuming that the transfer function is broad compared
to the first cycle of the frequency sweep. If this second condition were not true, it would be
difficult to observe the envelope of the output.

Notice that using a frequency sweep target under the assumption of Eq. (61) allows us
to determine the transfer function without having to compute a Fourier transform. If, on the
other hand, we are willing to compute a Fourier transform, we can avoid making this
assumption. Returning to Eq. (59), if we divide both sides by f(x) and take the inverse Fou-
rier transform, we obtain

8L 1. (s jtna
¥ {f(x)} = ZGh(2a)eI” el

If we take the magnitude of both sides of Eq. (64), the complex exponential disappears, and

] gx) _ 1 s
's {m} iﬂ"(z‘a) (65)
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which is easily solved for the impulse response A (x). It is curious that transforming the ratio
of the output to the input produces the impulse response rather than the transfer function.

16.6.2 System Identification by Cross-Correlation

Suppose we cross-correlate the output of a linear system with its input, as shown in Figure
16-12. The spectrum of the output of the cross-correlation is

Z(s) = G(s)F*(s) = H(s)F(s)F*(s) = H(s)P(s) (66)

where Py(s) is the power spectrum of the input signal. If f(x) is uncorrelated white noise.
then P;(s)is a constant, and the output of the cross-correlator is merely the impulse response
of the system. Thus, one can use a random noise image as input to a system and
cross-correlate it with the system’s output to obtain the PSF of the system. In addition, the
spectrum of the output is the transfer function of the system.

One can generate an uncorrelated white noise image by first generating a two-
dimensional spectrum that has constant amplitude and random phase and then computing
its inverse Fourier transform.

8(x)

fix) h(x)

—
[ Ry D)
S ——

Figure 16-12 System identification by cross-correlation

16.6.3 Identifying the System from the Image

In some cases, it is impractical or impossible to calibrate the imaging system under the same
conditions in which a particular degraded image was recorded. This is true for motion blur
and stochastic degradation such as atmospheric turbulence, and when a photograph is to be
restored and the original camera system is unavailable. In such instances, one must attempt to
determine the degrading PSF from the image itself.

If the image contains any feature that can be modeled analytically, then, theoretically,
the PSF can be obtained by deconvolution of the model.

16.6.3.1 Point Sources

If one can arrange for the degraded image to include a point source of light or a vanishingly
small dark spot on a white background, then the PSF is available directly. If the point source
or spot is of nonnegligible extent, then it can be modeled with a Gaussian, a flat-topped cir-
cular pulse, or some other suitable function that can be deconvolved to yield the PSF.
This technique is perhaps most valuable in astronomical photographs severely
degraded by atmospheric turbulence. Here, point sources (stars) are readily available, and
the degradation is severe enough that deconvolution can be a great help. In high-quality
images, such as diffraction-limited camera images, it is difficult to find a point source or
speck small enough to show the PSF and still large enough to come through the system with
sufficient energy to be measured accurately. Since the PSF occupies a very small portion of
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the image, itis particularly vulnerable to corruption by system noise. For this reason, direct
measurement of the PSF using a point source in the image is of limited use.

16.6.3.2 Lines

Under the projection theorem of the two-dimensional Fourier transform, the Fourier trans-
form of the line-spread tunction gives a one-dimensional component of the two-dimen-
sional transfer function. The line-spread function approach has the advantage that a line
source in the image can be averaged along its extent to generate a relatively noise-free esti-
mate. For high-quality systems. however, the line object in the image must be extremely
thin. Therefore, it must be extremely bright (or dark) relative to its background in order to
come through with sufficient amplitude.

16.6.3.3 Edges

Most images of ordinary scenes contain features that can be modeled as ideal edges. Such
an edge can be averaged along its extent to produce a relatively noise-free estimate of the
system edge-spread function in a particular direction. This can then be differentiated to pro-
duce the line-spread function, and that can be transformed to produce a component of the
transfer function [17,42 43].

If the PSF is known to be circularly symmetric, the one-dimensional PSF derived
from the line-spread function may simply be rotated to produce the two-dimensional PSF.
If the PSF and, hence, the transfer function are separable into a product of functions, then
one vertical and one horizontal edge are sufficient to determine the transfer function. In the
general case, however, cdges at many different orientations are required to determine the
transfer function adequately.

Since differentiation is a highpass filter type of operation, noise in the edge-spread
function will appear amplified in the resulting line-spread function. Thus, averaging along
the edge should be employed wherever possible. If the edge is not perfectly straight and par-
allel to the sampling raster, however. averaging will blur the edge and make the transter
function appear to be more of a lowpass filter than it really is.

A skewed linear edge may be brought paraliel to the sampling raster by a geometric
transformation that effects rotation. Unless the scene is considerably oversampled, how-
ever, the interpolation inherent in rotation will also tend to blur the edge.

Another problem with the edge-spread function occurs when one considers using it
over (00 narrow a region in the vicinity of the edge. Rabedeau {44] shows that for a dif-
fraction-limited system, the edge-spread function must be considered over a width of
almost 10 Airy disk diameters before the transfer function errors due to truncation drop
below 2 percent.

Proper use of the edge-spread function is not as simple as it might seem, and accurate
determination of the transfer function requires considerable care. In general, any determi-
nation of the PSF from the degraded imaged should be done very carefully.

16.6.4 Determining the OTF from the Degraded Image Spectrum

Ordinarily, images of complex scenes have reasonably smooth amplitude spectra. If the
degrading transfer function has zeros (as in the case of linear motion blur, for example),
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these zeros will tend to force the spectrum of the degraded image to zero at specific fre-
quencies. If the blurring function is adequately modeled, the locations of the zeros (or near-
zeros) in the spatial frequency plane allow one to determine the unknown parameters of the
blurring OTF. Visualization of the zeros in the spectrum is sometimes aided by preprocess-
ing with a highpass filter [45].

By taking the logarithm of the power spectrum of the degraded image, one can
enhance the amplitude of the dips due to zeros in the degrading transfer function. If the zeros
are equally spaced. they produce a series of periodic spikes in the logarithm of the power
spectrum. The power spectrum of the logarithm of the power spectrum, sometimes called
the cepstrum (18], is useful for determining the exact spacing of the spikes and. conse-
quently, the zeros of the degrading transfer function {16,46].

A perhaps more powerful technique involves segmenting the degraded image into
square regions that are large compared to the extent of the degrading PSF |47] and averag-
ing the logarithm of the power spectrum of all such regions [48]. For complex scenes, the
signal components tend Lo average out in the average log spectrum, whereas the degrading
transfer function, which is constant throughout the image, does not. The average log power
spectrum converges approximately to the logarithm of the squared magnitude of the degrad-
ing transfer function {171.

16.7 NOISE MODELING

Those noise sources that commonly corrupt 1nages can be divided into three categories.
First, images originally recorded on photographic film are subject to degradation by film
grain noise. Second, the conversion of an image from optical to electrical form is a statistical
process. since, in reality, each picture element receives a finite number of photons. Finally,
electronic amplifiers that process a signal introduce thermal noise. Considerable effort has
been devoted to modeling noise from these three sources.

16.7.1 Electronic Noise

Electronic noise due to the random thermal motion of electrons in resistive circuit elements
is the simplest of the three sources to model. This type of noise has been successfully mod-
eled by circuit designers for a long time. It is usually modeled as spectrally white Gaussian
noise with zero mean value. Thus, it has a Gaussian histogram and a flat power spectrum.
Itis completely specified by its RMS value istandard deviation). Sometimes, electronic cir-
cuits exhibit so-called one-over-f noise. This is random noise with an intensity that dies out
inversely with frequency. However, image-processing problems seldom require modeling
of the 1/f component of the noise {49].

16.7.2 Photoelectronic Noise

Photoelectronic noise is due to the statistical nature of light and of the photoelectronic con-
version process that takes place in image sensors. At low light levels, where the effect is rel-
atively severe, photoelectronic noise is often modeled as random with a Poisson density
function [17]. The standard deviation of this distribution is equal to the square root of the
mean.
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At high light levels, the Poisson distribution approaches the Gaussian, which is sim-
pler to model. Again, the standard deviation (RMS amplitude) is equal to the square root of
the mean. This implies that the noise amplitude is signal-dependent.

16.7.3 Film Grain Noise

As described in Chapter 2, a photographic emulsion consists of silver halide crystals sus-
pended in gelatin. Photographic exposure is a binary process, with each grain being either
totally exposed or unexposed. During development. exposed grains are reduced to opaque
grains of pure silver, while unexposed grains are washed off. Thus, the variable density of
a photographic negative is due to variations in the concentration of silver grains. Under
microscopic examination, the smooth tones of a photographic image assume a random
grainy appearance. Randomness is further introduced by the variable number of photons
required to expose a particular grain and by the varying size of the grains themselves. The
subjective appearance of these factors is termed graininess.

For most practical purposes, film grain noise can be effectively modeled as a Gauss-
ian process (white noise). Like photoelectronic noise, the underlying distribution is Poisson.
Since the mean grain diameter for specific films is published by the manufacturer, only the
standard deviation of film grain noise as a function of grain size and the local image density
remain to be determined.

In 1913, Nutting modeled the photographic emulsion as a sandwich of layers approx-
imately one grain diameter in thickness. He showed that the measured optical density is

D = 04322 67)
y (

where « is the cross-sectional area of a single grain, A is the area of the aperture used to mea-
sure optical density, and n is the total number of grains that fall within the aperture {50). For
fixed values of a and A, n is a random variable with a binomial distribution. Taking the
éxpectation of Eq. (67) produces

L
§{D} = 04438—%"—“ (68)
and since Eq. (67) is linear, the variance is given by
, o,
o} = ().43—(’ (69)
s

If @ is small compared to A, the binomial distribution of # can be modeled by a Poisson dis-
tribution, and hence, the variance is equal to the mean [51]. Making this substitution produces

op =, 0.43% 181D} (70

This equation indicates that film grain noise is worse with large-grain (high-speed) emul-
sions and small scanning apertures and in dense areas of the image. Thus, film grain noise
is also signal-dependent,

The preceding analysis assumes uniform grain size. Haugh [52] showed that if the
erain size is distributed. the exponent in Eq. (70) should be somewhat less than one-half.
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Using sensitometric data from Higgins and Stultz [53), Naderi [54] showed, that the expo-
nent lies between 0.3 and 0.4 for a reasonably small aperture. Thus, film grain noise can be
modeled as a zero-mean white Gaussian process with RMS amplitude (standard deviation)
proportional 1o the cube root of the local average density.

We have seen that, of the three common noise sources, two are signal-dependent. This
signal dependence may be ignored for common restoration work, but for high levels of
accuracy, it must be taken into account.

16.8 IMPLEMENTATION

In this section we consider alternative ways to implement the restoration of an image after
the required operation has been identified [55].

16.8.1 Transform Domain Filtering

If the restoration operation is linear and shift invariant, it can be implemented by multipli-
cation in the Fourier transform frequency domain. This involves first a two-dimensional
DFT, followed by point-by-point multiplication of the spectrum by the transfer function,
and then an inverse DFT. For an N-by-N image, this requires N log,(N) multiply-add oper-
ations for each transform if the FFT is used and M multiplications to implement the filter.
This approach is useful when the restoration transfer function is developed in the frequency
domain.

In some cases, the restoration is better done using a discrete transform other than the
Fourier transform. Most of the transforms mentioned in this text have fast implementation
algorithms similar to the FFT. The required modification in the transform domain then
depends on the nature of the restoration. That is, it may be something other than multipli-
cation by a transfer function.

16.8.2 Large-Kernel Convolution

If the restoration is a linear, shift-invariant operation, it can be implemented by convolution
in the spatial domain. Discrete convolution with the restoration PSF is numerically equiv-
alent to the DFT method above, provided that both the image and the PSF array are N by N.
The convolution of two N-by-N arrays requires N* operations, significantly more than the
FFT method, making this approach much less practical for images of reasonable size.

16.8.3 Small-Kernel Convolution

Unless the image is severely oversampled, the signal spectrum, and consequently the res-
toration MTF, will normally extend most of the way to the folding frequency before it dies
out. From the similarity theorem of the Fourier transform, we know that if the transfer func-
tion is broud, the impulse response will be narrow. Thus, the convolution kernel for imple-
menting a restoration PSF might well be zero, or approximately so, except within a
reasonably smali radius about the origin. In that case, the majority of the operations required
for an N-by-N convolution (those distant from the origin) will contribute little or nothing to
the restoration.
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A properly designed small kernel (M by M, where M < N) of perhaps nine by nine, or
even as small as three by three, pixels might then produce an acceptable approximation to
the result of convolution with the full N-by-N array. Convolving an M-by-M kernel with an
N-by-N image requires M*N? multiply-add operations. Hence, we now address ways to
derive compact restoration kernels.

16.8.3.1 Subsampling the Transfer Function

The inverse two-dimensional DFT can compute an M-by-M PSF from an M-by-M transfer
function. The N-by-V restoration MTF can be subsampled to size M-by-M. This way, it is
properly scaled, in that it covers the frequency range from zero to the Nyquist fregency, and
yet the resulting kernel has the desired size.

The restoration MTF may have to be smoothed to avoid aliasing in the subsampling
process. If so, the small kernel will then implement the smoothed MTF and thus will not
match the full-sized, original MTF. Smoothing the MTF tends to narrow the PSF, thereby
making it more space-limited. This is simply lowpass filtering with the domains reversed.

Figure 1613 illustrates the approach in one dimension. A 28-peint discrete Gaussian
lowpass transfer function vector, F, was subsampled by a factor of four, producing a 7-point
vector. The inverse DFT of the latter, properly scaled, yields the 7-point kernel, f. The
graph in the figure shows the effect that the approximation has on the transfer Tunction.

77777 T T T
RMSE = 0.05
05t -
Fi$) — Fis) ——\
1 1 1 1 I 1 1 1 | | 1 1 L
0 2 4 6 8 10 12 14 16 18 20.22 24 26 28
e
F=(- 0 01 04 | 23 44 69 9 1 91 69 44 23 1 .04 01 0 -]

F=[0 0 23 1 23 0 Qf f=[08 I3 (8 21 18 .13 08]

Figure 16-13  Subsampling the MTF: F is a 28-element vector specifying
the desired MTF and f is the corresponding 28-point impulse response vector.
F is the MTF subsampled to 7 points, and f is the corresponding 7-point
kernel. The graph shows the actual and approximate MTFs
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16.8.3.2 Truncating the Kernel

A simpler approach to small-kernel convolution is merely to truncate the PSF array to some
acceptably small size. Multiplying the PSF by a square pulse convolves the MTF with a
sin(x)/x function. Unless the PSF is spatially bounded (essentially zero outside the trunca-
tion window), this can alter its transfer function significantly. The transfer function of the
truncated kernel can be computed and compared with the complete restoration MTF to
determine whether the effects of truncation are acceptable.

Truncating the kernel reduces the “detail” in the transfer function, just as eliminating
high-frequency components from a spectrum reduces the detail in the corresponding signal
or image. Thus, the transfer function of a truncated kerne! can follow the basic shape of the
desired MTF, but, being inherently smoother, it cannot conform to local variations.

The inverse DFT, like the forward DFT., is an orthonormal transform. Hence, each
basis function is orthogonal to every other. This means that no modification of the remain-
ing kernel elements can replace any of the detail that was lost by truncating the kernel. In
other words, the MTF of the truncated kernel is the best approximation to that of the large
kernel, in the mean squares sense.

Computing the Kernel. Recall from Sec. 10.1.4 that the discrete Fourier
transform

N
. 1 - i .
Fo = —=) fiexp a/an—) ik =01,...N-1 h
‘ NIZ(‘ l N
expresses the relationship between an N-point convolution kernel (f} and its (N-point)

transter function { F;}. In matrix form, this is
F=Wf and = WIF (72)

where W is an N-by-N unitary matrix with elements
| ( . i )
in = —=eXxp| ~f2mk—
Wiy JNLXP J2mky 73

and its inverse is merely its conjugate transpose. Since 0< k <N — 1, the elements of F rep-
resent N points in the transfer function that are equally spaced inthe interval [—sy.sy], where

|

W= 5 (74)

is the Nyquist frequency.

Sec. 13.4.1.1 pointed out that the DFT requires a somewhat awkward arrangement of
the elements in the signal and spectrum vectors. (Recall Figure 13-2.) If the signal and spec-
trum are centered, not at element (), but at element a of their vectors, then the one-dimen-
sional DFT equation becomes

A
I . (i-a)

Fo= — Y fiexp [—/2ﬂ(k-a)—} as
v Nmzﬂ N

and similarly for the inverse transform. Normally a would specify the central element of the
vector, that is,
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> Ve
u = I N/2 N even 6

(N-1)/2 Nodd
This formulation can be more convenient for kernel computation than the standard DET.
We lose the computational advantage of the FFT implementation, but this is seldom a sig-
nificant factor with kernels of ordinary size. Further, it is often convenient to use kernels of
odd tength (so that there is a central element), but the FFT requires even length.

Now, suppose that g is an M-by-1 kernel vector, and we wish to compute from it an
N-by-1 spectrum vector. where N> M. The larger number of points are to be spread across
the same frequency range, |—sy,sy). so their spacing will be closer than it would be inan
M-point spectrum. In this case we can write

M-
1 ( . (k-a) 1
b= — g -j2 ~-b)l 77)
‘ ml;ﬂ]smem: r=(m = b) | (
where 0 <m <M - 1,0 <k<N -1 gisas above and
b= { M/2 M even (783
(M-1)2 Modd

This equation computes an N-point spectrum from an M-point signal. In matrix form. it is
F = Wg (79

where W is an N-by-M matrix having elements

Wim = —J%lcxp [—jZn(k ;la)(m—b)} (80)
A 56-point spectrum vector, plotted as F(s) in Figure 16~13, was computed with this
method from the 7-point kernel, f shown. This approach of computing a long spectrur or
signal vector from a short signal or spectrum vector, respectively, makes it convenient to
visualize the smooth (bandlimited, analytic) function that underlies a discrete signal or
spectrum vector.

Now, suppose F is a specified N-point transfer function, and let g be a correspond-
ing, but unknown, M-point kernel intended to approximate it. Then Eq. (79) represents N
equations in M unknowns. This is an overconstrained system of equations, and it cannot
be solved for exact values of g,,. It is, however, amenable to a minimum mean square
error solution by the pseudoinverse method [56]. (See Sec. 19.5 and Appendix 3.) This
yields

g = [W'W]'W*F (81)
where the * indicates the conjugate transpose. Thus, g is an M-point vector containing the
kernel elements that minimize the mean square error

N-1
MSE = [F-Wgl® = 3 |F,- G (82)
i=0
where G = Wg is the actual transfer function of the small kernel, g, computed to N points.
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As a numerical example, suppose N = 14, M = 7, and the desired transfer function
(specified as a 14-element vector), is
F={0000 .01 .14 611 .61 .14 .01 00 0]
This is a Gaussian lowpass filter corresponding to the kernel
f=1[.01 02 .05.13.27 45 .61 .67 .61 .45 27 .13 05 .02]
If we use a = 3 and b = 7 in Eq. (80), we obtain, from Eq. (81),
g = [.27 45 .61 67 61 45 27}
which is merely the truncated kernel, as expected, since the MMSE approximate kernel is
simply the truncation of the larger kernel.
We can use G = Wg to compute the 14-point transfer function of the small kernel.
This yields
G =[-050 .05-02-05.2.65 .89 .65 2 -05 -02 .05 0)°
The two transfer functions are graphed in Figure 16-14.
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G — truncating the kernel: F is the transfer
function of a 14-point Gaussian
lowpass filter kernel, and G is the
[ N S S B N U O B N transfer function of a seven point

0 7 14 truncation of the kernel

While the preceding discussion applies to one dimension, the generalization to two
dimensions is straightforward. One merely employs row stacking to format the two-
dimensional transfer function into a vector representation. The kernel likewise emerges in
row-stacked format.

16.8.4 Kernel Decomposition

Modern image-processing systems often incorporate special hardware for high-speed con-
volution with a smail (typically, three-by-three) kernel. This hardware becomes useful when
an M-by-M kernel is decomposed into a set of smaller (e.g., three-by-three) kernels that are
then applied sequentially. For example, (M — 1)/2 kernels of size three by three will imple-
ment an M-by-M convolution. While this cannot substitute exactly for an arbitrary M-by-M
kernel, the result is often a good approximation. In this section, we discuss the decomposi-
tion of large kernels into sets of smaller ones.

16.8.4.1 SVD Convolution

Singular-value decomposition (SVD;, see Sec. 13.6.4 and Appendix 3) expresses an M-by-M
matrix of rank R as a sum of R M-by-M matrices of rank 1. Further, each such matrix is an
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outer product of two M-by-1 eigenvectors, and each is weighted, in the summation, by one of
the singular values of the matrix. Since convolution commutes with addition, this can be
implemented as a sum of R images, each obtained by convolution with one ot the matrices in
the sun.

This would appear to increase, rather than decrease, the computational load of the
process. Each of the convolutions, however, can be implemented s an M-by-1 convolution
on each row of the image, followed by 4 1-by-M convolution on each column. This requires
only 2MN* multiply-add operations (rather than M2A?) for each matrix in the summation.
The complete convolution can be done in 2RMN? operations, which will be less than M2N*
if R < M/2.1f the kernel exhibits circular symmetry, the rows below the center row are iden-
tical to those above, and the rank can be no greater than (M + 1)/2. Also, these one-
dimensional rowwise and columnwise convolutions can be performed by high-speed hard-
ware in many image-processing systems.

As a numerical example. consider the three-by-three convolution kernel

_121]
F=132
02

Its singular-value decomposition is simplified because the kernel is square and symmetric.
The unitary matrices (see Appendix 3) are equal, i.e.,

(83)

6 10 6
U=FF =V =FF= |19 17 10 (84)
6 10 6
and they have eigenvalues
A 28.86
Al =1 014 (85)
A 0
and eigenvectors
045¢ 0542 ] ~0.707
U =vi=10766] U=vo=]|_0643| and  uz=vy=| g (86)
0.454 | 0.542 | 0.707

Uand V are matrices of rank 2, since one eigenvalue is zero. The singular values are on the
diagonat of

(87)

and the SVD summation is
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2
F=YAuy (88)
j=1
which, in this case, has only two terms.

The ramification of this result for convolution purposes is that we can convolve the
rows and columns of the image with u,. then separately with u,, and then add the two result-
ing images, properly scaled. to obtain the desired result, without error.

Notice that the second singular value is much smaller than the first. Thus, we can
neglect the second term in the summation without introducing much error of approxima-
tion. Using the first term alone, we have

111 1.87 111
F=Ajwu| = {187 315 1.87 (89)
11 187 1.11

which may be an acceptable approximation to the kernel in Eq. (83). This operation can be
implemented as convolutions of u, first with the rows and then with the columns of the
image (or vice versa).

A second example makes the point more strongly if we change the central element of
F 10 4. This reduces the rank of the matrix to 1, since all three rows are then identical to
within a scale factor. In that case

121 36 60 0 0.408
F=1l242 4=19 A="0 0 0 and u; = 98j6 (90)
121 0 0 0 0 0.408 |

The SVD summation now has only one term, which is

1
F=A g = JA juja e =) [l 2 I] 9h
1

Thus, singular-value decomposition has factored the three-by-three kernel inty the product
of identical three-by-one and one-by-three vectors. These can then be convolved with the
rows and columns of the image sequentially, requiring six (rather than nine) multiply-add
operations per pixel.

16.8.4.2 SGK Decomposition

Using SVD in combination with the small generating kernel (SGK) decomposition technique
157,58:9.6], we can decompose any M-by-M kernel into a set of smaller kemels that can be
applied sequentially. For example. an M-by-M kemnel can be decomposed into (M — 1)/2 ker-
nels of size three by three to implement approximately the same convolution.

As shown in the previous subsection, each of the separable matrices in an SVD sum-
mation is an outer product of two M-by-1 eigenvectors [e.g., Eq. (88)]. These vectors, in
turn. can be expanded by SGK decomposition as a sequential convolution of three-by-one
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kernels {59]. With this approach, R(M - 1) convolutions with three-by-one kernels are
required to implement convolution with an M-by-M matrix of rank R.

Suppose an M-by-M kernel has been decomposed into one or more pairs of M-by-1
vectors by SVD, as illustrated before. We now seek to decompose each of these pairs into
(M —1)/2 kernels of size three by one. To illustrate the technique, we decompose a five-by-
five kernel into two three-by-three component kernels.

SVD shows that the kernel in Figure 1615 is a matrix of rank 1 that is the outer prod-
uct of the vector h = (1,3.4.3,1) with itself. We now seek to decompose the five-by-one ker-
nel hinto two three-by-one components, f and g.

Since convolution is associative.

y = h*x = *[g*x] implies h = f*g (92)

and. in the frequency domain,
= F($)G(s) (93)
Thus, the challenge is to factor the transfer function H(x, v) into two transfer functions that

are suitable for three-by-one convolution sequences.
From the definition of the one-dimensional discrete Fourier transform, we can write

H(s) = Z h; eij ”\‘ (94)

Switching to the notation of the z-(ransform. we let

= emrﬂ (95)
and we can write Eq. (94) as
M-
H{z) = Zh,: = gty Ty byt (96)
=0
Factoring out hy and z™* yields
I3 o4 3
9 12 9 3
(b 4012 16 12 4 M
19 92 9 3 '
3 43
T =l
1] 1!1 121
v [ d 2 42 ¥
1o 12

Figure 16-15  Small generating kernel decomposition
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hy
2 = hy AR 97
H(z) 0 [z+hz+hoz+ +th 97
which has a polynomial in z inside the brackets.

Using this same technique on fand g, we can write Eq. (93) as

H() = hgi‘\tz + ’—’-'23 + '212 +z+—
hy hoy” hy h
H, f o
ol 48,8
F(9G(2) = foz l[z‘+ i+ Zj ra [ +=z+ —]
Jo fo' T Fo R %' %
Canceling z™* on both sides, and substituting the &, values for the example in Figure 16-14

gives

[z“+3z?+4z’+3z+l]=f0gu[z +L'z+f7][ + 2 +&} 99
/ fo 8 8o

The polynomial on the left side can be factored into the product of four terms of the form

{z — r;}, where each r, is one of the four (possibly complex) roots of the potynomial.

If complex roots exist, they usually occur as complex conjugate pairs. (In this exam-
ple, two of the roots are - 0.5+ j./3/2 ) The roots are then paired and multiplied, yielding
real quadratic terms.

Several mathematics software packages incorporate symbolic processing engines
with the capability to find the roots of and factor polynomials. The left-hand side of Eq. (99)
factors into quadratic terms, and we obtain

(FP+z+ )2 +27+ 1) -f(,go[z +~M+f—z:{[z +&z+‘g—2:( (100)
foo fo 8 &
from which we can solve for f=(1,1.1) and g = (1.2,1)".

Notice that one arbitrary choice had to be made: The constraint was fug, = 1, and we
chose fy=go=1.

The two three-by-three kernels are ff’ and gg'. The result of this SGK decomposition
example, then, is

13 4 3 1]

391293 111 121

41216124 =|111]*%]242 1oy
391293‘ 1] (121

13 4 3 1]

Normally. SGK decomposition cannot reconstruct the original kernel without error, as we
have been fortunate enough to do in this example. The error, however, is introduced in the
SVD step. where those terms in the summation having the smaller singular values are
ignored. Error is not intreduced by factoring the z-transform. Thus, one has some control
over the approximation by deciding how many singular values to include.

Symmetry in the kernel matrix tends to concentrate magnitude into one or a few of the
singular values. The trade-off between accuracy and computational efficiency can be
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guided by the fact that the mean square error is equal to the sum of the singular values that
are discarded.

16.8.5 Matrix Filtering

The restoration technigues developed with the linear algebraic approach can be imple-
mented by multiplication of an N%-by- | row-stacked image vector by an A?-by-N? restora-
tion matrix. This amounts to convolving the image with a separate N-by-N kernel for each
of the N? output pixels. For images of normal size. this implementation has severe practical
limitations.

If the restoration is shitt invariant, the restoration matrix will be block circulant, and
it can be diagonalized by the Fourier matrix [20,60:5.2]. In that case. it reduces to the equiv-
alent of ordinary frequency-domain restoration.

16.9 SUMMARY OF IMPORTANT POINTS

1. Spatially invariant restoration can be accomplished with deconvolution, Wiener
deconvolution, power spectrum equalization (PSE), or geometric mean filters.

2. The geometric mean filier |Eq. (4)] includes the Wiener deconvolution and PSE fil-
ters as special cases.

3. Noise usually restricts the degree of restoration of an image that is possible, particu-
larly at high spatial frequencies.

4. Coordinate transformation restoration (CTR) is useful with known spatially variant
blurring functions.

S. Speckle interferometry can reduce the effects of temporally variant blurring functions.

6. While most images are generally nonstationary, many can be assumed locally
stationary.

7. One can partition an image into regions based on SNR and restore each region with a
separate filter.

8. The linear combination filter produces a smoothly space-variant impulse response

with modest computational complexity.

Superresolution techniques exploit the incompatibility between spatial bounding and

bandlimiting in order to reconstruct the spectrum beyond the diffraction limit.

10. The blurring function can be determined from features in the image or from the

degraded image spectrum.

A linear system can be identified with an input that is an impulse, a line, an edge. a

sine wave target, or a frequency sweep target.

b

11

12. A linear system can be identified by cross-correlating a white random noise input sig-
nal with the system output.

13. Electronic noise is white with 2 Gaussian histogram.

14. Photoelectronic noise can be modeled as white and Gaussian, with RMS amplitude
equal to the square root of the mean.

18
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. Film grain noise can be modeled as white and Gaussian, with RMS amplitude pro-

portional to the cube root of the local average density.

. Kernel truncation produces a small kernel that best approximates a larger transter

function in the mean square sense.

. Singular-value decomposition can decompose a two-dimensional convolution kernel

into a set of one-dimensional kernels.

. The small generating kernel (SGK) technique can factor a large convolution kernel

matrix into a set of smaller kernels that can be applied sequentially.

PROBLEMS

L.

Suppose you have two microscope objectives marked only as 100, 1.2 NA. One is supposed 10
be quite expensive. When they are tested in green (A = 0.55 pm) incoherent light. a
black-to-white transition in a digitized image has the gray-level values given below. The pixel
spacing is 0.10 micron at the specimen. Sketch the edge-spread function, line-spread function,
and MTF of each objective and the diffraction-limited PSF and OTF for such a lens. Which
objective lens costs $226. and which one sells for $1.8347 Do you see any evidence of inaccuracy
in this method at low frequencies? If so. what could it be due to?

Objective A:
(35 36 38 4043 496592 125 152 168 175 177 179 181 182]
Objective B:
[2527 293340537399 128 154 175 188 195 198 201 203}

. A pawn shop has two highly rated camera lenses for sale at a low price because one has a scratch

on the glass surface, while the other has a small bubble inside the glass. You borrow the lenses and
digitize a distant edge at /4 through a green (A = 0.55 pm) filier with a pixel spacing of 0.6 micron
at the image sensor. The gray levels across the edge are given below for each lens. Sketch the
edge-spread function, line-spread function, and OTF of each objective and the diffraction-limited
PSF and OTF. Is either lens a bargain? If so, which one? Would you buy both?

Scratch: [44 57 11 15 22 30 39 49 60 70 79 87 94 99 103 105 106 106]

Bubble: [82 82 82 82 81 77 70 61 51 42 35 31 30 30 30 30 30 30 30 30}

. A colleague borrowed your expensive 1.0-NA. 63x microscope objective because his identical

lens had been seriously damaged when some experimental animals (spider monkeys) got loose in
the lab. After he returned the lens, you wondered whether he may have mistakenly given you
back the damaged lens instead of your own. Not wanting to create a flap in the department, you
quietly scanned an edge in red (A = 0.65 um) light with 5.7-micron pixel spacing at the sensor,
obtaining the edge-spread function below. Sketch the edge-spread function, line-spread function,
and OTF of the objective and the diffraction-limited PSF and OTF for that lens. What is your next
step? Do you confront your colleague with his error or thank him for returning your lens?
ESF: {4040 4041 4552 6171 808791 929292)

. A friend offers to sell you his expensive 6-inch, /18 telescope, which he says has hardly been used.

The condition of the case indicates otherwise. The price is a good one, provided that the instrument
is not damaged. You digitize a distant blue (4 = 450 nm) star on a clear night at 0.3-arc-second
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10.

pixel spacing and obtain the spot profile given below. Sketch the actual and diffraction-limited
PSFs for this telescope. Would you buy the telescope” Why or why not?
(123123 123 123 124 127 130 132 133 132.130 127 124 123 123 123)

. Find the 8-point discrete timpulse response that best implements the transfer function given by the

spectrum vector:
F=[1.251.0706.09-25-29-.1.14 25.14 -1 -.29-25 .09 0.6 1.07}'

. What is the 7-point discrete impulse response that best implements the transfer function given by

this spectrum vector?
F={1012162018141005005101418201.61.2Y

. Decompose the following (rank one} five-by-five convolution kernel into an equivalent pair of

five-by-one kernels. Decompose each of those into an equivalent pair of three-by-one kernels.
From those, generate an equivalent pair of three-by-three kernels, as in Figure 16-15.

12321
24642
36963
24642
12321

. Decompose the following (rank one) five-by-five convolution kernel into an equivalent pair of

five-by-one kernels. Decompose each of those into an equivalent pair of three-by-one kemnels.
From those. generate an equivalent pair of three-by-three kernels, as in Figure 16-15.

[126-21
[42 412 42
[-6 12 36 12 -6
{»24 2 402
D=2 -6-2 1

. Decompose the following (rank one) tive-by-five convolution kernel into an equivalent pair of

five-by-one kemels. Decompose each of those into an equivalent pair of three-by-one kernels.
From thase, generate an equivalent pair of three-by-three kernels, as in Figure 16~15.

P -4 o1 1}
141
4 416 4 -4

i)

Decompoase the following (rank two) five-by-five convolution kernel into a pair of three-by-three
kernels, which, if applied sequentially. will produce approximately the same effect.

1 a s a
416 20 16 4
152020205

1416 20 16 4
tL4 5 41
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Generate an image of 4 horizontal frequency sweep target or an omnidirectional (circular) fre-
quency sweep target.

. Generate an image of uncorrelated, white random noise using a random number generator to

assign phase values to its complex spectrum. Compute the autocorrelation function and power
spectrum of the image.

. Use the image of Project 1 or 2 to identify an imaging system. Assume white noise, and estimate

its RMS level in that svstem. Design and test a Wiener deconvolution filter.

. Use an image of an edge to determine the MTF of a telescope, camera, or microscope objective

lens. Estimate the noise power spectrum from an image of a flat area. Design and test a Wiener
deconvolution filter.

. Use un image of a point or an edge to determine the MTF of a defocused telescope. camera, or

microscope objective lens. Sketch the MTF and the diffraction-limited OTF on the same graph.
Design and test a deconvolution filter.

. Digitize a camera, telescope, or microscope image so that it exhibits motion biur in one direction.

Use un image of an edge perpendicular to the direction of motion to determine the MTF of the
imaging system with motion blur. Sketch the line-spread function and MTF of the imaging sys-
tem. Sketch the diffraction-limited OTF and compare it with the MTF. Design and fest a decon-
volution filter.

. Design adigital convolution filter to deconvolve the effects of a 50-mm, f/8 camera lens when the

pixel spacing is 25 microns af the image sensor. Limit the gain of the filter to 8.0.

. Design a digital convolution filter to deconvolve the effects of a 100x, 1.2-NA microscope objec-

tive lens when the pixel spacing is 15 microns at the image sensor. Assume incoherent grecn
(A= (.55 micron) light Limit the gain of the filter to 5.0.
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CHAPTER 17

Image Compression

17.1 INTRODUCTION

As an activity, digital image processing generally creates significant numbers of large files
containing digital image data. Very often, these must be archived or exchanged among dif-
ferent users and systems. This calls for efficient methods for the storage and transfer of dig-
ital image data files [1]

Since digital images, by their nature, are quite data intensive, reducing their size can
produce solutions that are more ambitious than would otherwise be practical. By eliminat-
ing redundant or unnecessary information, image compression is the activity that addresses
this aim.

17.1.1 Redundant and Irrelevant Information

Image data files commonly contain a considerable amount of information that is redundani
and much that is irrelevant, making them prime candidates for modern data compression
techniques. The distinction between redundancy and irrelevancy can be illustrated by an
example.

Suppose a traveling businessman who has not yet arranged transportation from the
airport to his home in Boston at the end of the trip receives the following message at his
hotel in Amsterdam:

Your wite, Helen, will meet you at Logan Airport in Boston at 5 minutes past 6:00 p.M.
tomorrow night
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We ask how that message might be shortened and still serve its purpose. First, it con-
tains information that is already known to the traveler. Surely, he already knows that Logan
Airport is located in Boston, and he does not need to be reminded of his wife's name. Elim-
inating the redundant information, we can write:

Your wife will meet you at Logan Airport at 5 minutes past 6:00 P.M. tomorrow night.

Here, we have compressed the message without any loss of information. Pressing the
point further, we ask whether we can squeeze it even more without serious damage. We trim
the note to:

Helen will meet you at Logan at 6:00 p.M. tomorrow night.

Accuracy has suffered a bit, but probably not in a significant way. The traveler will
have to guess that Helen refers to his wife (and not, for example, to his great-aunt Helen
who lives in a suburb of Phoenix) and that Logan refers to the airport in Boston (and not to
Logan’s Pub in London or the main character in the film Logan’s Run). There is the further
risk that he will spend an anxious 5 minutes waiting and wondering whether Helen has had
a traffic accident, since her arrival time has been rounded off to the nearest hour (quan-
tized). Nevertheless, if paper and ink are at a premium, the abbreviated message will serve
its purpose.

17.1.2 Data Compression

Data compression techniques exploit inherent redundancy and irrelevancy by transforming
a data file into a smaller file from which the original image file can later be reconstructed,
exactly or approximately. The ratio of the two file sizes (the compression ratio) specifies
the degree of compaction.

Some data compression aigorithms are [ossless, while others are not. A lossless algo-
rithm eliminates only redundant information, so that one can recover the image exactly
upon decompression of the file. A lossy compression algotithm eliminates irrelevant infor-
mation as well, and thus permits only an approximate reconstruction of the original, rather
than an exact duplicate. As one might expect, lossy compression algorithms achieve higher
compression ratios. For images, a slight loss of fidelity is often an acceptabie trade-off for
a much higher degree of compaction. Some images, and all executable program files, can
tolerate no alteration of data at all. Lossless compression must be used in these cases.

The times required for file compréssion and decompression are not negligible. The
algorithms that achieve the densest compaction are not usually the fastest, so choices must
be made for each application. Some file compression programs offer the user choices of
lossless versus lossy compression and options regarding the trade-off of speed versus com-
pression ratio. Lossy algorithms usually offer choices regarding the trade-off between fidel-
ity of reconstruction and degree of compaction.

17.2 LOSSLESS COMPRESSION TECHNIQUES

Lossless data compression algorithms fall into two broad categories: dictionary-based tech-
niques and statistical methods. Dictionary-based techniques generate a compressed file
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containing fixed-length codes (usually 12 to 16 bits), each of which represents a particular
sequence of bytes in the original file.

Statistical methods implement data compression by representing frequently occur-
ring characters in the file with fewer bits than they do less commonly occurring ones [2].
This is the approach Samuel F. B. Morse used when he defined the international telegraph
code. The often used letter e, for example, is represented by a single dot, whereas the much
less common : is coded as dash, dash, dot. dot.

17.2.1 Dictionary-Based Technigues
17.2.1.1 Run-Length Encoding

The simplest dictionary-based data compression technique is run length encoding (RLE).
Images—particularly those having few gray levels—often contain regions of adjacent pix-
els, all with the same gray level or color. In an image being stored line by line, a series of
pixels having the same gray-level value is called a run. One can store a code specifying that
value, followed by the length of the run, rather than simply storing the same value many
times over. This is run-length encoding. It achieves considerable compaction, for example,
with graphics and with images of objects residing upon a constant background. Other types
of images compress poorly. Under worst case conditions (for example, where every pixel
differs from its neighbors) RLE can actually double the size of the file.

17.2.1.2 LZW Encoding

LZ coding is a lossless technique first described by Lemple and Ziv 3,4]. It was extended
by Welch [5] to form the widely used, proprietary LZW algorithm [6]. Like RLE, it effects
compression by encoding strings of characters. However, unlike RLE, it builds up a table of
strings (particular sequences of bytes) and their corresponding codes as it encodes the file.
A file of 8-bit bytes can be encoded, for example, into 12-bit codes. Of the 4,096 possible
codes, 256 of them represent all possible single bytes. The remaining 3,840 are assigned to
strings as they are encountered in-the data during compression.

The firsttime a string not already in the table occurs, it is stored in full, along with the
code that is assigned to it. Thereafter, when that string occurs again, only its code is stored.
This squeezes redundancy out of the file. Not only is the string table built dynamically dur-
ing compression, but it need not be stored with the compressed file: The decompression
algorithm can reconstruct it from the information in the compressed file.

17.2.2 Statistical Encoding Methods
17.2.2.1 The Information Content of a Message

Before discussing statistical coding techniques, we consider the classical theory of infor-
mation content. Suppose we have a memoryless source of messages that uses an alphabet
fa; ). k=0,1,...K—1. Here the a; are the symbols of that alphabet. Suppose further that the
probability of occurrence of each symbol is known and denoted as Pia,). In a message from
amemoryless source, the ordering of the symbols in the message is unimportant; only their
presence in the message matters.

Shannon [7.8] defined a measure of the information imparted by the occurrence of the
symbo! ¢, in a message as
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Hay) = -log[Pap)] (1)

This measure is satisfying because (a) the more unlikely a symbol is, the more information

its presence contributes to the message, and (b) the information in a message is the sum of

the information contributed by the symbols that comprise it. Notice that a symbol that

always appears in every message (i.e., P(e;) = 1) conveys no information (/(a;) = 0). An

example of such a noninformative symbol is the word Dear in the salutation of a letter.
The entropy of the message source, defined by

K-1
H = E{lla))} = -Z P(a)log| Pay) ) 2)
k=0
specifies the average information content (per symbol) of the messages generated by the
source. The entropy of a message source is nonnegative and takes on its maximum value
when all symbols are equaily likely. If we choose 2 as the base for the logarithm, the units
of entropy are bits per symbol.
The redundancy remaining in a message after encoding it by a particular coding
scheme is the difference between the average word length of the code and the entropy of the
source; that is,

R =FE{L.(a)}-H 3)

where L, («,) is the length (in bits. for binary coding) of the code word used to represent the
symbol «;. A coding scheme removes all redundancy if it produces an average word length
that is equal to the entropy of the message source. This can be achieved if one can design the
code so that the word lengths are

L,(ay) = -log[P(ay)] 4)

and this formula represents a lower bound on average word length. For binary coding, this
is possible only if the probabilities of all the symbols are negative integer powers of two
(e.g.,0.5.0.25, etc.).

17.2.2.2 Huffman Coding

Huffman coding {2], introduced in the 1950s, is a lossless statistical method that always
finds a variable-length code with minimum redundancy. It uses a binary encoding tree for
representing commonly occurring values in few bits and less common values in more bits.
Static Huffman coding uses an encoding tree constructed in advance of compression from
a table of probabilities of occurrence of the possible data values. Dynamic Huffman coding
constructs the encoding tree on the fly, during the compression process [9].

More advanced statistical methods [10-16] can achieve higher compression ratios,
but at the cost of increased encoding and decoding times. Special-purpose hardware
designed to implement compression and decompression can dramatically reduce the over-
head associated with compressing image files.

17.2.3 Binary Image Compression Standards

Two standards, originally established for facsimile transmission by the Consuliative Com-
mittee of the International Telephone and Telegraph (CCITT), have come into common use
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for binary image compression. The Group 3 standard is based on horizontal RLE using a
Huffman code to specity the run lengths [17].

In RLE. it s the locations of the white-to-black and black-to-white transitions that are
important. In some cases in Group 3. and exclusively in the newer Group 4 encoding, tran-
sitions on the current line are encoded with respect to prior transitions on either the current
or the previous line. This is done in a manner designed to reduce the size of the encoded
image file.

On typical documents, these encoding methods achieve compression ratios of about
15. Some types of images, however (such as halftone images, which are composed of tiny
dots), actually become larger after encoding.

17.3 LOSSY IMAGE CODING

17.3.1 Scalar Quantization

One of the simplest ways to reduce data volume is to quantize the image to a smaller number
of gray levels. Figure 171 shows the gray-scale transformation function (see Chapter 6) of
a quantizer. When the input falls between two decision thresholds, the output is set to the
corresponding representative level.

Lloyd [18] and Max [ 19] showed that, for an image having a given pdf, as evidenced
by its gray-fevel histogram, the quantization scheme that minimizes the mean square error
introduced by quantization has the following two interdependent properties: (1) Each deci-
sion threshold falls exactly midway between two adjacent representative levels, and (2)
each representative level falls at the centroid of the section of the pdf between two succes-
sive decision thresholds. This establishes a system of equations that normally must be
solved iteratively to determine the decision thresholds and representative levels.

17.3.2 Rate Distortion Theory

Rate distortion theory [20] seeks to relate the distortion (reconstruction error) of a fixed-
word-length coding scheme to the dara rate (e.g.. number of bits per pixel) used in the

Output

Representative

levels \J»

———

) AN\ C Decision
thresholds

Figure 17-1  Scalar Quantization (after Girod, et. al., [20})
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scheme. Since the theory assumes that the input image is continuous, the distortion can
never be zero with a finite data rate, because of quantization error. While it does not specify
the form of optimal coders, rate distortion theory does present guidelines about the condi-
tions under which the best performance is achieved.

When a lossy compression scheme is used, the reconstructed image g(x, y) differs
from the original f{x, v). This difference (the distortion) is conveniently quantified by the
mean square error of reconstruction:

D = E{/(xy) -g(x, »]*} 5
If we establish a maximum allowable amount of distortion D*, the corresponding lower
bound R(D*) on the bit rate required in the coding scheme is a monotonically decreasing
function of D* [21,22). R(D*) is called the rate distortion function (Figure 17-2). The
inverse function D(R) (the likewise monotonic distortion rate function) is sometimes used
instead.
The entropy of the reconstruction error is bounded by {20,23)

HIUf(x, v) - g(x, »)] < Hlog (27e D*) ©)

Equality holds in this relation if the difference image has statistically independent pixels
and a Gaussian pdf. This tells us that the best encoding scheme will produce an error image
that contains only white, Gaussian noise. Thus, one can subjectively evaluate an image
coder by examining the difference between the original and the decoded image. Any rec-
ognizable structure in that difference image (see Figure 17-4d, for example) is evidence of
the suboptimality of the coder.

R(D)

——

Figure 17-2  The rate distortion
0 D—» function

17.3.2.1 Uncorrelated Gaussian Images

Suppose the image flx, y). to be encoded has statistically independent pixels and a Gaussian
pdf with variance 2. For this case, the rate distortion function is [20)

RD) = %ma{mgz( %2) 0} (7)

in bits per pixel. We can define the SNR (in decibels) of the coding scheme as
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o?
SNR = 10 logm(ﬁ) (8)
As shown in Figure 17-3, this is a straight line relationship with a slope of 6 dB per bit. That
is, each additional bit of code word length adds 6 dB to the SNR.

While most images have neither Gaussian histograms nor uncorrelated pixels, this
case represents the most difficult encoding situation. That is, the bit rate required for non-
Gaussian and for correlated sources is always lower for the same level of distortion [20).

3
4
Data rate
(bits per pixel) Uncorrelated
Gaussian
34
b Correlated
Gaussian
2
1+
D
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¢ 10 20 30 40

Signal to noise ratio (dB) —s

Figure 17-3  Rate distortion SNR curves for images with Gaussian pdfs
(after Girod, et. al. [20]).

17.3.2.2 Correlated Gaussian Images

The correlation among neighboring pixels in an image is specified by the autocorrelation
function of the image and, equivalently, by its power spectrum (the Fourier transform of the
autocorrelation function: see Chapter 10). While the rate distortion function for correlated
Gaussian images cannot be written in closed form, both distortion and rate can be written as
functions of another parameter, 6:

=L
4r?

L7 f Pr(u,v)
R(6) = g?J’MJiw max[O, log( ’_9_)} du dv (10)

Here, P{(u, v) is the power spectrum of the image, f(x, y). As 8= 0 sweeps through its range,
it specifies the rate distortion function.

For example, if the image has a Gaussian pdf and an exponentially decaying autocor-
relation function, then its rate distortion SNR curve falls about 2.3 bits below that of the
uncorrelated case for the higher bit rates [20]. as shown in Figure 17-3. Here, the correlation

D(6) jw" J”o min|[ 6, P(u, v))du dv 9
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between adjacent pixels can be exploited to reduce the bit rate by more than two bits per
pixel. Regrettably, rate distortion theory fails to specify how this should be done.

17.4 TRANSFORM IMAGE CODING

One of the most useful applications of discrete image transforms (Chapter 13) is in image
compression. Combined with other compression techniques, they allow the transmission,
storage. and display of images and video sequences that otherwise would be impractical.

17.4.1 Introduction

Suppuse we have an ensemble of images to be encoded into a compact data representation,
We can transform the images, discard those coefficients that are near zero, and coarsely
guantize those that are small, thereby concentrating our data transmission and storage
resources upon the coefficients that contain the most information about the image. When
the image is reconstructed later. little important content will have been lost. This approach
is called transform image coding (24).

Block Encoding. Often the image is divided into blocks of typically 8 by 8 or 16
by 16 pixels, and each of these is transtormed separately. This simplifies the transformation
process. particularly if eigenvectors must be computed. The subsequent climination of
some transform coefficients and the coarse quantization of others, however, can cause
noticeable changes in gray level at the edges of the blocks. This is called blocking artifict,
and it can muke the boundaries of the block obtrusive (see Figure 17—4c).

Bit Allocation. One must establish how many bits will be used to code each of the
coefficients that result from transforming an image block. Using rate distortion theory and
the assumption that the block is a Gaussian random variable yields

o
r;= %max[log:(#),ﬁ} ()
as the number of bits required for the ¢, jth coefficient, where o‘fl is the variance of that
coefficient and D is the maximum allowable distortion, in the mean square error sense [20)].

Image Quality Considerations. There is always a trade-off between the com-
pression ratio achieved and the amount of information lost to the encoding. Normally, the
human eye is the ultimate judge of whether the information loss is acceptable or annoying.
Thus, there is a subjective as well as an objective component to the design process. Ofien,
the quantitative measures of image degradation (e.g., mean square error) do not agree welt
with the preferences of the human eye.

Transform Selection. To what extent a particular transform will support data
compression depends on both the transform and the nature of the images being com-
pressed. The practicality of an image coding scheme depends on the computational work
load of the encoding and decoding steps, as well as the degree of compression obtained.
The availability of a fastimplementation algorithm can greatly enhance the appeal of a par-
ticular transform.
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17.4.2 Image Coding with Eigenvector-Based Transforms

SVD Transform. The SVD transform (Sec. 13.6.4) is capable of the most data
compression, since its basis functions are customized for the image being transformed. That
is, its columns are the eigenvectors of the image matrix times its transpose. The computa-
tional load, however, is severe for this transform. Not only does no fast transformn exist, but
the eigenvectors of each N-by-N matrix must be computed in advance of the transformation
itself. With block encoding, this becomes more practical, but nevertheless, burdensome.

As an approximation, for a group of similar images or for the blocks in an image, one
can use the SVD transform kernel matrix of a typical image or block to transform a set of
images and hope that the off-diagonal elements of the transformed matrix will be, if not
zero, at least small. Clearly, the various blocks in an image will vary greatly in content.
Experience shows, similarly, that images of the same subject matter usually have radically
different SVD basis functions as well. Thus, this technique sees little actual use.

K-L Transform. Like the SVD transform, the K-L transform (Sec. 1 3.6.3) iscapa-
ble of considerable data compression, since its basis functions are customized for the
covariance matrix of the class of images being transformed. The basis images depend upon
the statistics of the image being transformed, rather than the image itself. Thus, it is reason-
ably likely that a group of images will have statistics similar enough that they can be suc-
cessfully encoded by the same kernel matrix.

Recall that in the development of the Wiener filter (Sec. 11.5.2), we assumed that the
signal and noise, while unknown in detail, had known power spectra. This allowed us to
develop a noise reduction filter that was optimum for all such instances of signals and noise.

We can make a similar assumption regarding the images to be compressed. If they all
have, or can b¢ assumed to have, the same covariance matrix, then one K-L kernel matrix
will be suitable for all. Furthermore, if we make certain assumptions about the nature of the
covariance matrix, we can achieve additional simplification.

Markov Processes. A stationary random sequence is called a first-order Markov
sequence if the conditional probability of each element in the sequence depends only upon
the value of the immediately preceding element. The covariance matrix for an N-by-1
Markov sequence has the form

C=1p » 1 = (12)

p”.“pN.-Z p 1

where 0 < p< 1. The eigenvalues of this covariance matrix are
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T N1 T
Vs = N+/l,‘5m“ah‘(m 5 )+(k+l)2:| [QE)]

forO<m. k<N -1[25:8.526:5.11]. The w, are roots of the transcendental equation

(} - %) sin(w)

tan(Nw) = —
cos{®) - 2p + p’cos (o)

(15)
Thus, the basis vectors of the K-L transform can be computed once a value for p is deter-
mined.

DCT Approximation to the K-L Transform. For p = |, as is often the case
with images of natural scenes, the basis vectors of the DCT offer a good approximation to
those of the K-L transform [24,27]. For this reason, the DCT is often used as a substitute for
the K-L transform, as in the JPEG algorithm mentioned in Sec. 17.5, for example. While the
DCT provides significantly lower spectral decorrelation efficiency than the K-L transform
[28], its basis vectors are fixed.

17.4.3 Image Coding with Other Transforms

The rectangular wave transforms (Sec. 13.5) have a preponderance of constant-valued basis
vector elements, which make them more efficient for computation than sinusiodal or (espe-
cially) eigenvector-based transforms. For this reason, they are appealing for use in trans-
form image coding.

In general, the rectangular wave transforms do not pack the energy of commonly
encountered images into a few transform coefficients quite as effectively as do sinusoidal or
(especially) eigenvector transforms. Thus, somewhat less effective compression accompa-
nies their computational simplicity. The Hadamard and slant transforms have nevertheless
proven themselves useful for image compression. The image compression capability of
wavelet transforms (discussed in Chapter 14) often proves superior to that of other trans-
forms [20,28,29,30].

17.5 IMAGE COMPRESSION STANDARDS

The Joint Photographics Experts Group (JPEG), sponsored jointly by the International
Standards Organization (ISO) and the CCITT, has established an open (published, nonpro-
prietary) algorithm for compression of still images [31-34]. It achieves compression ratios
of 15 to 25 without a significant loss of visual quality. With a slight sacrifice of quality,
40-to-1 compression, or more, is possible. (See Figure 17-4.) Table 17-1 compares the
compression capability of JPEG with several other image file formats.

If the image is in color, the JPEG algorithm first converts from RGB components to
luminance and chrominance components (see Chapter 21) and discards half the chromi-
nance information. Then it uses the DCT (see Chapters 10 and 13) for block transform cod-
ing, discards high-frequency coefficients, and quantizes the remaining coefficients to
reduce the data volume further. Finally. it applies RLE and Huffman coding to finish the
compression task. JPEG decompression is simply the reverse of JPEG compression, mak-
ing the algorithm symmetrical.
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TABLE 17-1 COMPRESSION STATISTICS FOR FIGURE 17-4

File Format File Size Bit Rate Compression

(560 by 76) (kbytes) (bits/pixel) Ratio
BMP 427.840 8.0 1:1
PCX 427.021 8.0 [
TIF (uncomp.) 431.947 8.08 1:1
GIF* 265.366 496 1.6:0
JPEG 27.285 0.50 16:1
JPEG 10914 0.20 40:1
*Lossless

Another open algorithm, developed by the Motion Picture Experts Group (MPEG).
compresses full-motion video (motion pictures with sound). [t is similar in concept to the
JPEG algorithm, except that it also exploits the redundancy between consecutive video
frames. The resulting compression ratios of 100:1 make it practical for transmitting color
video with sound over one-megabit-per-second channels and storing digital video clips of
reasonable duration on disk drives.

High-speed hardware for JPEG and MPEG compression and decompression signifi-
cantly reduces the computational overhead of these techniques.

17.6 SUMMARY OF IMPORTANT POINTS

1. Image compression reduces the storage requirement for digital imaging and the
time required for image transfer. but at the cost of compression and decompression

time.

2. Lossy compression can achieve higher compression ratios than lossless compression,
which preserves the integrity of the data.

3. The SVD transform gives the best image compression, but at prohibitive computa-
tional cost.

4. The K-L transform is optimal for coding images from a stationary ensemble of
images. but requires laborious computation of eigenvectors.

S. For images that can be modeled as first-order Markov processes, the DCT is a good
approximation to the K-L transform, especially if p is near unity.

*

[mage compression based on rectangular wave transforms is more computationally

efficient, but generally less effective than DCT coding.

7. The Lloyd-Max quantizer (Sec. 17.3.1) minimizes the mean square error introduced
by quantization.

8. Rate distortion theory provides guidelines about the conditions under which the best

performance of fixed-word-length image coding is achieved.

g

The rate distortion function gives a lower bound on the bit rate required to obtain
fixed-word-length coding with a specified maximum level of distortion.

10. The best encoding scheme will produce an error image that contains only white,
Gaussian noise.
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11. Forencoding an uncorrelated image having a Gaussian histogram, the reconstruction
SNR is roughly six times the number of bits per pixel.

12. The required bit rate for encoding correlated and non-Gaussian images is always less
than that required for uncorrelated Gaussian images, for a fixed level of distortion.

13. Modern image and video compression standards utilize combinations of data com-
pression techniques to achieve effective and robust results.

14. The image quality that results from lossy compression depends upon both the com-
pression ratio and the content of the image. Evaluation should include side-by-side
comparison on high-quality display devices, using images that are representative of
those to be compressed.

PROBLEMS

1. Given 640-by-480-by-8-bit digitized television frames, each with a 1,024-byte label, and a loss-
less compression algorithm having a compression ratio of 4.25, how many seconds of (30 frame-
per-second) video can you store on a disk drive with 220 megabytes of available space without
compression? With compression?

2. Suppose you have itwo image compressors: “RLE,” which averages 3.8:1 compression and takes
:02 (sec) per megabyte for compression and :03 per megabyte for decompression; and “Statisti-
cal,” which averages 6:1 compression and takes :08 per megabyte for compression and :12 per
megabyte for decompression. Which. if any, would you use to send 240-by-320-pixel-by-1-bit
images over a 9,600-buud (960-byte-per-second) telephone line? How many images per minute
could you transfer and decompress? Assume that the receiving computer cannot receive and
decompress simultaneously.

3. Given the conditions in Problem 2, which compressor, if any, would you use to send 3,000-by-
4,000-pixel-by-12-bit X-ray images over a 400-kilobit-per-second microwave link? How many
images per minute could you transfer and decompress?

4. Given the conditions in Problem 2, which compressor, if any, would you use to send 480-by-640-
by-8-bit images over a 1.2-megabit-per-second satetlite link? How many images per minute
could you transfer and decompress?

PROJECTS

1. Implement a lossless image compression algorithm, and quantify its compression and decom-
presston times and compression ratio on twoe particular types of images (e.g., digitized documents
and satellite images).

2. Implement a lossy image compression algarithm, and quantify its compression and decompres-
sion times, compression ratio, and fidelity on two particular types of images (e.g., portraits and
X ray images).

3. Use a lossy algorithm to compress and decompress an image, and subtract the decompressed
image from the original. Use the resulting difference image to support quantitative and qualita-
tive arguments gbout the acceptability, or lack thereof, of the information loss for a particular
imaging application.

4. Write a justification to convince a radiologist to use a particular lossy compression algorithm for
digital archiving of X ray films. [Hustrate your argument with original and decompressed images.

5. Write a justification to convince a radiologist not to use a particular fossy compression algorithm for
digital archiving of X ray films. (llustrate your argument with original and decompressed images.
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CHAPTER 18

Pattern Recognition:
Image Segmentation

18.1 INTRODUCTION

So far in this book, we have primarily considered ways to improve images for display. In
Chapter 16. our ambition was to retrieve an image that more closely resembled the original,
undegraded scene.

In this chapter and the next two, we address some aspecis of analyzing the content of
an image. This means that we endeavor 1o find out what is in the picture. We examine two
approaches, statistical pattern recognition and neural networks, each as applied to digital
images. Volumes have been written on both of these topics, much to the benefit of the reader
who wishes to go beyond this introduction to the field.

[n these three chapters on pattern recognition, we address a collection of topics from
the field. In particular, we consider statistical pattern recognition, implemented by digital
image-processing techniques. This involves first locating and isolating the objects in an
image and then identifying (classifying) those objects using techniques from the field of sta-
tistical decision theory. We also look at the use of artificial neural networks for pattern
recognition.

18.1.1 Statistical Pattern Recognition

The computer vision branch of the field of artificial intelligence is concerned with devel-
oping algorithms for analyzing the content of an image. A variety of approaches toward
image understanding have been employed, and we now consider one: statistical pattern
recognition. Not only is this the most widely used approach, but an understanding of it is
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fundamental to a complete comprehension of the pattern recognition process, however it
may be implemented.

Statistical pattern recognition assumes that the image may contain one or more
objects and that each object belongs to one of several predetermined types, categories, or
pattern classes. While pattern recognition can be implemented in several ways, we are con-
cerned only with its implementation by digital image-processing techniques.

Given a digitized image containing several objects, the pattern recognition process
consists of three major phases. (See Figure 18-1.) The first phase is called image segmen-
tation or object isolation, in which each object is found and its image is isolated from the
rest of the scene.

The second phase is called feature extraction. This is where the objects are measured.
A measurement is the value of some quantifiable property of an object. A feature is a func-
tion of one or more measurements, computed so that it quantifies some significant charac-
teristic of the object. The feature extraction process produces a set of features that, taken
together, comprise the feature vector. This drastically reduced amount of information (com-
pared to the original image) represents all the knowledge upon which the subsequent clas-
sification decisions must be based. It is productive to conceptualize an n-dimensional space
in which all possible n-element feature vectors reside. Thus, any particular object corre-
sponds to a point in feature space.

The third phase of patiern recognition is classification. Its output is merely a decision
regarding the class to which each object belongs. Each object is recognized as being of one
particular type, and the recognition is implemented as a classification process. Each object
is assigned 10 one of several preestablished groups (classes) that represent all the possible
types of objects expected to exist in the image. A misclassification error occurs if the
assignment is to an inappropriate class. The probability of this occurring is the misclassifi-
cation error rate.

Classification is based solely on the feature vector. In the next two chapters, we con-
sider classification techniques derived from the fields of statistical decision theory and neu-
ral networks.

=l

Object
image

Image
segmentation

Feature
extraction

Classification

input
image

Feature
vector

Figure 18-1 The three phases of pattern recognition

18.1.2 An Example of Pattern Recognition

The basic concepts of statistical pattern recognition can best be illustrated by an example.
Suppose we desire to implement a sorting system for fruit coming down a conveyor belt.
The actual sorting can be effected by movable partitions that drop down and deflect the
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various fruit items off the conveyor belt and into the appropriate shipping box, as illus-
trated in Figure 18-2. Let us suppose that the fruits of interest are cherries, apples, lemons.
and grapefruits. What we need is an image-processing system that can observe the
approaching fruits, classify each one, and drop the appropriate partition in time to box the
fruit properly.

/— TV camera

Control unit

Conveyor Frait

belt

Movable
partition

/'l/'ly Ny

Figure 18-2  The fruit sorting system

We can install a digitizing television camera above the conveyor belt and implement
the classification decision in a computer. For this example, let us measure two things about
each piece of fruit: its diameter and its color. The computer program will process each dig-
itized image and compute both the diameter of the fruit in millimeters and a parameter indic-
ative of color.

Suppose we use a color TV camera, and the program computes each object’s bright-
ness in thered, green, and blue channels. (See Chapter 21.) It can then derive a feature (such
as the red-to-green brightness ratio) that takes on low values for yellow fruit and high values
for red fruit. We can call this parameter the redness measure.

Figure 18-3 shows the two-dimensional feature space defined by the two parameters,
diameter and redness, and the expected clusters produced by each of the four classes of fruit.
By placing appropriate decision lines in the feature space, we can partition it into one region
per class and, in so doing, establish a classification rule.

When any fruit approaches the TV camera. it is measured, and its features specity a
point in the two-dimensional feature space. Depending on where this point falls in that
space, the fruit is assigned to one of the four classes. As soon as the classification decision
is made, the mechanism drops the partition that will then deflect the fruit into the appropri-
ate shipping container.
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Figure 18-3  The feature space

While the preceding system has not yet found wide usage in the fruit-packing indus-
try, it serves to illustrate statistical pattern recognition. The role that statistics plays in the
design and operation of the system will become more clear in the next two chapters. For
now, it suffices to say that cach class of fruit produces a PDF in the feature space. The deci-
sion lines can be determined. from the interaction of these PDFs. in such a way as to avoid.
or at least minimize, misclassification errors

18.1.3 Pattern Recognition System Design

The design of a pattern recognition system is usually done in the five steps listed in Table
18-1: object locator design. feature selection, classifier design, classifier training, and per-
formance evaluation.

The object locator is the algorithm that isolates the images of the individual objects in
the complex scene. This isotation of objects is called image segmentation or scene segmen-
tation, the topic addressed in this chapter. Feature selection involves deciding which prop-
erties of the object (size, shape, etc.) best distinguish among the various classes of objects
and thus should be computed. Classifier design consists of establishing a mathematical
basis for the classification procedure. The various adjustabie parameters of the classifier
itself (decision thresholds. etc.) are pinned down in the clussifier training stage. Finally, it
is usually desirable to estimate the misclassification error rates that can be expected when
the system is put into operation. This constitutes the performance evaluation step.

18.2 THE IMAGE SEGMENTATION PROCESS

We candefine the image segmentation process as one that partitions a digital image intodis-
joint {nonoverlapping) regions [!]. For our purposes. a region is a connected set of pixeis—
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TABLE 18-1 PATTERN RECOGNITION SYSTEM DESIGN

Step Function
1. Object locator design Select the scene segmentation algorithm
that will isolate the individual objects
in the image.
2. Feature selection Decide which properties of the objects

best distinguish the object types and
how to measure these.

3. Classifier design Establish the mathematical basis of the
classification algorithm, and select the
type of classifier structure to be used.

4. Clagsifier training Fix the various adjustable parameters
(deciston boundaries, etc.) in the
classifier to suit the objects being
classified.

5. Performance evaluation  Estimate the expected rates of the various
possible misclassification errors.

thatis, a set in which all the pixels are adjacent ot touching {2]. The formal definition ot con-
nectedness is as follows: Between any two pixels in a connected set, there exists a connected
path wht;ily within the set, where a connected path is a path that always moves between
neighboring pixels. Thus, in a connected set, you can trace a connected path between any
two pixels without ever leaving the set.

There are two rules of connectivity, and either one can be adopted. If only laterally adju-
cent pixels (up, down, right, left) are considered to be connected, this is four-connectiviry, and
the objects are four-connected. Thus. each pixel has oaly four neighbors to which it can be
connected. If, in addition, diagonally adjacent (45-degree neighbor) pixels are also consid-
ered to be connected, we have eight-connectivity, and the objects are eight-connected. Each
pixel would then have eight neighbors to which it could be connected. Either connectivity
rule can be used, as long as one is consistent. Often eight-connectivity yields results that lie
closer to one’s intuition.

When a human observer views a scene, the processing that takes place in the visual
system essentially segments the scene for him or her. This is done so effectively that one
sees not a complex scene. but rather something one thinks of as a collection of objects. With
digital processing, however, we must laboriously isolate the objects in an image by breaking
up the image into sets of pixels, each of which is the image of one object. While the task of
image segmentation hardly has a counterpart in human visual experience, it is a nontrivial
task in digital image analysis.

Image segmentation can be approached from three different philosophical perspectives,
In the case we call the region approach, one assigns each pixel to a particular object or region.
In the boundary approach, one attempts only to locate the boundaries that exist between the
regions. In the edge approach, one seeks to identify edge pixels and then link them together
to form the required boundaries. All three approaches are useful for visualizing the problem.

In this chapter, we examine several techniques for isolating the objects in a digital
image. Once isolated, the objects can be measured and classified. Techniques for these
activities are addressed in the next two chapters.
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18.3 IMAGE SEGMENTATION BY THRESHOLDING

Thresholding 1s a particularly useful region-approach technique for scenes containing solid
objects resting upon a contrasting background. It is computationally simple and never fails
to define disjoint regions with closed, connected boundaries.

When using a threshold rule for image segmentation, one assigns all pixels at or above
the threshold gray level to the object. All pixels with gray level below the threshold fall out-
side the object. The boundary is then that set of interior points, each of which has at least one
neighbor outside the object.

Thresholding works well if the objects of interest have uniform interior gray level and
rest upon a background of different, but uniform, gray level. If the objects differ from their
background by some property other than gray level (texture, etc.), one can first use an oper-
ation that converts that property to gray level. Then gray-level thresholding can segment the
processed image.

18.3.1 Global Thresholding

In the simplest implementation of boundary location by thresholding, the value of the
threshold gray level is held constant throughout the image. If the background gray level is
reasonably constant throughout, and if the objects all have approximately equal contrast
above the background, then a fixed global threshold will usually work well, provided that
the threshold gray level is properly selected.

18.3.2 Adaptive Thresholding

In many cases, the background gray level is not constant, and the contrast of objects varies
within the image. In such cases, a threshold that works well in one area of the image might
work poorly in other areas. In these cases, it is convenient to use a threshold gray level that
is a slowly varying function of position in the image.

Figure 184 shows a microscope image of the chromosomes from a single human blood
cell. In this image, the background gray level varies due to nonuniform itlumination, and con-
trast varies from one chromosome to the next. In Figure 18—4(a), a constant threshold gray
level has been used throughout the image to isolate the chromosomes. Each chromosome was
given a boundary and a sequence number. In Figure 18—4(b), the threshold was varied from
one chromosome to the next commensurately with local background and the contrast of the
chromosomes [3,4]. This produced fewer segmentation errors—cases where multiple chromo-
somes were stuck together or individual chromosomes were broken up. A similar study
showed that accuracy of measurement of the areas of the chromosomes was improved by adap-
tive thresholding. In Figure 18-4(b), the threshold for each chromosome was set approxi-
mately midway between its mean interior gray level and the local background gray level [3,5].

18.3.3 Optimal Threshold Selection

Unless the object in the image has extremely steep sides, the exact value of the threshold
gray level can have considerable effect on the boundary position and overall size of the
extracted object. This means that subsequent size measurements—particularly area—are
sensitive to the threshold gray level. For this reason, we need an optimal, or at least consis-
tent, method to establish the threshold.
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Figure 18-4  Global and adaptive thresholding

18.3.3.1 Histogram Techniques

An image containing an object on a contrasting background has a bimodal gray-level his-
togram (Figure 18-5). The two peaks correspond to the relatively large numbers of points
inside and outside the object. The dip between the peaks corresponds to the relatively few
points around the edge of the object. In cases like this, the histogram is commonly used to
establish the threshold gray level [6-9].

Recall from Chapter 5 that the area of an object defined by a gray-level threshold T is

A= J H(D)dD ()]

T
Notice that increasing the threshold from T to T + AT causes only a slight decrease in area
if the threshold corresponds to the dip in the histogram. Therefore, placing the threshold at

the dip in the histogram minimizes the sensitivity of the area measurement to small errors in
threshold selection.

A= /T’H (D)dD

D, TT+AT D,
D—» Figure 18-5 The bimodal histogram
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If the image or the region of the image containing the object is noisy and not large, the
histogram itself will be noisy. Unless the dip is uncommonly sharp, the noise will make its
location obscure, or at least unreliable from one image to the next. This can be overcome to
some extent by smoothing the histogram, using either convolution or a curve-fitling proce-
dure. If the two peaks are of unequal size. smoothing may tend to shift the position of the
mintmum. The peaks, however. are easy to locate and relatively stable under reasonable
amounts of smoothing. A more reliable method is to place the threshold at some fixed posi-
tion relative lo the two peaks—perhaps midway [5]. The two peaks represent the modal
(most commonly occurring) gray levels of the interior and exterior points of the objects. In
general, these parameters can be more reliably estimated than the least commonly occurring
gray level—that is. the dip in the histogram.

One can form a histogram of only those pixels having a relatively high gradient mag-
nitude [9]—for example, the highest 10 percent [10). This eliminates the large number ot
interior and exterior pixels from consideration and may make the dip in the histogram more
accessible. One can also divide the histogram by the average gradient of pixels ateach gray
level to further enhance the dip [9], or average the gray level of high-gradient pixels to
determine a threshold (10,1 1].

The Laplacian filter is a two-dimensional second derivative operator. Laplacian fil-
tering, followed by smoothing and thresholding at a gray level of zero or slightly above.
tends to segment objects uat zero-crossings of the second derivative. which correspond o
inflection points on the edges of the objects | 12}. The two-dimensional histogram of gray
level vs. gradient can also be used to establish segmentation criteria | 13].

18.3.3.2 Adaptive Thresholding

The adaptive segmentation technique of Figure 18-4(b) was implemented as a two-pass
technique |3.5]. Before the first pass, the image was divided into sectors of 100 by 100 pix-
els. From the gray-level histogram of each sector. a threshold was determined midwayv
between the background peak and the data peak. Sectors containing unimodal histograms
were ignored.

In the first pass, the boundaries of the object were defined using a gray-level thresh-
old that was constant within sectors, but different for the various sectors. The objects so
defined were not extractec from the image. but the interior mean gray level of each object
was computed.

On the second pass, each object was given its own threshold that tay midway between
its interior gray level and the background gray level of its principal sector. Examination ot
Figure 18-4 indicates that the number of touches dropped from seven to two, while the
number of breakups dropped from one 1o none.

18.3.4 The Analysis of Spots

[n many important cases, it is necessary to find objects that are roughly circular in shape
The development that follows is aimed primarily at circular objects. Restricting ourselves
to circular objects allows us to pursue optimal threshold selection considerably further than
we could otherwise. The concepts developed are nonetheless useful for more general cases
as well.
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18.3.4.1 Definitions

Suppose an image B(x. ¥} contains a single spor. By definition, this image contains a point
(%« yo) of maximum gray level. It we establish polar coordinates centered upon (xy, ¥yl SO
that the image is given by B,(r. 8), then
B,(r,. 0)2B,(r;, 6) if ra>r, 2
for all values of 6. We call B(x. v) amonotone spot if equality is not allowed in Eq. (2). This
means that gray level strictly decreases along a line extending out in any direction from the
center point (x, ¥,). For monotone spots, a flat top is not allowed. and (x,. Vo) 1S unigue.
An important special case oceurs if all contours of a monotone spot are circles centered

on (xy. vo). We call this special case a concentric circular spot (CCS). Toa £ood approximaz—--—

tion, this usually describes the noise-free images of stars in a telescope, certain cells in 2
microscope, and many other important types of images. Noise will usually cause real images
to deviate from these definitions. but the theory can prove useful anyway [10,12].

For a CCS. the function B,(r, 6) is independent of 6, and we call it the spor profile
Junction. This curve is useful for threshold selection. For example, we could locate the
intlection point and select the gray-level threshold so as to place the boundary at the point
of maximum slope. This is approximately where the human eye places the boundary when
viewing an image containing a smooth edge, and it is reasonably stable under smoothing
and the addition of noise. This boundary may tend to underestimate the actual size of objects
{10]. Other unique points on the profile, such as the maximum magnitude of the second
derivative |10], can be used as well.

If we threshold a monotone spot at agray level 7. we define an object having a certain
area and perimeter. As we vary T throughout the range of gray levels. we generate the
threshold area function A(T') and the perimeter function p(T). Both of these functions are
unique for any spot. Both are continuous for monotone spots, and either is sufficient to spec-
ify a CCS completely. As a matter of definition, two spots are p-equivalent if they have
identical perimeter functions and H-equivalent if they have identical histograms. It follows
that H-equivalent spots have identical threshold area functions.

18.3.4.2 The Histogram and the Profile

Suppose a CCS image Btx, y) is given by its profile function B,(r). We now seek an expression
for the spot histogram in terms of the profile function. Suppose we threshold B(x. v) at gray
level D and again at gray level D + AD. This defines two circular contours of radius r and r +
Ar, respectively, as shown in Figure 18-6. The area of the annular ring between the contours is

AA = r' - n(r+ Ar) = -2nrAr 3
where the approximation is obtained by assuming Ar small and neglecting Ar.
Eq. (3) can be rearranged as

AA
Ay s 4)

The histogram of the image is. by definition,

AA

Hi(D) = ==
WD) = £, 3D
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We can divide the numerator and denominator by Ar and substitute Eq. (4) into the numer-
ator to produce

AA/Ar -2nr
HyD) = & AD7ar = ddrB,o) ©
To obtain the rightmost equality, we note that both Ar and AD approach zero, and we rec-
ognize the derivative of the profile function in the denominator. .
We are not through yet, since the right side of Eq. (6) is a function of r instead of a
function of D. Since B(x. y) is the image of a monotone spot, B,(r) is a monotonically
decreasing function, and hence, its inverse function

r(D) = B;'(D) N
exists. We can now substitute this into the numerator and denominator of Eq. (6) to mgke
the histogram a function of gray level, as desired. Notice that, since the profile function

B,(r) decreases monotonically with r, the denominator of Eq. (6) is negative. This cancels
the minus sign in the numerator to make the histogram positive, as expected.

18.3.4.3 The Area-Derived Profile

We now seek an expression for the profile of a CCS in terms of its histogram. The radius of
the circular object obtained by thresholding a CCS at gray.level T is
12

R(T) = [}IA(T)TQ = {}J HB(D)dD] ®)
T

For a monotone spot, the histogram Hg(D) is nonzero between its minimum and maximum
gray levels. This means that the area function A (7') is monotonically increasing, and con-
sequently, so is R(T). Thus, the inverse function of Eq. (8) exists, and it is the profile.
Hence, we can compute the area-derived profile of a CCS by integrating the histogram to
obtain the area function, taking first the square root and then the inverse function.

18.3.4.4 The Perimeter-Derived Profile

Thresholding a CCS at gray level T produces a circular object of radius
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R(T) = 5-P(T) ©)

where p(T) is the perimeter function. As with the previous technique, the profile is merely
the inverse function of Eq. (9). Thus, if the perimeter function is known, the profile may be
obtained by the inverse of Eq. (9).

18.3.4.5 Noncircular and Noisy Spots

We can most easily obtain the profile of an image containing a noise-free CCS simply by
taking the gray levels along the scan line that contains the peak. For noncircular spots and
noisy spots, however, the foregoing techniques can be useful. For example, one can use the
histogram of a noncircular spot to obtain the profile of the H-equivalent CCS and select the
threshold gray level that maximizes the slope at the boundary. In other cases, it is useful to
measure the perimeter function and determine the profile of the p-equivalent CCS. Either of
these techniques could produce thresholds suitable for the image at hand.

In digitized images of natural scenes, the noise level is frequently so high that dif-
ferentiating a single scan line cannot reliably identify the inflection point on the protile.
However, the area-derived and perimeter-derived profiles are computed using most or all
of the edge pixels in the object. This process employs inherent noise reduction by aver-
aging. Further noise reduction can be effected by smoothing the histogram or perimeter
function before computing the profile, or by smoothing the profile function itself. The
area-derived profile is the easier to compute, and it has superior noise discrimination
properties.

Random noise in the image ussally makes the threshold boundary jagged. While this
may have little effect on the area function, it tends to make the perimeter function errone-
ously large. Even though the error can be reduced by boundary smoothing built into the
perimeter measurement routine, computational simplicity is still on the side of the arca-
derived profile.

Sieracki, Reichenbach, and Webb | 10) compared nine methods of threshold selection,
including two based on the area-derived profile (maximum magnitude of the first derivative
and maximum magnitude of the second derivative) for measuring the diameter of fluores-
cent microspheres, Generally speaking, they found the latter method to be the most accurate
of the nine for spheres of different sizes and intensities. It also performed well for cells in
tissue culture [10,12]. Finding the maximum of the first derivative. like the other methods
tested, tended to underestimate the sizes of objects.

18.3.5 Average Boundary Gradient

For highly noncircular spots, the H-equivalent and p-equivalent CCS profiles may not be
acceptable for placing the gray-level threshold. For objects of arbitrary shape, we can exam-
ine the average gradient around the boundary as a function of the threshold gray level that
defines the boundary [3].

Suppose a noncircular monotone spot is thresholaed at gray levels of D and D + AD,
as shown in Figure 18-7. At some point a on the outer boundary, Ar is the perpendicular
distance to the inner boundary. Since Ar is perpendicular to a contour line, it lies in the
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direction of the gradient vector at point a. The magnitude of the gradient vector at point «
on the outer boundary is

(VB = £ a0 (1o
ab—-o Ar

Since we are interested in the average gradient around the boundary. we can simply average

|VB] around the outer boundary. If Ar is small with respect to the perimeter, the area

between the two boundaries is merely

AA = p(D)Ar (1)

where Ar is the average perpendicular distance from the outer to the inner boundary and
piD) is the perimeter function. To obtain the average gradiensaround the boundary, we
need merely to substitute Ar for Ar in Eq. (10). This produces

AD p(D) )
Bl —,xn%uA—Ap(D) ) (12)
which indicates that the average boundary gradient is merely the ratio of the perimeter func-
tion to the histogram.

The average boundary gradient function is not difficult to compute, and it readily
identifies the threshold gray level that maximizes the slope at the boundary. For noisy
images, the perimeter function and the histogram may require smoothing before computing
the average boundary gradient function.

18.3.6 Objects of General Shape

Although some of the foregoing results were developed primarily for restricted types of
abjects, they are nonetheless usefud for more general cases. Suppose an image contains
objects of a general shape on a low gray-level background. While the objects may be rela-
tively flat on top, nonmonotonic, and without a unique peak, they usually have sides that
slope uniformly down toward the background. The PSF of optical systems forbids sides of
infinite slope in real images. On the sides of the objects, contour Hines are closed and gen-
erally convex curves that may have local concavities.
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We can assume that each threshold gray level defines a single closed curve for each
object. Under these conditions, we need to consider only the range of gray levels corre-
sponding to the sloping sides of the object. We now have four ways to establish the maxi-
mum-slope threshold gray level. T:

1. Wecan select Tat a local minimum in the histogram. This is the easiest technique. and
it minimizes the sensitivity of the area measurement to small variations in 7.

2. We can select T corresponding to the inflection point in the H-equivalent CCS profile
fuaction. This is 4 simple computation. and it involves considerable averaging for
noise reduction.

3. We can select T to maximize the average boundary gradient. This involves computing
the perimeter function, but requires no approximation regarding equivalent spot images.

4

We can select T corresponding to the inflection pointin the p-equivalent CCS profile
function.

Any one of the foregoing methods can be implemented for routine use. For large-scale stud-
ies, one might use one of these methods to characterize the objects under study. Then a
shoricut method could be implemented for routine use. If a profile analysis showed. for
example, that the optimal threshold gray level for isolated star images in telescope pictures
occurs midway between the peak and the background gray level, then this simplified
method could be employed for routine use.

18.3.7 The Watershed Algorithm

A relative of adaptive thresholding is the watershed algorithm. Figure 18-8 illustrates how
this approach works. We assume that the objects in the figure are of low gray level. on a
high-gray-level background. The figure shows the gray levels along one scan line that cuts
through two objects that are close together.

The image is initially thresholded at a low gray level, one that segments the image into
the proper number of objects, but with boundaries that are too small. Then the threshold is
raised gradually, one gray level at a time. The objects’ boundaries will expand as the thresh-
old increases. When they touch. however, the objects are not allowed to merge. Thus. these
points of first contact become the final boundaries between adjacent objects. The process is
terminated before the threshold reaches the gray level of the background—that is, at the
point when the boundaries of well-isolated objects are properly set.

t¢--- Opject 1 —»i«—Object 2 —»

Figure 188 The watershed

algorithm
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Rather than simply thresholding the image at the optimum gray level. then. the water-
shed approach begins with a threshold that is too low, but that properly isolates the individ-
ual objects. Then as the threshold is graduaily raised to the optimum level, merging of
objects is not allowed. This can solve the problem posed by objects that are too close
together for global thresholding to work. The final segmentation will be correct (i.e., there
will be one boundary per actual object in the image) if and only if the segmentation at the
initial threshold is correct.

Both the initial and final threshold gray levels must be well chosen. If the initial
threshold is too low, then low-contrast objects will be missed at first and then merged with
nearby objects as the threshold increases. If the initial threshold is too high, objects will be
merged tfrom the start. The final threshold value determines how well the final boundaries
fit the objects. The threshold selection methods discussed in this chapter can be useful in
setting these two values.

18.4 GRADIENT-BASED SEGMENTATION METHODS

The preceding region approaches accomplish segmentation by partitioning the image into sets
of interior and exterior points. By contrast, boundary approaches attempt to find the edges
directly by their high gradient magnitudes. In this section, we discuss three such methods.

18.4.1 Boundary Tracking

Suppose we start with the gradient magnitude image (Figure 7-5) computed from an image
containing a single object on a contrasting background. We can start the boundary-tracking
process by identifying the pixel of the highest gray level (i.e., the pixel with the highest gra-
dient in the original image) as the first boundary point, since it certainly must be on the
boundary. If several points have the maximum gray level, then we choose arbitrarily.

Next we search the three-by-three neighborhood centered on the first boundary point
and take the neighbor with the maximum gray level as the second boundary point. If two
neighbors have the same maximum gray level, we choose arbitrarily. At this point, we begin
the iterative process of finding the next boundary point, given the current and previous
boundary points. Working in the three-by-three neighborhood centered on the current
boundary point, we examine the neighbor diametrically opposite the previous boundary
point and the neighbors on each side of it (Figure 18-9). The next boundary point is one of
those three that has the highest gray level. If all three or two adjacent boundary points share
the highest gray level, then we choose the middle one. If the two nonadjacent points share
the highest gray level. we choose arbitrarily.

In the noise-free image of a monotone spot, this algerithm will trace out the maximum
gradient boundary; however, even small amounts of noise can send the tracking temporarily
or hopelessly off the boundary. Noise effects can be reduced by smoothing the gradient
image before tracking or by implementing a tracking bug. Even so, boundary tracking does
not guarantee closed boundaries, and the tracking algorithm can get fost and run off the bor-
der of the image.

A tracking bug is an algorithmic “insect” that works as follows. First we define a rect-
angular averaging window (the bug), usually having unitorm weights (Figure 18-10). The
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@ Last boundary point
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last two or last few boundary points define the current direction of the boundary. The rear
portion of the bug is centered on the current boundary point, with its axis oriented along the
current direction. The bug is subsequently oriented at an angle 81to either side.

In each position, the average gradient under the bug is computed. The next boundary
point is taken as one of the pixels under the front portion of the bug when it is in the highest
average gradient position. Clearly, the tracking bug is a spatially larger implementation of
the boundary-tracking procedure described earlier. The larger size of the bug implements
smoothing of the gradient image and makes it less susceptible to noise. It also limits how
sharply the boundary can change directions.

The size and shape of the bug may be altered to achieve the best performance. The
“inertia” of the bug can be increased by reducing the side-looking angle 6. In practice, the
exact shape of the bug appears to have little effect on its performance. Gradient-tracking
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boundary direction
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/ Figure 18-10 The boundary tracking
bug
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bugs are usually useful only in extremely low-noise images or in situations where human
intervention can prevent catastrophic derailments.

18.4.2 Gradient Image Thresholding

If we threshold a gradient image at moderate gray level, we tind both object and background
below the threshold and most edge points above it (Figure 18-11). Kirsch's segmentation
method makes use of this phenomenon [ 14]. In this technique, one first thresholds the gra-
dient at a moderately low level to identify the object and the background, which are sepa-
rated by bands of edge points that are above the threshold. Then the threshold is gradually
increased. This causes both the object and the background to grow. When they touch, they
are not allowed to merge. but rather, the points of contact define the boundary. This is an
application of the watershed algorithm to the gradient image.

4 Object ————»{
T pb—- ——

Gradient

f !

Threshoid

>

Figure 18-11 Kirsch’s segmentation algorithm

While Kirsch’s method is more computationally expensive than thresholding, it tends
to produce maximum gradient boundaries, and it avoids many of the problems of gradient-
tracking bugs. For multiple object images, the segmentation is correct if and only if it is
done correctly by the initial thresholding step. Smoothing the gradient image beforehand
produces smoother boundaries.

18.4.3 Laplacian Edge Detection

The Laplacian is a scalar second-derivative operator for functions of two dimensions. It is
defined as

) . 3% . 3?2
Vifey = Trzj(.r, y)+ ng(x. ¥ (13)

It is commonly itmplemented digitally by either of the convolution kernels shown in Figure
18-12.

Since it is a second derivative, the Laplacian will produce an abrupt zero-crossing at
an edge (Figure 18-13). The Laplacian is a linear, shifi-invariant operator, and its transter
function is zero at the origin of frequency space. (See Table 10-3.) Thus, a Laplacian-fil-
tered image will have zero mean gray level. )
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1f a noise-free image has sharp edges, the Laplacian can find them. The binary image
that results from thresholding a Laplacian-filtered image at zero gray level will produce
closed, connected contours when interior points are eliminated. (See Sec. 18.7.) The pres-
ence of noise, however. imposes a requirement for lowpass filtering prior to using the
Laplacian.
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A Gaussian lowpass filter is a good choice for this pre-smoothing. Since convolution
is associative [Chapter 9, Eq. (39)] we can combine the Laplacian and Gaussian impulse
responses into a single Laplacian of Gaussian kernel [15,16]:

. ‘xz*yz | 2 5 _xl«oyz
vl 20 - —[I—X—Q ':le 20 14
27n0? not 202 19

This impulse response is separable in x and y and thus can be implemented efficiently. Ithas
the shape of the general bandpass filter impulse response discussed in Chapter 11, namely
a positive peak in a negative dish (Figure 18-14). The parameter & controls the width of the
central peak and, thus, the amount of smoothing. In fact, it is well approximated by the dif-
ference of Gaussians filter of Sec. 11.4.1 (Chapter 11, Eq. (12)) when the ratio of standard
deviations is @, = 1.60 [15].
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Figure 18-14 The Laplacian-of-Gaussian filter: (a) impulse response,
(b) transfer function

18.5 EDGE DETECTION AND LINKING

Another approach to establishing the boundaries of the objects in an image is first to exam-
ine each pixel and its immediate neighborhood to determine whether that pixel is, in fact,on
the boundary of an object. Pixels exhibiting the required characteristics are labeled edge
points. An image in which gray level reflects how strongly each corresponding pixel meets
the requirements of an edge pixel is called an edge image or edge map. This can also be dis-
played as a birary edge image showing only the location (not the magnitude) of the edge
points. An image that encodes the direction of the edge, instead of (or in addition to) the
magnitude, is a directional edge image.

An edge image normally shows each object outlined in edge points, but these seldom
form the closed, connected boundaries that are required for image segmentation. Thus,
another step is required before extraction of the object is complete. Edge point linking is the
process of associating nearby edge points so as to create a closed, connected boundary. This
process fills in the gaps left by noise and shading effects.
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18.5.1 Edge Detection

If a pixel falls on the boundary of an object in an image, then its neighborhood will be a zone
of gray-level transition. The two characteristics of principal interest are the slope and direction
of that transition. These are the magnitude and direction, respectively, of the gradient vector.
Edge detection operators examine each pixel neighborhood and quantify the slope,
and often the direction as well, of the gray-level transition. There are several ways to do this,
most of which are based upon convolution with a set of directional derivative masks.

The Roberts Edge Operator. One local differential operator for finding edges
is the Roberts edge detector [17]. It is given by
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where f(x, y) is the input image with integer pixel coordinates (x, v). The inner square roots
make the operation resemble the processing that takes place in the human visual systemn.

The Sobel Edge Operator. The twoconvolution kernels shown in Figure 1815
form the Sobel edge operator [18]. Each point in the image is convolved with both kernels.
One kernel responds maximally to a generally vertical edge and the other to a horizontal
edge. The maximum value of the two convolutions is taken as the output value for that pixel.
The result is an edge magnitude image.

\

- -2 -1 ‘ -1 0 1
- | . N
\

j
i
|
|

-2 0 2

-1 0 ! Figure 18-15 The Sobel edge
operator

The Prewitt Edge Operator. The two convolution kernels shown in Figure
18-16 form the Prewitr edge operator [7]. As with the Sobel operator, each point in the
image is convolved with both kernels, and the maximum determines the output. The Prewitt
operator likewise produces an edge magnitude image.

1 [ 1 i} - Figure 18-16 The Prewitt edge
! operator

The Kirsch Edge Operator. The cight convolution kernels shown in Figure
18~17 make up the Kirsch edge operator [14]. Each point in the image is convolved with all

466 Pattern Recognition: Image Segmentation Chap. 18
+51+5(+5 ~3+5|~-5 3 i—=3[+5 11-3 3
-310 |3 31 0 1+5 =310 {+s 3|0 |+5
3|-3(-3 -3)-3-3 3|-3[+5 ~3]+5]+5
“3 -3 (-3 ~31-3]-3 +5 —3\—3 +5|+5]-3
-3let 3 -sto -3 +510 -3 +5] 0 j-3
Mﬁ____t_‘ -
+5(+51+5 +5i451-3 +3 —314 —31-34-3

Figure 18-17  The Kirsch edge operator

eight masks. Each mask responds maximally to an edge oriented in a particular general direc-
tion. The maximum vatue over all eight orientations is the output value for the edge magni-
tude image. The index of the maximally responding mask encodes the direction of the edge.

Edge Detector Performance. Visually, the edge images produced by the fore-
going edge operators appear rather similar. They generally look like the line drawing a
draftsman would make from the picture. The Roberts operator, being two by two, responds
best on sharp transitions in low-noise images. The other three operators, being three by
three, handle more gradual transitions and noisier images better.

Normally, for the two-mask edge detectors, the larger magnitude is taken as the out-
put value. This makes them somewhat sensitive to the orientation of the edge. More con-
sistent omaidirectional response can be obtained by taking the square root of the sum of the
squares [19]. This approximates the true gradient magnitude better.

Notice that the Sobel and Prewitt three-by-three edge operators can be generalized to
eight orientations and used like the Kirsch operator to obtain edge orientation images [20].

18.5.2 Edge Linking

1f the edges are reliably strong, and the noise level is low, one can threshold an edge image
(recall Figure 7-7, for example) and thin the resulting binary image (see Sec. 18.7.4.2)
down to single-pixel-wide closed, connected boundaries. Under less than ideal conditions.
however, such an edge image will have gaps that must be filled.

Small gaps can be filled simply by searching a five-by-five or larger neighborhood.
centered on an endpoint, for other endpoints and then filling in boundary pixels as required
to connect them. In complex scenes with lots of edge points, however, this can oversegment
the image. To combat oversegmentation, one can require that the two endpoints agree in
edge strength and orientation. to within specified tolerances, before they are connected.

18.5.2.1 Heuristic Search

Suppose we have what appears to be a gap in a boundary in an edge image, but it is too long
to fill accurately with a straight line, it may not really be a gap in the same boundary, or per-
haps both. We can establish, as a quality measure, a function that can be computed for 2very
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connected path between the two endpoints. which we call A and B. This edge quality func-
tion could include the average of the edge strengths of the points, perhaps minus some mea-
sure of their average disagreement in orientation angles [17.21,22].

We start by evaluating the neighbors of A as candidates for taking the first step toward
B. Normally. only the three neighbors of A that lie in the general direction of B would be
considered. We select the one that maximizes the edge quality function from A to that point.
Then it becomes the starting point for the next iteration. When we finally reach B, the edge
quality tunction over the newly created path is compared to athreshold. I7 the newly created
edge is insufficiently strong, it is discarded.

Heuristic search techniques becorne computationally expensive if the edge quality
function is complex and the gaps to be evaluated are many and long. Such techniques per-
form well in relatively simple images. but they do not necessarily converge upon the glo-
bally optimal path between endpoints.

18.5.2.2 Curve Fitting

If the edge points are generally sparse, it might be desirable to fit a pieccwise linear or
higher order spline curve through them to establish a boundary suitable for extracting
objects. General curve-fitting techniques are discussed in Sec. 19.5. Here, we mention the
piecewise linear method called iterative endpoint fitting [23).

Suppose we have a group of edge points lying scattered between two particular edge
points A and B, and we wish to select a subset of these to form the nodes of a piecewise lin-
ear path from A to B. We begin by establishing a straight line from A to B. Then we compute
the perpendicular distance from that line to each of the remaining edge points. The furthest
one becomes the next node on the path. which now has two branches. The process is
repeated on each new branch of the path, until no remaining edge point lies more than some
fixed distance away from the ncarest branch. When this is done for pairs of points (4, B} all
around the object, it praduces a polygonal approximation to the boundary.

18.5.2.3 Hough Transform

The straight line y = mx + b can be expressed in polar coordinates as [23]

p = xcos(6) + ysin(6) (16)
where (p, 8) defines a vector from the origin to the nearest point on the line (Figure
18-18a). This vector will be perpendicular to the line.

We can consider a two-dimensional space defined by the two parameters p and 8. Any
line in the x. y-plane plots 1o a point in that space. Thus, the Hough transform of a straight
line in A y-space is a point in p, @ space.

Now consider a particular point (v, v) in the x, y-plane. There are many straight lines
that pass through this point, and each of these lines plots to a point in p.6-space. These
points, however, must satisfy Eq. (16) with x, and v; as constants. Thus, the locus of all such
lines in x, y-space is a sinusoid in parameter space, and any point in the x, y-plane (Figure
18-18b) corresponds to a sinusoidal curve in p, 6 space (Figure 18-18c).

If wehave a set of edge points x;, v, that lie on a straight line having parameters p, and
6. then each edge point plots to a curve in p. @ space. However, all these curves must inter-
sect at the point (py. ). since this is a line they all have in common (Figure 18—18¢).
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Figure 18-18 The Hough transform: (a) polar coordinate expression of a
straight line: (b) x. v plane; (¢) p. @ plane

Thus, to find the straight-line segment that the points fall upon, we can set up atwo-
dimensional histogram in p, 6 space. For each edge point, (x;, y;), we increment all the his-
togram bins in p, @space that correspond to the Hough transform (sinusoidal curve) for that
point. When we have done this for all the edge points, the bin containing (pg. 6) will be a
local maximum. Thus, we search the p, 8 space histogram for local maxima and obtain the
parameters of linear boundary segments.

18.6 REGION GROWING

Region growing [24-27] is an approach to image segmentation that has received consider-
able attention in the computer vision segment of the artificial intelligence community. With
this approach, one begins by dividing an image into many tiny regions. These initial regions
may be small neighborhoods or even single pixels. In each region, suitably defined proper-
ties that reflect membership in an object are computed. The properties that distinguish the
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pixels inside the different objects might include average gray level, texture, or color infor-
mation. Thus, the first step assigns to each region a set of parameters whose values reflect
the object to which they belong.

Next, all boundaries between adjacent regions are examined. A measure of boundary
strength is computed utilizing the differences of the averaged properties of the adjacent
regions. A given boundary is strong if the properties differ significantly on either side of
that boundary, and it is weak if they do not. Strong boundaries are allowed to stand, while
weak boundaries are dissolved and the adjacent regions merged.

The process is iterated by alternately recomputing the object membership properties
for the enlarged regions and then dissolving weak boundaries. The region-merging process
is continued until a point is reached where no boundaries are weak enough to be dissolved.
Then, image segmentation is complete. Monitoring this procedure gives one the impression
of regions in the interior of objects growing until their boundaries correspond with the edges
of the object.

Region-growing algorithms are computationally more expensive than the simpler
techniques, but region growing is able to utilize several image properties directly and
simultaneously in determining the final boundary location. Perhaps it shows greatest
promise in the segmentation of natural scenes, where strong a priori knowledge is not
available.

Figure 18-19 shows four stages in the region growing of one muscle fiber viewed on
a microscope slide. In this example, low gradient was the sole region membership property.
The lower right quadrant shows the final boundary.

Figure 18-19 Region growing
example
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18.7 BINARY IMAGE PROCESSING

Binary images—-thosc having only two gray levels—constitute an important subset of dig-
ital images. A binary image (e.g., a sithouette or an outline) normally results from an image
segmentation operation. If the initial segmentation is not completely satisfactory, some
form of processing done on the binary image can often improve the situation.

Recall that there are twa rules of connectivity (four-connectivity and eight-connec-
tivity), and one must use one or the other (Sec. 18.2). The four-connectivity approach
acknowledges only vertically or horizontally adjacent pixels as neighbors, while eight-con-
nectivity recognizes the eight nearest pixels as neighbors. For many applications, it is more
productive to use eight-connectivity.

Many of the processes discussed in this section can be implemented as three-by-three
neighborhood operations. In a binary image, any pixel, together with its eight neighbors,
represents nine bits of information. Thus, there are only 2° = 512 possible configurations for
a three-by-three neighborhood in a binary image.

Convolution of a binary image with the three-by-three kemel in Figure 18-20 gener-
ates a nine-bit (512-gray-level) image in which the gray level of each pixel specifies the
configuration of the three-by-three binary neighborhood centered on that point. Neighbor-
hood operations thus can be implemented with a 512-entry look-up table with one-bit out-
put. Whether the operation is implemented in software or in specially designed hardware, it
is often much more efficient to use a look-up table than some other implementation.

256 Figure 18-20 Binary neighborhood
~—1  encoding

This approach can be used to implement a logical operation called a hif-or-miss frans-
formation. The look-up table is loaded to search for a particular pattern—for example, all
nine pixels being black. The output is one or zero, depending on whether the neighborhood
matches the mask. If, whenever the pattern is matched (a hit), the central pixel is set to white
and the central pixel of all other configurations is left unchanged (a miss), the operation
would reduce solid objects to their outlines by eliminating interior points.

18.7.1 Morphological Image Processing

A powerful set of binary image processing operations developed from a set-theoretical
approach (28,29] comes under the heading of mathematical morphology {30-35]. Although
the basic operations are simple, they and their variants can be concatenated to produce much
more complex effects [36,37]. Furthermore, they are amenable to a look-up table imple-
mentation in relatively simple hardware for fast pipeline processing [38-40]. While com-
monly used on binary images, this approach can be extended to gray-scale images as well
[34,41).
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In the general case, morphological image processing operates by passing a structur-
ing element over the image in an activity similar to convolution (Figure 18-21). Like the
convolution kemnel, the structuring element can be of any size, and it can contain any com-
plement of 1's and 0’s. At each pixel position, a specified logical operation is performed
between the structuring element and the underlying binary image. The binary result of that
logical operation is stored in the output image at that pixel position. The effect created
depends upon the size and content of the structuring element and upon the nature of the log-
ical operation.

Figure 18-21 Morphological image processing

For this introduction to the subject, we concentrate on the simplest case, namely, the
use of a basic three-by-three structuring element containing all 1’s. With this restriction, it
is the logical operation that determines the outcome.

18.7.1.1 Set Theory Nomenclature

In the language of morphological processing, both the binary image, B, and the structuring
element, S, are sets defined on a two-dimensional Cartesian grid, where the 1's are the ele-
ments of those sets. For a summary of set theory definitions and results, see Appendix 3.

We denote by S,,, the structuring element after it has been translated so that its origin
is located at the point (x, y). The output of a morphological operation is another set, and the
operation can be specified by a set-theoretical equation.

18.7.2 Erosion and Dilation

The basic morphological operations are erosion and dilation, shown in Figure 18-22. By
definition, a boundary point is a pixel that is located inside an object, but that has at least one
neighbor outside the object.
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Figure 18-22 Erosion and dilation

18.7.2.1 Erosion

Simple erosion is the process of eliminating all the boundary points from an o-bjec‘t, leaviflg
the object smaller in area by one pixel all around its perimeter. If the object is cnrcular, its
diameter decreases by two pixels with each erosion. If it narrows to less than three pixels
thick at any point, it will become disconnected (into two objects) at that point. Objects.no
more than two pixels thick in any direction are eliminated. Erosion is useful for removing
from a segmented image objects that are too small to be of interest.

General erosion is defined by

E=B®S = {x,y|S,,cB} an
That is, the binary image E that resuits from eroding B by § is the set of points (x, y) §uch
that if S is translated so that its origin is located at (x, y), then it is completely comau'lcd
within B. With the basic three-by-three structuring element, general erosion reduces to sim-
ple erosion.

18.7.2.2 Dilation

Simple dilation is the process of incorporating into the object all the background po?nts that
touch it, leaving it larger in area by that amount. If the object is circular, its diameter
increases by two pixels with each dilation. If two objects are separated by less ll?an thf'ee
pixels at any point, they will become connected (merged into one object) at that point. Dila-
tion is useful for filling holes in segmented objects.

General dilation is defined by

D=B®S = {x,yS,,nB2J} (18)
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That 1s, the binary image D that results from dilating B by S is the set of points (. v) such
that if S is translated so that its origin is located at (x, v), then its intersection with B is not
empty. With the basic three-by-three structuring element, this reduces to simple dilation.

18.7.3 Opening and Closing

Opening. The process of erosion followed by dilation is called opening. It has the
effect of eliminating small and thin objects, breaking objects at thin points, and generally
smoothing the boundaries of larger objects without significantly changing their area. Open-
ing 1s defined by

B>S =(B®S)®S (19

Closing. The process of dilation followed by erosion is called closing. 1t has the
effect of filling small and thin holes in objects, connecting nearby objects, and generally
smoothing the boundaries of objects without significantly changing their area. Closing is
defined by

BeS = (B®S)®S (20)
Often, when noisy images are segmented by thresholding, the resulting boundaries are quite
ragged. the objects have false holes, and the background is peppered with small noise objects.
Successive openings or closings can improve the situation markedly. Sometimes several iter-
ations of erosion, followed by the same number of dilations, produces the desired effect.

18.7.4 Variants of Erosion and Dilation

Normally the erosion operation, repeatedly applied, will shrink an object out of existence.
Dilation, similarly, will merge all the objects in an image into one. The processes can be
altered, however, to produce other results that are more appropriate in some applications.

18.7.4.1 Shrinking

When erosion is implemented in such a way that single-pixel objects are left intact, the pro-
cess is called shrinking. This is useful when the total object count must be preserved.
Shrinking can be used iteratively to develop a size distribution for a binary image con-
taining approximately circular objects. It is run alternately with a three-by-three operator that
counts the number of single-pixel objects in the image. With each pass, the radius is reduced
by one pixel, and more of the objects shrink to single-pixel size. Recording the count at each
iteration gives the cumulative distribution of object size. Highly noncircular objects (e.g..
dumbbell-shaped objects) may break up while shrinking, so this technique has its restrictions.

18.7.4.2 Thinning

Erosion can be programmed as a two-step process that will not break objects. The first step
is a normal erosion, but it is conditional; that is, pixels are marked as candidates for removal,
but are not actually eliminated. In the second pass, those candidates that can be removed
without destroying connectivity are eliminated, while those that cannot are retained. Each
pass is a three-by-three neighborhood operation that can be implemented as a table-lookup
operation [42-45].
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Thinning reduces a curvilinear object to a single-pixel-wide line, showing its topol-
ogy graphically. In Figure 18-23, thinning a group of chromosomes. some of which are
touching. produces a graph with one segment for each chromosome. This can be used as the
basis tor a separation algorithm for objects that are in contact.
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Figure 18-23 Thinning

18.7.4.3 Skeletonization

An operation related to thinning is skeletonization, also known as the medial axis trans-
Sform or the grass-fire technique [46-50). The medial axis is the locus of the centers of all
the circles that are fangent to the boundary of the object at two or more disjoint points.
Skeletonization is seldom implemented, however. by actually fitting circles inside the
ohject.

Conceptually, the medial axis can be thought of as being formed in the following way.
Imagine that a patch of grass, in the shape of the object, is set on fire all around the periphery
atonce. As the fire progresses inward, the locus of points where advancing fire lines meet
is the medial axis.

Skeletonization can be implemented with a two-pass conditional erosion, as with
thinning. The rule for deleting pixels. however, is slightly different. Figure 18-24 compares
thinning with skeletonization. The primary difference is that the medial axis skeleton
extends to the boundary at corners, while the skeleton obtained by thinning does not.

18.7.4.4 Pruning

Often, the thinning or skeletonizing process will leave spurs on the resulting figure. These
are short branches having an endpoint located within three or so pixels of an intersection.
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Figure 18-24 Thinning and
skeletonization: (a) thinned skeleton;
(b) medial axis

Spurs result from single-pixel-sized undulations in the boundary that give rise to a short
branch. They canbe semoved by a series of three-by-three operations that remove endpornts
(thereby shortening all the branches), followed by reconstruction of the branches that still
exist. A three-pixel spur, for example, disappears after three iterations of removing end-
points. Not having an endpoint to grow back from, the spur is not reconstructed.

18.7.4.5 Thickening

Dilation can be implemented s0 as not to merge nearby objects. This can be done in two
passes, similarly to thinning. An alternative is to complement the image and use the thinning
operation on the background. In fact, each of the variants of erosion has a companion dila-
tion-type operation obtained when it is run on a complemented image.

Some segmentation techniques tend to fit rather tight boundaries to objects so as to
avoid erroneously merging them. Often, the best boundary for isolating objects is too tight
for subsequent measurement. Thickening can correct this by enlarging the boundaries with-
out merging separate objects.

18.7.4.6 An example

Figure 18-25 illustrates how morphological operations can be concatenated to implement a
complex process. Here an image of a printed circuit board is analyzed to locate a break point
in the traces.

18.7.5 The Distance Transformation

Another related operation that can be performed on binary images is the distance transfor-
mation. [t results, however, not in another binary image, but in a gray-level image. The gray
level at each pixel is the distance from that pixel to the nearest background pixel.

An approximate distance transformation can be computed by an erosion-like opera-
tion wherein, on each pass, pixels are labeled with the iteration number rather than being
eliminated from the object. The so-called chamfer algorithm computes a distance transfor-
mation in only two passes over the image [51,52].
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Figure 18-25 Morphological analysis of a printed circuit board image:

(2) grayscale image; (b) thresholded image; () cleanup by opening; (d) isolation
of pads by erosion and dilation; (e) isolation of traces by skeletonization; (f) final
display of traces, pads and break points (Courtesy Luc Nocente, Noesis Vision)

Figure 18-26 illustrates the concept of the two-pass distance transformation in one
dimension. Figure 18-26(a) is a one-dimensional binary image containing an object
denoted by 1's on a background of 0's. Figure 18-26(b) is the result of the first (forward)
pass, which is conducted from left to right. At each pixel, background points are left as
zeros, but interior points are replaced with a count of how many steps have been taken since
the last zero was encountered. In Figure 18-26(c), we see the result of the second (back-
ward) pass, which is conducted from right to left. In this pass, each pixel is replaced with the
minimum of (a) what it was or (b) the number of steps taken since a zero was last encoun-
tered. The result is an image in which gray level reflects distance to the nearest boundary.

In the two-dimensional distance transformation, a mask resembling a convolution
kernel-(see Figure 18-27) is passed over the image in a process reminiscent of the convo-
lution operation. (Recall Sec. 9.3.4.) As with the one-dimensional distance transformation,
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there are two passes. The forward pass moves from left to right, working down the image
from the top, while the backward pass moves from right to left, working up the image from
the bottom. At each position, a set of two-term sums is formed by adding each element in the
mask to the underlying pixel value. Where the mask is blank, nothing is done. The pixel
under the center of the mask is replaced by the minimum of the sums.
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Figure 18-27 Mask pairs for two-
n I dimensional distance transformation
using the chamfer algorithm: (a) 3 x 3,
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The three-by-three masks in Figure 18-27 yield a distance image in which the gray
levels are three times the Euclidian distance to the boundary. The maximum deviation from
true Euclidian distance is 8 percent. The five-by-five masks yield a distance image that is
scaled up by a factor of five, and their maximum error is only 2 percent [52].

The distance transform is useful, for example, in segmenting clusters of objects that
are in contact. Each object in the cluster produces a local maximum (located roughly at its
center) in the distance image. The watershed algorithm (decreasing from an initially high
threshold) can then segment the distance image into the individual component objects, as
shown in Figure 18-28. Using the watershed algorithm on the distance transformed image
(Figure 18-28(b)) effectively breaks apart circular objects that are touching (Figure
18-28(c)).

18.7.6 Boundary Curvature Analysis

The curvature at a point on a curve is defined as the rate of change of the tangent angle at that
point, as one traverses the curve. The curvature of an object’s boundary is positive in
regions where the object is convex and negative where it is concave.

In Figure 18--29, for example, a plot of the curvature of the boundary shown reveals
two sharp negative peaks corresponding to the two concavities. If the objects are expected
to be convex, this signals a segmentation error. A cutting line, drawn between the two points
a and b, separates the two objects. Thus, the boundary curvature function can assist in the
automatic detection and correction of segmentation errors.
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Figure 18-28 Using the watershed

@ algorithm with the distance transform
to segment touching objects: (a) binary
image; (b) distance transform; (c)
watershed threshold

Figure 18-29  The boundary curvature function

18.8 SEGMENTED IMAGE STRUCTURE

If only gross measurements of each object are required, it is not necessary to extract the
objects from the original image. In other cases, we may wish to compose a new image show-
ing the objects somehow rearranged, or we may wish to display each object in its own
image. We may also wish to perform further measurement or other processing on the indi-
vidual objects, one at a time. In these cases, it may be worthwhile to extract and store the
individual objects in a more convenient format.

In general, each object should be assigned a sequence number as it is found. This
object number can be used to identify and track the individual objects in the scene. In this
section, we discuss three ways to structure the segmented image.

18.8.1 The Object Membership Map

One way to store segmentation information is to generate a separate image, the same size
as the original, and encode object membership on a pixel-by-pixel basis. In the object
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membership map, the gray level of each pixel encodes the sequence number of the object
to which the corresponding pixel in the original image belongs. For example, all pixels
belonging to object 27 in the image will have a gray level of 27 in the membership map.

The membership map technique is perfectly general, but it is not a particularly com-
pact way to store segmentation information. It requires an additional full-size digital image
to describe a scene containing even one small object. It is, however, the type of image that
will compress quite significantly, since it normally will contain large areas of constant
“gray level.”

If only the size and shape of objects are of interest, the original image may be dis-
carded after segmentation. Further data reduction resuits if there is only one object or if the
objects need not be differentiated. In either case, the membership map becomes a binary
image.

The data requirements of image segmentation sometimes dictate that the process be
done in several passes over the image. A binary or multilevel membership map is often use-
ful as an intermediate step in a multiple-pass image segmentation procedure.

18.8.2 The Boundary Chain Code

A more compact format for storing the image segmentation information is the boundary
chain code [49,53-55]. Since it is the boundary that defines an object, it is not necessary to
store the location of interior points. Furthermore, the boundary chain code exploits the fact
that boundaries are connected paths.

The chain code starts by specifying the (x, y)-coordinates of an arbitrarily selected
starting point on the boundary of the object. The identified pixel has eight neighbors, and at
least one of these must also be a boundary point. The boundary chain code specifies the
direction in which a step must be taken to go from the present boundary point to the next
one.

Since there are eight possible directions, they can be numbered, say, from 0 through 7.
Figure 18-30 shows one conceivable assignment of the eight direction codes. The boundary
chain code then consists of the coordinates of the starting point, followed by the sequence of
direction codes that specify the path around the boundary.

With the boundary chain code, storing the segmentation of an object requires only one
(x, y)-coordinate and then three bits for each boundary point. This is copsiderably less stor-
age space than that required for the object membership map. When a complex scene is seg-
mented, the program can store each object boundary as a single record consisting of the
object number, the perimeter (number of boundary points), and the chain code. In addition,
there are several size and shape features that can be extracted directly from the boundary
chain code, as is shown in the next chapter.

Figure 18-30 The boundary
direction code
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Generation of the boundary chain code usually requires random access to the input
image, since the boundary must be tracked through the image. With boundary-tracking
techniques of image segmentation, generation of the chain code is a natural adjunct. With
boundary location by thresholding, the chain code usually must be generated in a subse-
quent step. Generation of the boundary chain code does not fit quite as well into line-by-line
processing of images stored on disk. Since interior points are discarded, the chain code is
less useful when further processing of the individual object images is required.

18.8.3 Line Segment Encoding

Line segment encoding is a line-by-line technique for storing extracted objects. The pro-
cess is best illustrated by the example shown in Figure 18-31. Suppose we wish to seg-
ment an image using a gray-level threshold 7. The program examines the image, line by
line, working down from the top, looking for pixels having gray level greater than or
equalto T.

In the figure, the segment labeled 1-1 is a sequence of three adjacent pixels on line
100 having gray level at or above the threshold. Thus, segment 1-1 is the first line segment
of the first object (object number 1) that is encountered by the program.

Upon examination of line {01, the program encounters two segments, -2 and 2--1,
that are above the threshold. Since it is impossible to tell at this time that both segments
actually belong to the same object, the program assumes that the second segment on
line 101 is part of a second object, which it calls object number 2. Since segment 1-2
underlies segment 1-1, the program assumes that both of these segments are part of object
number 1.

The process continues throughline 102, but at line 103 only asingle segment is found,
and it underlies segments of both objects 1 and 2. The program now recognizes that objects
1 and 2 are the same, and segment numbering continues for object 1.

On line 105 the program again finds two segments. Since they both underlie segment
1-5, however, they obviously belong to object 1. On line 107, no segments that underlie
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Figure 18-31 Object line segments
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segment 1-8 or 1-9 are found. and the isolation of object 1 is complete. In this way, it is the
line segments that, taken together, specify the object that has been isolated.

Figure 18-32 shows one way the object segment information can be organized for
storage on disk. Each time a new object is located, the program generates a new object file.
This file begins with an object label containing the object number and the number of seg-
ments in the object. The latter entry must be continually updated until segmentation of the
object is complete.

Following the object label, the individual line segments are stored as records. In Fig-
ure 18-32, they are stored with a segment label, followed by the gray-level values of the
pixels in that segment. The segment label contains the number of the line from which the
segment was extracted, the coordinate of the first pixel on the line segment, and the number
of pixels in the line segment.

For the object in Figure 18-31, two object segment files would be opened. After only
two segments have been stored in object file 2, however, the program discovers that objects
1 and 2 are the same. Accordingly, further construction of object file 2 is discontinued.
Either then, or after segmentation is complete for this object, the two object segment files
may be merged.

The result of the single-pass line segment encoding technique is a set of segment files,
one for each object. If each segment file is stored as a single record on a disk drive, only one
revolution of the disk is required to read or write an entire object. An object image can easily
be reconstructed in memory simply by unpacking the segment file. This is particularly use-
ful when further processing of object images is desired.

For segmenting large images, the input image is read, line by line, from disk, and
object segment files are assembled in memory. As soon as an object file is completed, its
label is finalized, and that file is written to disk as one record. An advantage of this method
is that the object’s area, perimeter, 10D, and horizontal and vertical extent measurements
are easily built into the object extraction step. In this way, several important object features
are known by the time the segmentation step is complete.

)
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Figure 18-32 The object segment file
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18.9 SUMMARY OF IMPORTANT POINTS

1. Image segmentation is the process of partitioning a digital image into disjoint, con-
nected sets of pixels. one of which corresponds to the background and the remainder
to the objects in the image.

2. Image segmentation can be approached as the process of either assigning pixels to
objects or finding houndaries between objects (or between objects and the back-
ground).

3. Gray-level thresholding is a simple segmentation technique that always produces
closed, connected boundaries.

4. Background flattening and noise removal processes, conducted prior to segmenta-
tion, can often improve performance during segmentation.

5. Unless background gray level and object contrast are relatively constant. it is often
necessary to allow the threshold gray level to vary within the image.

6. For images of simple objects on a contrasting background, placing the threshold at the
dip of the bimodal histogram minimizes the sensitivity of the measured area to thresh-
old variations.

7. The profile function of a concentric circular spot may be derived from the histogram
or the perimeter furction of its image.

8. The average gradient around a contour line can be computed from the perimeter func-
tion and the histogram [Eq. (12)].

9. Object segmentation can be implemented by tracking the boundaries in, or by thresh-
olding, the gradient image.

10. Region-growing technigues are useful for segmenting complex scenes using complex
object definitions.

1. The segmentation of an image may be stored as a membership map, as a boundary
chain code, or by line segment encoding.

PROBLEMS

1. Below is the histogram of « 20-gray-level image (zero is black ) of one white billiard ball on a dark
background. The ball is made of a material that weighs 1.5 grams per cm®. The pixet spacing is
I_mm. How much does the bal! weigh? (Hint: Plot the area-derived profile first.)

10 100 500 3,000 9,000 3,000 500 200 100 200 300 500 627 500 300 200 100 0 0 0]

2. Below is the histogram of a 20-gray-level image containing one fruit on a contrasting back-
ground. The pixel spacing is 2 mm. Is the fruit a cherry, a grapefruit, or a pumpkin?

{0 100 200 300 S00 600 500 300 200 100 200 500 3,000 8,000 20,000 8,000 3,000 500 100 0|

3. Below is the histogram of a 32-gray-level image (zero is black) containing one 12-inch-d
black phonograph record with a white label, lying on a gray background. Whatis the pixel spac-
ing? What is the diameter of the label?

{0000 100 2002000 6.000 2,000 200 1000 0 200 3,000 9,000 3,000 200 0 6 50 100 400 100
500000000]
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PROJECTS
1. Develop a program that will generate digital images of noisy Gaussian spots on a background of

specified gray level. [nclude the capability to specify the position and x- and y-dimension (stan-
dard deviation) of the spot, and the RMS amplitude of the white, uniformly distributed noise.
Generale an image of 4 200-gray-level-tall. 15-pixel-by-20-pixel spot with 10-gray-level peak-
amplitude noise.

. Develop a program that will generate arez- and perimeter-derived profiles for spots such as those

described in Project 1. and form the first and second derivatives of those profiles. Define SNR as
spot amplitude divided by RMS noise amplitude. For circular spots of radius 5, 10, and 20 pixels.
with SNRs of 40. 20. 10, and S. generate the area-derived profiles and locate the point of maxi-
mum slope. Determine empirically, for each size of spot, what is the minimum SNR required to
locate the inflection point with no more than a onc-pixel error.

. Develop a program that will it a two-dimensional Gaussian function to a notsy Gausstan spot on

a zero-gray-level background (see Sec. 19.5.5). Use the program to determine the position, size.
and amplitude of a noisy spot in an image generated by a program such as that described in
Project 1 or obtained by digitizing an image of a round objecl.

. Develop an adaptive thresholding program that can set the threshold for each object in a scene

using one of the threshold selection techniques described in this chapter, and test the program on
an image containing five objects of different contrast on an uneven background. Use either a dig-
itized image or an image generated by a program such as the one described in Project 1.
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CHAPTER 19

Pattern Recognition:
Object Measurement

19.1 INTRODUCTION

In Chapter 18, we introduced pattern recognition and discussed the isolation and extrac-
tion of objects from a complex scene. In this chapter, we address the problem of mea-
suring the objects, so that they can be identified by their measurements. Much has been
written on this subject, and we can only introduce the basic concepts here. For a more
detailed treatment, the reader should consult the literature on image analysis. (See
Appendix 2.)

19.2 SIZE MEASUREMENTS

In this section, we consider several commonly used features that reflect the size of an object.
These features have come into common usage because they are important in a variety of pat-
tern recognition problems and they lend themselves well to digital image analysis.

It is convenient first to compute spatial measures in terms of pixels and photometric
measures in terms of gray levels. Later, length and area measurements can be calibrated
by multiplying them by the pixel spacing or the area of a pixel, as appropriate. The pho-
tometric calibration curve for the digitizer affords a means of converting gray levels to
photometric units. Often, this is a simple linear equation. Any point operations (Chapter
6) that have been performed on the image must be accounted for in the photometric cal-
ibration as well.
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19.2.1 Area and Perimeter

The area of an object is a convenient measure of the object’s overall size. Dependent only
on the boundary of the object, a measurement of area distegards gray-level variations
inside. The perimeter of an object is particularly useful for disctiminating between objects
with simple and complex shapes. A simply shaped object uses less perimeter to enclose its
area. Area and perimeter measurements are easily computed during the extraction of an
object from a segmented image.

Boundary Definition. Before we can specify an algorithm for measuring the
area or perimeter of an object, we must establish a definition regarding the boundary of the
object. In particular, we must ensure that we are not measuring the petirheter of one poly-
gon and the area of another. The question that must be resolved is, Are the boundary pixels
completely or only partially contained in the object? In other words, does the aciual bound-
ary of the object pass through the centers of the boundary pixels or around their outside
edges?

Pixel Count Area. The simplest (uncalibrated) area measurement is just a count
of the number of pixels inside (and including) the boundary. The perimeter that corresponds
to this definition is then the distance around the outside of all the pixels. Normally, mea-
suring this distance involves a large number of 90° turns, thus producing an exaggerated
value for the perimeter.

Perimeter of a Polygon. Perhaps a more satisfying approach to measuring an
object’s perimeter is 1o establish that the boundary of the object is the polygon having a ver-
tex at the center of each boundary pixel. The perimeter, then, Is a sum of lateral (Ap = 1) and
diagonal (Ap = /2 steps. This sum can be accumulated either while the object is being
extracted by line segment encoding (Sec. 18.8.3) or in one pass around the boundary while
building a chain code (Sec. 18.8.2). The perimeter of an object is

p =N+ A/QNU : D

where N, is the number of even and &, is the number of odd steps in the boundary chain code
when the convention of Figure 18-30is used. The perimeter is also simple to compute from
the object segment file by summing the center-to-center distances between adjacent pixels
on the boundary.

Area of the Polygon. The area of the polygon defined by pixel centers is the
pixel count minus one more than half the aumber of boundary pixels: that is,

A:N,,—[%H—I] 2)

where NV, and N, are the numbers of pixels in the object (including boundary pixels) and in
the boundary, respectively. This correction of the pixel-count area acknowledges that, on
the average, a boundary pixel is half inside and half outside the object. Furthermore, when
aclosed curve is traversed. an additional pixel's worth of area fails outside, due to the net
convexity of the object. Alternatively, one can correct the pixel-count-derived area mea-
surement approximately by subtracting half the perimeter.
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19.2.1.1 Computing Area and Perimeter

There is a computationally simple way to compute both the area and perimeter of a polygon

in one traversal of the boundary of the polygon. Figure 19-1 illustrates the fact that the area’

of a polygon is the sum of the areas of all the triangles formed by lines connecting the ver-
tices to an arbitrary point (xp, ¥g). Without loss of generality, we can let that point be the ori-
gin of the coordinate system of the image.

Figure 19~2 assists us in developing an equation for the area of a triangle having one
vertex at the origin. The horizontal and vertical lines divide the region into rectangles, some
of which have sides of the triangle as their diagonals. Thus, half the area of each such rect-
angle falls outside the triangle. By inspection of the figure, we can write

1 1 1
dA = xz)’l—ixl)’l‘ixz)’z‘i(xz"xl)(h—)ﬁ) 3)

x2¥2

xpy1 -

VFigure 19-1 Computing the area of a
x —» polygon

2

Figure 19-2 Computing the area of a
0 x X triangle
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Expanding and collecting terms simplifies this expression to
dA = %(-‘1."2* V) )

and the total area becomes

Vi
1
A= 2; Lxyivr —x 0l (5)

where N, is the number of boundary points.

Notice that, if the origin lies outside the object, any particular triangle includes some
area that is not inside the polygon. Notice also that the area of a particular triangle can be
either positive or negative, depending on the direction in which the boundary is being tra-
versed. By the time a complete circuit around the boundary is made, all the area that falls
outside the object has been subtracted out.

A simpler approach yielding the same result makes use of Green’s theorem. This
result from integral calculus says that the area enclosed by a closed curve in the x, y-plane
is given by the contour integral

A= %§ (xdv - vdx) (6)
2
where the integration is carried out around the closed curve. For discrete segments, Eq. (6)
becomes,

N,
i .
A= 53 10 =3 -y - x] o
iz
which can be put into the form of Eq. (5).
The corresponding perimeter is the sum of lengths of the sides of the polygon. If all
of the boundary points of the polygon are used as vertices, this will be a sum of all the lateral
and diagonal measurements, as before.

19.2.1.2 Boundary Smoothing

Often, the perimeter measurement is artificially high because of noise in the image and
because the boundary points are restricted to a rectangular sampling grid. Boundary
smoothing with binary image processing (Sec. 18.7) can reduce the noise, but cannot alle-
viate the rectilinear sampling.

Further boundary smoothing, however, can be built into the measurement of area and
perimeter by using only a subset of the boundary pixels as vertices. Particularly in areas of
low curvature. one can simply skip boundary pixels. Too much of this, however, can
obscure the true shape of the object and reduce the accuracy of the measurement.

Boundary smoothing can also be effected by representing the boundary in parametsic
form. If the object is sufficiently convex, the boundary can be expressed in polar coordi-
nates about some point inside the object (Figure 19-3(a)). In this case. the boundary is spec-
ified by a function of the form p(6). The only requirement is that p must be single valued for
any 6.
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If the shape is so complex that no such point exists, the boundary can be represented
by the more general complex-valued boundary function

B(p) = xi+)yi ®)
where p; is the distance along the boundary from an arbitrary starting point to the ith bound-
ary pointand i = |, ..., N, is the index of boundary points (Figure 19-3(b)).

In either case, the parametric boundary function is periodic. One cycle of it can be
lowpass filtered in the frequency domain by (1) a Fourier transform, (2) multiplication by a
phaseless (real and even) lowpass transfer function, and (3) an inverse Fourier transform.

Points on the smoothed boundary function are no longer restricted to the sampling
grid. All or a subset of such points can be used as vertices in the area and perimeter calcu-
lations. Again. one might use boundary vertices selected to be spaced inversely with
curvature.

19.2.2 Average and Integrated Density

The 10D is the sum of the gray levels of all pixels in the object. It reflects the “mass” or
“weight” of the object and is numerically equal to the area multiplied by the mean interior
gray level of the object. Computation of the IOD is covered in Chapter 5. The average den-
sity is merely IOD divided by area.

19.2.3 Length and Width

[tis easy to compute the horizontal and vertical extent of an object while it is being extracted
from an image. One needs only the minimum and maximum row number and column num-
ber for this computation. For objects of random orientation, however, horizontal and verti-
cal may not be the directions of interest. In this case, it is necessary to locate the major axis
of the object and measure length and width relative to it.

There are several ways to establish the principal axis of an object once the boundary
of the object is known. One can compute a best fit straight (or curved) line through the
points in the object [1.2]. The principal axis can also be computed from moments, as
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discussed in the next section. A third way uses the minimum enclosing rectangle (MER)
around the object [1].

With the MER technique, the boundary of the object is rotated through 90° in steps of
3° or so. After each incremental rotation, a horizontally oriented MER is fit to the boundary.
Computationally, this involves merely keeping track of the minimum and maximum x and
y values of the rotated boundary points. At some angle of rotation, the area of the MER goes
through a minimum. The dimension of the MER at that point can be taken to be the length
and width of the object. The angle at which the MER is minimized gives the principal axis
of the object, at least as determined by this method. This technique is particularly useful for
rectangular objects, but it gives satisfactory results for more general shapes as well.

19.3 SHAPE ANALYSIS

Frequently, the objects of one class can be distinguished from other objects by their shape.
Shape features can be used independently of, or in combination with, size measurements. In
this section, we consider some commonly used shape parameters.

19.3.1 Rectangularity

A measurement that reflects the rectangularity of an object is the rectangle fit factor

A,

R = i 9)
where A, is the object’s area and Ag, is the area of the object’s MER. R represents how well
an object fills its MER. It takes on a2 maximum value of 1.0 for rectangular objects, assumes
the value /4 for circular objects, and becomes small for slender, curved objects. The rect-
angle fit factor is bounded between 0 and 1.

Another related shape feature is the aspect ratio

A= — (10)

whichis the ratio of width to length of the MER. This feature can distinguish slender objects
from roughly square or circular objects.

19.3.2 Circularity

A group of shape features are called circularity measures because they are minimized by the
circular shape. Their magnitude tends to reflect the complexity of the boundary being mea-
sured. The most commonly used circularity measure is

c=&

A

the ratio of perimeter squared to area. This feature takes on a minimum value of 4x for a cir-

cular shape. More complex shapes yield higher values. The circularity measure C is roughly
correlated with the subjective concept of complexity of the boundary.

A related circularity measurement is the boundary energy [3}. Suppose an object has

perimeter P and we measure distance around the boundary from some starting point with the

an
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variable p. At any point. the boundary has an instantaneous radius of curvature r(p). That is
the radius of the circle tangent to the boundary at that point (Figure 19-4). The curvature
function at point p is
)
K(p) = — (12)
P

The function K (p) is periodic with period P. We can compute the average energy per unit
length of boundary as

,
E= IlJJ IK(p)2dp (13)
0

For fixed area, the circle has minimum boundary energy

f0- (32 -(3)

where R is the radius of the circle. Curvature and, hence, boundary energy are easily com-
puted from the chain code [3]. Young has shown that the boundary energy reflects the per-
ceptual concept of boundary complexity better than the circularity measure of Eq. (11) [3].

A third circularity measure makes use of the average distance from an interior point
to the boundary object {4]. This distance is

N
5 1
d= NZI, (15)

=1
where x; is the distance from the ith pixel to the nearest boundary point in an object of N
points. The shape measure is

N3

i=1

(16)

o,
Sl

The sum in the denominator of Eq. (16) is the 10D of the distance-transformed image. The
distance transformation was introduced in Sec. 18.7.5. The gray-level value of a pixel in a

—Starling
point

—» Figure 19—4 Radius of curvature
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distance-transformed image reflects the distance of that pixel from the nearest boundary.
Figure 19~5 shows a binary image and its distance transform.

For circles and regular polygons, Eq. (16) gives the same value as Eq. (11): however,
the discriminatory power of Eq. (16) may be superior for the more complex shapes
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Figure 19-5 The distance transform

19.3.3 Invariant Moments

The moments of a function are commonly used in probability theory [5,6]. However, sev-
eral desirable properties that can be derived from moments are also applicable to shape anal-
ysis.

Definition. The set of moments of a bounded function f(x, y) of two variables is
defined by

M =J. J- v f(x, y)dx dy (a7n

where j and k take on all nonnegative integer values. The moments of PDFs are widely used
in probability theory.

As j and k take on all nonnegative integer values, they generate an infinite set of
moments. Furthermore, this set is sufficient to specify the function f(x, y) completely. In
other words, the set {M},} is unique for the function f(x, ¥), and only f(x, y) has that partic-
ular set of moments.

For shape-descriptive purposes, suppose f(x, y) takes on the value | inside the object
and O elsewhere. This silhoueite function reflects only the shape of the object and ignores
internal gray-level detail. Every unique shape corresponds to a unique silhouette and, fur-
thermore, to a unique set of moments.

The parameter ; + & is called the order of the moment. There is only one zero-order
moment.

My, = J.w J‘m Slx, yydx dy (18)
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and it is clearly the area of the object. There are two first-order moments and correspond-
ingly more moments of higher orders. We can make all first- and higher-order moments
invariant with respect to the size of the object by dividing them by M.

19.3.3.1 Central Moments
The coordinates of the center of gravity of an object are

= = 19
M T My
The so-called central moments are computed using the center of gravity as the origin:
w [ wmwio- sty 20)

The central moments are position invariant.

19.3.3.2 Principal Axes

The angle of rotation @that causes the second-order central moment 4, to vanish may be
obtained from

@n29 = —Hn_ Qn
Hao — Hoy
The coordinate axes x', y'at an angle 6 from the x, y axes are called the principal axes of the
object. The 90° ambiguity in Eq. (21) can be resolved if we specify that

Hag < Moy t30>0 (22)

If the object is rotated through the angle @before moments are computed, or if the moments
are computed relative to the x', y' axes, then the moments are rotation invariant.

19.3.3.3  Invariant Moments

The area-normalized central moments computed relative to the principal axis are invariant
under magpnification, translation, and rotation of the object. Only moments of third order
and higher are nontrivial after such normalization. The magnitudes of these moments reflect
the shape of the object and can be used in pattern recognition. Invariant moments and com-
binations thereof have been applied to the recognition of the shapes of printed letters [7,8]
and to chromosome analysis {9].

While invariant moments definitely have some of the properties that good shape fea-
tures must have, they may or may not have all of them in any particular instance. The
uniqueness of the shape of an object is spread out over an infinite set of moments. Thus, a
large set of features may be required to distinguish similar shapes. The resulting high-
dimensional classifier may become quite sensitive to noise and to intraclass variations. In
some cases, a few relatively low-order moments may reflect the distinguishing shape char-
acteristics of an object. Usually, some experimentation will suggest which, if any, of the
invariant moments are both reliable and discriminating shape features.

496 Pattern Recognition: Object Measurement Chap. 19

Gray-Level Images. 1f we let f(x, ¥) be the gray-level image of an object, rather
than a binary-valued silhouette function, we can compute invariant moments as before. The
zero-order moment |Eq. ( 18)] becomes the integrated optical density, rather than the area.
However. the preceding development applies in a similar manner. For gray-level images,
the invariant moments retlect not just the shape of the object, but also the density distribu-
tion within it. As before, it must be shown, for each object recognition problem, that a rea-
sonably small number of invariant moments can reliably distinguish among the different
cbjects.

19.3.4 Shape Descriptors

Sometimes it is useful to describe the shape of an object in more detail than that offered by
a single parameter but more compactly than is reflected in the object image itself. A shape
descriptor is a compact representation of an object’s shape.

19.3.4.1 The Differential Chain Code

One shape descriptor is the boundary chain code discussed in the previous chapter. Figure
19-6 shows a simple object with its boundary chain code and the derivative of the boundary
chain code. The differential chain code reflects the curvature of the boundary, and convex-
ities and concavities show up as peaks, while the boundary chain code shows the boundary
tangent angle as a function of distance around the object. Both functions can be further ana-
lyzed to obtain measures ot shape.

Polygonal shapes have ane sharp convexity per vertex and are thus separable in the
differential chain code. For example, a measure of triangularity might be the amplitude of
the third harmonic of a Fourier series expansion of the differential chain code. One might
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Figure 19-6 The chain code and its derivative
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then distinguish between triangles and squares by using the ratio of the third to the fourth
barmonic amplitude. Smoothing of the boundary chain code is usually required before
differentiation.

19.3.4.2 Fourier Descriptors

We have examined three different periodic functions that completely describe an object’s
shape: the boundary chain code, the polar boundary function (Figure 19-3(a)), and the com-
plex boundary function (Figure 19-3(b)). Since each of these is periodic, the Fourier trans-
form of one cycle of any of them is an alternative representation of the associated object’s
shape [10].

Again because it is periodic, each of these boundary functions has a discrete (sam-
pled) spectrum. The strengths of the impulses in the spectrum correspond to the coefficients
of the Fourier series expansion of the (periodic) function. In imany cases, one can lowpass
filter the boundary function spectrum without destroying the characteristic shape of the
object. This means that only the amplitudes and phases of the low-frequency impulses in the
spectrum (i.e., the low-order Fourier coefficients) are required to characterize the basic
shape of the object. These values, then, are candidates for shape descriptors.

19.3.4.3 The Medial Axis Transform

Another data reduction technique that retains shape information is the medial axis transfor-
mation discussed in the previous chapter [11,12]. A point inside the object is on the medial
axis if and only if it is the center of a circle that is tangent to the boundary of the object at
two nonadjacent points. A value associated with each point on the medial axis is the radius
of the circle just described. It represents the minimum distance to the boundary from that
point.

One way to find the medial axis is by erosion. One successively removes the outer
perimeter of points in a manner similar to peeling an onion. If removing a particular point
would disconnect the object, then that point is on the medial axis. Its value is simply the
number of layers that have been previously peeled.

For binary images, the medial axis transform retains the shape of the original object.
This means that the transformation is invertible and the object can be reconstructed from
its medial axis transform. When programmed on digital images using a rectangular sam-
pling grid, the inversion may differ slightly from the original object [13]. Figure 19-7(a)
is a digital image of a chromosome, of which Figure 19-7(b) shows the medial axis trans-
form. The image in (a) was computed by an algorithm of R. J. Wall [13]. Figure 19-7(c)
shows how the medial axis transform depends on the orientation of the object with respect
to the sampling grid. The medial axis transform can also be computed for gray-level
images [14].

The medial axis transform is useful for finding the central axis of long, narrow,
curved objects such as bent chromosomes [13,15]. Frequently it is useful as a graph only,
and the values it produces are ignored. Other shape descriptors, such as the number of
branches the object has and the total length of the object, can be computed from the graph
itself [16].
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19.4 TEXTURE ANALYSIS

If you ask 10 people whether they know what texture is, almost certainly, each will say yes.
However, you will most likely get 10 substantially different definitions from them.

19.4.1 Definitions

The word rexture originally referred to the appearance of woven fabric, but a general defi-
nition is “the arrangement or characteristics of the constituent elements of anything, espe-
cially as regards surface appearance or tactile qualities” (17]. A more relevant definition for
our purposes is “an attribute representing the spatial arrangement of the gray levels of the
pixels in a region” [18].

Here, we are concerned with measuring the texture of an object in an image. If the
gray level is constant everywhere in the object, or nearly so, we say that the object has no
texture. If the gray level varies significantly within the object—apart from simple shad-
ing—then the object has texture. When we seek to measure texture, we attempt to quantify
the nature of the variation in gray level within an object.

Electronic noise induced by a camera and film grain noise are examples of a random
rexture. In such cases, the variation in gray level in the object exhibits no recognizable pat-
tern. By contrast, cross-hatching is a pattern texture that does exhibil a visible regularity.

Random textures are most commonly characterized by statistical properties such as
standard deviation of gray level (for measuring the amplitude of texture) and autocorrela-
tion width (for measuring the size of texture). Pattern textures can be additionally charac-
terized by extracting measurements that quantify the nature and directionality (if any) of the
pattern.

A texture feature is a value, computed from the image of an object, that quantifies
some characteristic of the gray-level variation within the object. Normally, a texture feature
is independent of the object’s position, orientation, size. shape, and average gray level
(brightness).

19.4.2 Texture Segmentation

Semetimes objects differ from the surrounding background, and each other, in texture but
not in average brightness. In that case, image segmentation must be based on texture. This
is done by first computing a texture image wherein the gray level of each pixel reflects some
property of the texture in the local area of that pixel. In this image, then, objects differ by
gray level, and the image can be segmented by conventional means. The texture measure-
ment techniques discussed in this section map textural characteristics into gray-level values
and can thus be used for texture segmentation as well.

19.4.3 Statistical Texture Features

Simple statistical measures of gray-level variation include standard deviation, variance,

skewness, and kurtosis. These can be computed as moments of the gray-level histogram of

the object, as can the module feature [19]

N

. H, - MIN 23
[H(I - H/M)+ M(I-1/N) ’

N N

=t
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where M is the number of pixels in the object and N the number of gray levels in the gray
scale.

Research indicates that the human eye is insensitive to textural differences of order
higher than the second (i.e., variance). This, however, does not preclude texture features
from exploiting such quantifiable differences if they exist in particular objects. It merely
suggests that visua!l classification of the training set may not be adequate.

19.4.3.1 The Co-Occurrence Matrix

Suppose that we establish a direction (horizontal, vertical, etc.) and a distance (one pixel,
two pixels, etc.). in an image. Then the i, jth element of the co-occurrence matrix P for an
object is the number of times, divided by M, that gray levels i and j occur in two pixels sep-
arated by that distance and direction in the object. where M is the number of pixel pairs con-
tributing to P. The matrix Pis N by N, where the gray scale has N shades of gray.

Separate co-occurrence matrices can be established for each combination of distance
and direction. The total number of pixel pairs, M, contributing to the matrix is less than the
number of pixels in the object, and it declines with increasing distance. Thus, the matrix can
be rather sparse for small objects. For this reason, the gray scale N is often reduced—-say.
from 256 to 8 gray levels—for the computation of the co-occurrence matrix.

Once the co-occurrence matrix has been formed, texture features can be computed
trom it. A number of co-occurrence matrix-based features have been defined and tested
[20-26]. Examples include entropy.

N N
H = Z P,logP, (24)
i=1j=1
inertia,
N N
1= -k 25
i=lj=1
and energy,
NN
E= 3% (B (26)

1

1j=1
Some co-occurrence matrix—based texture features correspond to characteristics that are
recognized by the eye {23}, but many do not. In general, one must determine experimentally
which of these features have discriminatory power.

19.4.4 Other Texture Features

Spectral Features. For a given image. the two-dimensional Fourier transform,
of course, contains complete information on the image’s texture. Thus, it may be useful to
derive texture features from the spectrum, as well as from the object itself.

One can average the two-dimensional spectrum in annular rings to produce a one-
dimensional function of frequency that ignores directionality. Similarly, one can average the
spectrum in radial slices to produce a function of angle-that shows only the directionality of



Sec. 19.5 Curve and Surface Fitting 501

the texture pattern. Each of these functions can be further reduced to scalar features that ofter
the desired discrimination ability. Normally, one would inspect these reduced-dimensional
functions from different classes to determine how to reduce them further to scalars.

For a small, odd-shaped object, it may be a challenge to compute a two-dimensional
spectrum. One can transform one or more squares that are completely enclosed in the object,
averaging their spectra together. Otherwise one can pad a larger, square image with syn-
thetic data outside the object to make it compiete.

Structural Features. The structural approach to texture analysis assumes that
the texture pattern is composed of a spatial arrangement of texture primitives. These are
small objects that constitate, for example, one unit of a repeated pattern. Feature extraction
then becomes the task of locating the primitives and quantifying their spatial arrangement.

As a simple example, consider an image of a section of liver tissue in which the ceil
nuclei have been stained dark. The primitives are the nuclei, and these are rather uniformly
distributed throughout healthy tissue. Certain disease processes, however, cause random
cell death, disrupting the spatial arrangemeat of the cells. Here, the mean and standard devi-
ation of the neighboring cell separation distance are candidate structural texture features.
Often, several such candidates must be evaluated to find a suitably strong performer.

19.5 CURVE AND SURFACE AITTING

Sometimes in image analysis it is useful to fit a one-dimensional function, such as a poly-
nomial or Gaussian, through a set of data points. Polynomial warping (Sec. 8.3.4) requires
this. In autofocus, for example (see Chapter 15), one can find the point of focus by first fit-
ting a parabola or Gaussian through a plot of the focus parameter versus z-axis position and
then solving for the location of the peak.

Sometimes it is useful to fit a two-dimensional surface, such as a two-dimensional
polynomial or Gaussian, through an image or a portion thereof. This can be done for noise
removal when the underlying (noise-free) image has a functional form that is known or
assumed. The fitting process determines the parameters of the equation for the function, so
that the image can be computed in noise-free form.

Surface fitting is also used for noise removal when one of the noise components (such
as a shading pattern) can be fitted, computed, and subtracted out.

Surface fitting can also be done for purposes of measurement when the object of inter-
est has a known or assumed functional form. Stars in an astronomical image, for example,
can be modeled as two-dimensional Gaussians. Since the fitting procedure determines the
values of the parameters that specify each object (e.g., position, size, shape, amplitude), it
serves a measurement function as well.

19.5.1 Minimum Mean Square Error Fitting

Given a set of points (x;, v;), a commonly used fitling technique is to find the function f(x)
that minimizes the mean square error. This is given by

N
MSE = 23 (v~ fix))? @

i=1
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v/here (x;, v,) are the data points, of which there are N.
If f(x) is to be a parabola, for example, its equation is

fx) = cog+ ¢ x+cpx? (28)

and the curve-fitting procedure is used to determine the best values of the coefficients ¢y, ¢y,
and ¢,. That is, we wish to determine the values of those coefficients that will make the
parabola pass through the given points with minimum error, in the mean square sense.

19.5.2 Matrix Formulation

It is convenient to use matrix algebra (see Appendix 3 for a review) to develop the solu-
tion to the preceding problem. We begin by forming matrices B containing the given
x-values, Y containing the given y-values, and C containing the coefficients that are to be
determined:

v 1 x x%
i ; o
y = |*2 B = 1 x x3 C = ¢ 29)
| o o
Ay 1 xy .r%,

Now the column vector of error values (one element for each of the data points) can be writ-
ten as

E=Y-BC (30)

where the matrix product BC is the column vector of y-values computed from Eq. (28).
Eq. (27) for the mean square error is now given by
ler
SE = —-E'E 30
M N (

Substitating Eq. (30) into Eq. (31), differentiating with respect to the elements of C, and set-
ting the derivative to zero leads to the solution [27,28]

C = (B'B] ' (BTY) (32)
which is the vector of coefficients that minimize the mean square error. The square matrix
[B7B]~'BT is called the pseudoinverse of B, and this solution is called the pseudoinverse
method.

Notice that if the number of points is equal to the number of coefficients, B is a square
matrix and can be inverted directly (provided that it is nonsingular). In this case, Eq. (32)
reduces to

C =B'Y (33)

and we have the familiar problem of solving a set of linear equations in as many unknowns.

19.5.3 One-Dimensional Parabola Fit

As a numerical example, let us fit a parabola through a set of five points. The values are
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h
0.9 1.8 1 09 081
22 3 1 22 484
X=13 Y =15 B=11 3 9 34
4 3 1 4 16
5 2 1 5 25

and Figure 19-8 shows the cluster of points and the best fitting parabola, determined by this
method. The calculations produce

5 15 56 12.3 0747
BB = |15 56 227 B'Y = | 377 | and C = 1415 (35)
56 227 %6 136.5 -230

We can compare the computed values with the observed data and view the error vector:

[18 183 —03

i3 2.75) +25
~=|2s BC = 292 E=|_a (36)

3 1273 +27

2 1207 ~07

If this were, for example, an autofocus application, we would want to solve for the position
of the peak of the parabola. Setting the derivative of Eq. (28) to zero allows us to solve for

2223076 and f(xmg) = 2923 a7
€3

Xmax = 2

If the points happen to be gray levels along a scan line, the x;’s are equally spaced, but there
is, in general, no restriction on the arrangement of the points. They can be any scattered
cluster of poiats. The only restriction is that f(x) be, in fact, a function of x and thus be single
valued for any x. That is, f(x) cannot bend back upon itself to fit the data.

The first factor on the right side of Eq. (32) represents a matrix inversion, and this
could present a computational barrier. The matrix is.only three-by-three, however, no mat-
ter how many poinis are used in the fit. Thus, the computational complexity is not overly
burdensome.

T T T T T
T o °
fix) °
1 1 1 1 L Figure 19-8 Fitting a parabola
0 Y ——s through five data points
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19.5.4 Two-Dimensional Cubic Fit

One can generalize the foregoing technique to polynomials of order greater than two and to
two-dimensional functions as well.

An effective background-flattening technique results from fitting a two-dimensional
polynomial through a collection of background points that have been selected because of
their low gray level. The resulting function is then subtracted from the image to flatten the
background.

We illustrate this with the case of fitting a two-dimensional cubic. The function has 10
terms:

FUXY) = CuH X+ Cay+C3xy + 00 + 05y ¥ X2y + c~,xy2 +cgx® + oy (38)

The matrix B is N by 10:
B = ‘il SORE T LTI A T 1 TR D T S ¢ (39)

Hence, a 10-by-10 matrix inversion is required in Eq. (32). Figure 19-9 shows an example
of background subtraction using the two-dimensional cubic fit.

Figure 19-9  Fitting a two-
dimensional cubic through the back-
ground of an image: (a) image contain-
ing one spot on a noisy, shaded
background; (b) cubic fit through back-
ground points; (c) image after back-
ground subtraction

19.5.5 Two-Dimensional Gaussian Fit

One can measure a circular or elliptical object in an image by fitting a two-dimensional
Gaussian surface through the image. The equation for the two-dimensional Gaussian is
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x, [ v.)

Gz Ae O {40)

where A is the amplitude. (x,,, y,,) the position. and &, and o, the standard deviations (radii)
in the two directions.

If we take the logarithm of both sides, expund the square, and collect terms. we are Jeft
with a quadratic in.x and y. If we then multiply both sides by z;, we have

i <oy, Yo IS S
zIn(z,) = «ln(A)—EE ‘—3‘:1+~—2[.r,:,] +;1[>v,:,] +72[x, ._,|+2—(72[_\,-«.,| 41)

' . S v X v

which can be written in matrix torm as

Q=CB (42)
where Q is an N-by-1 vector with clements
g = zIn(z;) 4H
C is a five-element vector composed entirely of Gaussian parameters
C7 = Ay o b e Yo oL ;'—} (44)
3 207 20 0! of 20! 20?

and B is an N-by-5 matrix with ith row
[b:) = Lz 2% 2y wxd 4y 49

The C matrix is computed by Eq. (32) as before, and we can recover the Gaussian param-
eters from it by

-1 P |
d = o cl= 46)
% T YT % ¢
xg = €07 Vo = 0307 (47
and
it ‘:*w‘\”:
A=e- 20] o7 (48)

Only a five-by-five matrix must be inverted, regardless of N, the number of points used in
the fit.

Figure 19-10(a) shows a Gaussian fitted to a noisy peak by this method. The raw image
is a computed Gaussian with added random noise. Table 191 compares the parameters deter-
mined from the fit with those used to generate the image. The original Gaussian is not

e Figure 19-10  Fitting a two-

== dimensional Gaussian to a noisy peak:
(a) raw image: (b) Gaussian fit. The
RMS error is 6 percent of the peak
amplitude
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TABLE 19-1 ACTUAL VERSUS FITTED GAUSSIAN PARAMETERS

A X, v, a, a,
Actual 10 4 4 2 2
Fitted 10.17 4.04 4.06 2.00 2.06

reconstructed exactly, because of the noise. Its parameters, however, are reasonably well esti-
mated 1n the table. and Figure 19-10(b) is a reasonable facsimile of its noisc-free form.

19.5.6 Ellipse Fitting

In many types of images. the objects of interest are circular. or at least elliptical. Thus. it is
valuable to be able to fit an ellipse of arbitrary size, shape, and orientation to a collection of
boundary points [29-32].

The general equation for a conic section is

ax®+bxy+cy +dx+ey+f =0 (49)

and this will be an ellipse if

b2 —dac<0 (50

An ellipse is specified by five parameters: the x- and y-coordinates of its center, the lengths
of its semimajor and semiminor axes, and the angle its major axis makes with the horizontal
axis. We can fit an ellipse through five points by substituting their coordinates into Eq. (49)
and solving the resulting five equations simultaneously. We can obtain a best fit through
more points by fitting ellipses through five-point subsets and averaging (or taking the median
of) their parameters [31].

Without loss of generality, we can normalize Eq. (49) by letting « = 1. We can then
write the sum of squared errors as

€2 = 2(.\',2+h,x',y,+(‘y,2-+d)(‘+e_\'1+f)Z (51)

If we take partial derivatives of Eq. (51) with respect to the coefficients b, ¢, d, e. and f. and
set each to zero, we obtain five equations in sums of powers and products of x, and y, that can
be solved simultaneously for these coefficients [301. The procedure can be implemented by
the inversion of a five-by-five matrix as before.

19.5.7 Practical Considerations

If one repeatedly fits polynomials to successive scan lines in an image, the B matrix does not
change from one line to the next, and the matrix inversion need be done only once.

It is important to select the points used in the fitting procedure so that they cover the
entire area of interest. The behavior of the function can be quite unpredictable outside the
area over which it has been constrained to fit actual data. When fitting an image, it is also
important to cover the entire image with sample points, even if they are sparse (N is small).

If N'is small, and the data points are not well scattered over the image, one can
encounter ill-conditioning problems during matrix inversion. The number of points must be
at least the number of columns in B and should be two to three times that.
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One can fit a curve through a ctuster of points in two-dimensional space. An example
would be fitting an axis through the thinned skeleton of a curvilinear object. The fit is lim-
ited, however, by the fact that f(x) is single valued for any x. This may prevent the curve
from passing gracetully through the cluster of points. If the points are arranged more or less
vertically, for example. it will be impossible to get an acceptable fit with y = f(x). In that
case, it would be better to fit x = f(v) to the data.

In general, it might be worthwhile to determine the principal axis of the cluster of data
points and rotate them so that the axis is horizontal prior to applying the curve-fitting pro-
cedure. Alternatively, -ne can fit the data points to a function defined in a rotated coordinate
system.

With the two-dimensional Gaussian fit, it is essential that the sample points be spread
all around the peak. Attempting to fit a two-dimensional Guassian to one side of a peak is
courting disaster. If the data points happen to define a dip, rather than a peak, then the fitted
Gaussian is upside down, ¢, and c5 are positive, and the standard deviations (Eq. (46)) are
imaginary. This situation can occur unexpectedly when the function is fitted to data points
that are not well spread around all sides of the peak.

When fitting an ellipse to five points, one may find that the data points fit, instead, a
parabola or hyperbola. Thus, it is necessary to impose logic upon the fitting exercise.

19.6 SUMMARY OF IMPORTANT POINTS

1. Object size is reflected in measurements of area, LOD. length, width, and perimeter,
among other features.

2. Object shape is reflected in measurements of rectangle fit and circularity and in the
invariant moments.

3. Object shape can be encoded in the chain code, the polar boundary function, the com-
plex boundary function, and the medial axis transform.

4. Texture can be quantified by statistical measures, by features computed from the co-
occurrence matrix, and by spectral and structural approaches.

5. Curve fitting can be used to estimate the function that underlies a noisy observation,
provided that the form of the function is known or can be assumed.

6. A polynomial or Gaussian can be fitted to one- or two-dimensional data. While amatrix
inversion is required, it is usually of relatively small size and reasonably well behaved.

7. When fitting a curve or a surface, it is vital to use a set of data points that span the
entire region of interest.

g

Surface fitting can be used to extract an object of interest from an image or to estimate
the object’s amplitude, size, and shape parameters. Surface fitting can also estimate
an unwanted component, such as background shading, so that it can be subtracted out.

PROBLEMS

1. Show that Eq. (8) leads to Eq. (5).
2. Show that Eq. (3) leads to Eq. (4).
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3. Foltowing are the boundary peint coordingtes of an object. Compute pIA to determine whether
the object is a circle or a square
v [97 85 66 4222 109 21 40 64 84 96]
v [78 98 110 111 99 %0 56 36 24 23 35 54]
4. Following are the boundary point coordinates of an object. Compute 1A to determine whether
the ohject is a circle ora square
x: (460 580 560 540 520 380 240 100 120 140 160 300}
v [160 180 320 480 600 580 560 540 400 260 120 140
. Fit a straight line through the following set of points, and cetermine the x-value of the zero-cross-
ing. Plot the points and the fitted line.

w

x=[0123}
v=15.82228)

6. Followingare the values for the focus parameter at severa; Z-axis positions. (See Chapter 15.) Fit
a parabola through the points, and determine the z-axis position of the in-focus point. Plot the
points and sketch the fitted parabola.

z=02357]
=145 620 710 580 390]

7. Following are the values for the focus parameter at several z-axis positions. (See Chapter 15.) Fit
a Gaussian through the points, und determine the -uxis position of the in-focus point. Plot the
points and sketch the fitted Gaussian.

c=[-8-32612]
f=14162 5860 38}

8. Following are several background points from a 480-by-512-pixel image f(x, v) that has a shad-
ing problem. Fit a plane through the points, subtract it from those points, and calculate the RMS
value of the surviving noise. (Optional: Plot the points and the fitted surface.)

(1100200 300 1 100 200 300 1 100 200 300 1 100 200 300]
yi[1 111100100 100 100 200 200 200 200 300 300 300 300]
£ 118 26 39 47 37 36 39 40 58 48 43 44 75 63 53 39]

. Repeat Problem 8, using a second-order (bilinear) surface

-

2{x,y) = Cor O X+ Oy + 03Xy
Is the RMS noise reduced over what it was with the planar fit? If so. by what factor? (Optional:
Plot the points and the fitted surface.)
10. Below are the gray levels ut several pixels along a single (horizontal) scan line in an image taken
with a camera having a left-to-right shading problem. Fit  straight line through the points, and
plot the points and the fitied line. Subtract the line from those points. and calculate the RMS value
of the surviving noise. Is it worth building this technique into your image-digitizing software”
Assume that the additional complexity is justified only if the RMS background noise can be cut
by half or mnore.
x=[1100 200 300 400 500]
f=127 46 63 69 68 63|
Repeat Problem 10 using « second-order (parabaola) fit. Is it worth building this technique into
your image-digitizing software? Assume that the additional complexity (above the linear fit) is
justified only if the RMS background noise can be cut by half or more.

11

—

12. Repeat Problem 11 using a third-order fcubic) fit. Is it worth building this technique into your
image-digitizing software? Assume that the additional complexity (above the parabola fit) is
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justified only if the RMS background noise can be cut by half or more. Would it be productive to
consider higher order fitting procedures? Why or why not?
13. Repeat Problem 10 using the following data:
v = {1 100200 300 400 500)
f=1243932181527]
14. Repeat Problem 11 using the data given in Problem 13.
15, Repeat Problem 12 using the data given in Problem 13.
16. Fit a conic section to the following six points. Sketch the curve. Is it a parabola, a hyperbola, or
an ellipse?
v=[326078997142],y=[12182341 5562]
17. Fit a conic section to the following six points. Sketch the curve. Is it a parabola, a hyperbola, or
an ellipse?
x={284155614633],y={2321 3040 4133]

18. Fit a conic section to the following six points. Sketch the curve. Is it a parabola, a hyperbola, or
an ellipse?

x={102 111 125128 116 103),y = (73 68 80 101 108 89]

PROJECTS

1. Develop a program that can measure the area and perimeter of objects. Use circular objects of
known diameler to test the program at different pixel spacings. Report on its accuracy.

2, Develop a program that can measure the average density or brightness of objects. Use objects of
known density or brightness to test the program at different pixel spacings. Report on ils accu-
racy.

3. Develop a program that can measure the shape of objects. Use circular, square, triangular, and
rectangular objects of known dimension to test the program at different pixel spacings. Report on
its accuracy.

4. Develop a program that can fit a two-dimensional cubic to the background of an image, compute
the resulting function, and subtract it out of the image. >

5. Develop a program that can locate the stars in a telescope image, fit a two-dimensional Gaussian
to each star, and list the position, diameter, and brightness of each. Test the program on a digi-
tized astronomical image.

6. Implement an autofocus program that can compute a focus parameter, fit a parabola or Gaussian
to the resulting curve, and display the position of optimum focus.

7. Develop a program that can fit an eltipse to a collection of points (x, y). Test the program on
images of coins and of thin sections of cylindrical objects cut at various angles. Report on its
accuracy and any problems encountered with the fitting.
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CHAPTER 20

Pattern Recognition:
Classification and Estimation

20.1 INTRODUCTION

In Chapter 18. we introduced statistical pattern recognition and discussed the isolation and
extraction of objects from a complex scene. Chapter 19 addre .sed ways to measure the char-
acteristics of those objects. In this chapter, we approach the problem of identifying objects
by classifying them into groups. Much has been written or this subject, and we can only
introduce the basic concepts here. For a more complete treatment, the reader should consult
a text on the subject. (See Appendix 2.)

20.2 CLASSIFICATION

20.2.1 Feature Selection

If we desire a system to distinguish objects of different types, we must first decide which
characteristics of the objects should be measured to produce descriptive parameters. The
particular characteristics that are measured are called the features of the object, and the
resulting parameter values comprise the feature vector for each object. Proper selection of
the features is important. since only these will be used to identify the objects.

There are few analytical means to guide the selection of features. Frequently, intuition
guides the listing of potentially useful features. Feature-ordering techniques compute the
relative power of the various features. This, in turn, allows the list to be pared to the best few
features.
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Good features have four characteristics:

1. Discrimination. Features should take on significantly different values for objects
belonging to different classes. For example, diameter is a good feature in the fruit-
sorting example of Chapter 18, since it takes on significantly ditferent values for cher-
ries and grapefruits.

2. Reliability. Features should take on similar values for all objects of the same class.
For example, color may be a poor feature for apples if they occur in varying degrees
of ripeness. That is. a green apple and a ripe (red) apple might differ significantly in
color, even though they both belong to the class of apples.

3. Independence. The various features used should be uncorrelated with each other. The
diameter and the weight of a fruit would constitute highly correlated features, since
weightis approximately proportional to the cube of the diameter. The problem is that
both diameter and weight essentially reflect the same property, namely, the size of the
fruit. While highly correlated features might be combined (e.g., by averaging them
together) to reduce sensitivity to noise, they generally should not be used as separate
features.

=

Small Numbers. The complexity of a pattern recognition system increases rapidly
with the dimensionality (number of features used) of the system. More importantly,
the number of objects required to train the classifier and to measure its performance
increases exponentially with the number of features [1]. In some cases, it may be
impractical to acquire the amount of data required to train the classifier adequately.
Finally, adding more features that are either noisy or highly correlated with existing
features can actually degrade the performance of the classifier, particularly in view of
the limited size of the training set [2-4].

In practice, the feature selection process usually involves testing a set of intuitively reason-
able features and reducing the set to an acceptable number of the best ones. Frequently, few
or none of the available features are ideal in terms of the foregoing characteristics.

20.2.2 Classifier Design

Classifier design consists of establishing the logical structure of the classifier and the math-
ematical basis of the classification rule. Commonly, for each object encountered, the classi-
fier computes, for each of the classes, a value that indicates (by its magnitude) the degree to
which that object resembles the objects that are typical of that class. This value is computed
as a function of the features, and it is used to select the most appropriate class for assignment.

Most classifier decision rules reduce to a threshold rule that partitions the measure-
ment space into disic’.t regions, one (or perhaps more) for each class. Each region (range
of feature values) curresponds to a single class. If the feature values fall within a particular
region, then the object is assigned to the corresponding class. In some cases, one or more
such regions may correspond to a class called “unknown.”

20.2.3 Classifier Training

Once the basic decision rules of the classifier have been established, one must determine
the particular threshold values that separate the classes. This is generally done by training
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the classifier on a group of known objects. The training set is a collection of objects from
each class that have been previously identified by some accurate method. Objects in the
training set are measured, and the measurement space is partitioned, by decision sur-
faces, into regions that maximize the accuracy of the classifier when it operates on the
training set.

When training a classifier, one might use a simple rule, such as minimizing the total
number of classification errors. If some misclassifications are more undesirable than others,
one might establish a cost funcrion that accounts for this by weighting the different errors
appropriately. The decision lines are then placed to minimize the overall “cost” of operating
the classifier.

If the training set is representative of the objects as a whole, then the classifier should
perform about as well on new objects as it did on the training set. Obtaining a large enough
training set is frequently a laborious task. [n order to be representative, the training set
should include examples of all types of objects that might be encountered, including those
rarely seen. If the training set excludes certain uncommon objects, then it is unrepresenta-
tive. 1f it contains classification errors, it is biased.

20.2.4 Measurement of Performance

A classifier’s accuracy can be directly estimated by tabulating its performance on a known
test set of objects. If the test set is big enough to be representative of the objects at large, and
if it is free of errors, the resulting estimate of performance can be quite useful.

An alternative method of estimating performance is to use a test set of known objects
to estimate the PDF: of the features for objects belonging to each group. Given the under-
lying PDFs, one can use the classification parameters to calculate the expected error rates.
If the general form of these PDFs is known, this technique can be superior to the use of atest
set of marginal or inadequate size.

One is tempted to take the performance of the classifier on the training set as a mea-
sure of its overall performance, but this estimate is usually biased optimistically. A better
approach is to use a separate test set for evaluating the performance of the classifier. This,
however, increases significantly the requirement for preclassified data.

If previously classified objects are at a premium, one can use a round-robin procedure
in which the classifier is trained on all but one of the available objects, and that object is then
classified. When this is done for all of the objects, one has an estimate of the overall per-
formance of the classifier.

20.3 FEATURE SELECTION

In a pattern recognition problem, one is usually faced with the task of selecting which of the
many available features should actually be measured and presented to the classifier. The fea-
ture selection problem has received considerable attention in the literature, but no clear-cut
sclution to it has emerged. This section is intended to give the reader a flavor of the problem.

As mentioned before. one seeks a small set of reliable, independent, and discriminat-
ing features. In general, one expects the performance of the classifier to degrade as features
are climinated, at least if they are useful features. In fact, eliminating noisy or highly cor-
related features can actually improve performance.
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Feature selection, then. may be viewed as the process of eliminating some features
(starting with the poorest) and combining others that are related, until the feature set
becomes manageable and performance is still adequate. If the feature set is to be reduced
from M features to some smaller number N, we seek the particular set of N features that
maximizes overall classifier performance.

A brute force approach to feature selection is as follows. For all possible subsets of ¥
features, train the classifier, and quantify its performance by tabulating the misclassification
rates of the classifier with respect to various groups. Then generaie an overall performance
index that s a function of the error rates. An example of this approach would be a linear sum
of error probabilities, each weighted according to how serious an error it is. Finally, use that
set of N features that produces the best performance index.

The problem with the brute force approach, of course, is the huge amount of work
involved for all but the simplest of pattern recognition problems. In fact, frequently, only
enough resources to train and evaluate the classifier once are available. In most practical
problems, the brute force approach is impractical, and some less costly technique must be
used to reach the same goal.

In the following discussion, we consider the simple case of reducing a two-feature
problem to a one-feature problem. Suppose a training set is available that contains objects
from M different classes. Let N, be the number of objects from class j. The two features
obtained when the ith object in class j is measured are x;; and y;;. We can stast by computing
the mean value of each feature for each class:

By = )

and

. 1
By = ﬁjzyii (2)

The carets on top of ,; and y,; remind us that these are estimates of the class means based
upon the training set, rather than being the true class means.

20.3.1 Feature Variance

Ideally, the features should take on similar values for all objects within the same class. The
estimated variance of the feature x within class j is

N,
) R a2
%=y, _Zl(x., -t ©)
i=
and, for feature y it is
|
b'vzj = VJZ(}’.‘,‘— [lyj}l 4)

i=1
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20.3.2 Feature Correlation

The carrelation of the features x and y in class j can be estimated by

N,
1 % N N
ﬁZ(xu‘I‘xj)(.\'u'H,\,)
by = =t ®
" 0,0y

This quantity is bounded by -1 and +1. A value of zero indicates that the two features are
uncorrelated, while a value near +1 implies a high degree of correlation. A value of -1
implies that each variable is proportional to the negative of the other. If the magnitude of the
correlation is near 1, the two features might well bg combined into one, or one of them might
be discarded.

20.3.3 Class Separation Distance
A relevant measure of the ability of a feature to distinguish between two classes is the vari-
ance-normalized distance between class means. For feature x, this is given by
Dy = B

N O+ O
where the two classes are j and k. Clearly, the superior feature is the one producing the wid-
est class separation.

(6)

20.3.4 Dimension Reduction

There are many ways to combine the two features x and y into a single feature z. A simple
way is to use a linear function:

z = ax+by (7

Since classifier performance is not affected by scaling the magnitude of the features, we can
impose a restriction on the magnitude, such as

at+br =1 (8)
This can be incorporated into Eq. (7) by writing
2 = xcos @+ ysin@ )]

where 0 is a new variable designating the proportions of x and y in the mixture.

If each object in the training set corresponds to a point in two-dimensional feature
space (i.e., the xy-plane), then Eq. (9) describes the projection of all of the points onto the
z-axis, which makes an angle 0 with the x-axis. This is shdwn in Figure 20-1. Clearly,
should be selected to maximize the class separation or some other criterion of the quality of
a feature, For further discussion of dimension reduction, the reader should consult a text-
book on pattern recognition. (See Appendix 2.)
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Class 2

Class 1

Figure 20-1 Dimension reduction by
projection

20.4 STATISTICAL CLASSIFICATION

Inthis section, we consider some of the statistical methods commonly used for classification.

20.4.1 Statistical Decision Theory

Suppose we have a simplified fruit-sorting problem as in Chapter 18, but with only two
classes and a single feature. This means that the objects that present themselves belong
either to class 1 (cherries) or to class 2 (apples). For each object, we measure one property,
diameter, and this is the feature we call x.

{t may be that the PDF of the diameter measurement x is known for one or both classes
of objects. Forexample, the Cherry Farmers’ Association may issue a report stating that the
mean diameter of cherries is 20 mm and the PDF is approximately Gaussian with a standard
deviation of 4 mm. If the PDF of the diameter of apples is unknown, we might estimate it
by measuring a large number of apples, plotting a histogram of their diameters, and com-
puting the mean and variance. After normalization to unit area, and perhaps some smooth-
ing, this histogram can be taken as an estimate of the corresponding PDF,

20.4.1.1 A Priori Probabilities

it may be that one class is, in general, more likely to occur than the order. For example, sup-
pose that the conveyor belt in the fruit-sorting example is known to transport twice as many
cherries as apples over any extended period. Thus, we can say that the a priori probabilities
of the two classes are

"PC) =3 and P(CY=) (10)
These equations merely state that class 1 is twice as likely to occur as class 2. The a priori

probabilities represent our knowledge about an object before it has been measured. In this
example, we know that an unmeasured object is twiceas likely to be a cherry as an apple.

Conditional Probabilities. Figure 20-2 shows what the two PDFs might look
like. We denote the conditional PDF for cherry diameter as p(x|{C;), which can be read as
“the probability that diameter x will occur, given that the object belongs to class 1.”” Simi-
larly, p(x|C;) is the probability of diameter x occurring, given class 2 (apples).
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plCp

P

Pl Cy)

0 Diameter x —»
Figure 20~2 Conditional PDFs

20.4.1.2 Bayes’ Theorem

Before an object has been measured, our knowledge of it consists merely of knowing the a
priori probabilities of Eq. (10). After measurement, however, we should be able to use the
measurement and the conditional PDFs to improve our knowledge of the object’s class
membership. After measurement, the so-called a posteriori probability that the object
belongs to class / is given by Bayes theorem; that is,

pe = PECPE) o
P()
where
p(x) = ¥ p(x|CHP(C) (a2)

i=1
is the normalization factor required to make the set of a posteriori probabilities sum to unity.
Bayes’ theorem allows us to combine the a priori probabilities of class membership,
the conditional PDF, and the measurement made to compute, for each class, the probability
that the measured object belongs to that class. Given this information, we might choose to
assign each object to its most likely class. In our fruit-sorting example, we would assign the
object toclass 1 (i.e., we would call it a cherry) if

P(C|x) 2 P(Cy|x) (13)

and assign it to class 2 (apples) otherwise. Substituting Bayes’ theorem [Eq. (11)] into Eq. (13)
and multiplying out the common denominator produces

p(x]G)P(C) 2 p(x|CYP(Cy) (14)

as the condition for assignment toclass | of a fruit having diameter x. At the decision thresh-

old, where equality holds in Eq. (14), we may assign objects to classes arbitrarily. The clas-
sifier defined by this decision rule is a maximum-likelihood classifier.

The General Case. Suppose we make not one, but n, measurements on each
object. Rather than a single feature value, we now have a feature vector [x,, %, ..., x,)7, and

520 Pattern Recoghition: Classification and Estirhation ~ Chap. 20

each measured object corresponds to a point in n-dimensional feature space. Stippose also
that there are not two, but m, classes of objects. Under these conditions, the a posteriori
probability of membership in class i is, by Bayes’ theorem,

p(x), x3, ..., X,|CG)P(C) as)

p(Glxy, Xy - Xy) = —
D Py, X K| CIPIC)
i=1

where the conditional PDFs are now n-dimensional.

20.4.1.3 Bayes' Risk

Every time we assign an object to a class, we risk making an error. In multiclass problems,
some misclassifications may be more harmful than others. A quantitative way to account for
this is with a cost function

Let I;; be the cost (or “loss”) of assigning an object to class i when it really belongs in
class j. Usually, I; will take on the value zero for correct decisions (i =), small values for
harmless errors, and larger values for more costly mistakés. Bayes’ risk is the expected
long-term cost of operating the classifier. The risk is evaluated by integrating the probabil-
ity-weighted cost function.

Suppose we measure an object and assign it to class i. The expected loss resulting
from this assignment is the conditional risk

m
R(Clxy, 30 oy ) = 3 Lip(Clxt, Xy oy x,) a6
j=1
which is just the cost averaged over all m of the groups to which the object might actually
belong. Thus, given the feature vector, there is a certain risk involved in assigning the object
to any group.

20.4.1.4 Bayes’ Rule

Bayes' decision rule states that each object should be assigned to the class that produces the
minimum conditional risk. If we do this, we can then let R, (x,, x,, ..., x,) be the resulting
minimum risk corresponding to the feature vector [xj, Xy, ..., x,}”. The overall long-term
risk of operating the classifier with the Bayes’ decision rule is called Bayes’ risk. It is
obtained by integrating the risk function over the entire feature space:

R :j Ry, X3y oo X} p(XY, Xy, oy X)X, dXy, ..., dx, Aan

Clearly, no other decision rule can reduce R,,,(x), x, ..., X,,) at any point, and the overall risk
is minimized by using Bayes’ decision rule.

20.4.2 Classifier Types

It is useful to distinguish among different types of classifiers based upon what is known
about the underlying statistics and what must be estimated.
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Parametric and Nonparametric Classifiers. If the functional form of the
conditional PDFs is known, but some parameters of the density function (mean value, vari-
ances, etc.) are unknown, then the classifier is called parametric. Since the a priori proba-
bilities are also parameters, they may be unknown. With parametric classifiers, the
functional form of the conditional PDFs is assumed, on the basis of some fundamental
knowledge about the objects themselves. Frequently, functional forms are assumed for
mathematical expediency, as well as for more intrinsic reasons.

If the functional form of some or all of the conditional PDFs is unknown, the classifier
is termed nonparametric. This means that all conditional PDFs must be estimated from
training set data. To do so requires considerably more data than merely estimating a few
parameters in a PDF of known functional form. Thus, nonparametric techniques are used
when suitable parametric models are unavailable and large amounts of training data are
within reach.

20.4.3 Parameter Estimation and Classifier Training

The process of estimating the conditional PDFs or their parameters using object measure-
ments is referred to as training the classifier.

20.4.3.1 Supervised and Unsupervised Training

If the objects have been previously classified by some error-free process, the process is
referred to as supervised training. With unsupervised training, the conditional PDFs are
estimated using samptes whose class is unknown. The classes, and even the number thereof,
must be determined by locating clusters of points in measurement space. This is called clus-
ter analysis. Unsupervised training is normally used only when it is inconvenient or impos-
sible to obtain a preclassified training set or when the number and characteristics of the
classes have not been otherwise determined.

We concern ourselves here with two commonly used approaches to supervised train-
ing: the maximum-likelihood and Bayesian techniques. While the two techniques are philo-
sophically different in their approach, they usually produce similar results. Which is more
appropriate depends on the specific situation.

20.4.3.2 Maximum-Likelihood Estimation

The maximum-likelihood estimation approach assumes that the parameters to be estimated
are fixed but unknown. A given sample (the training set) is drawn, and the estimate of the
parameter is taken to be that value which makes the occurrence of the observed training set
most likely.

For example, suppose that 100 samples are drawn from a normal distribution of
unknown mean, but with a standard deviation of 2. Suppose further that the mean value of
the 100 samples is 12. It is, of course, much more likely that the 100 samples came from a
population having a mean value of 12 than from a population with a mean of 0, forexample.
Although the latter situation is possible, it requires a coincidence of highly unlikely events.
It can be shown that the underlying population mean which makes that observed sample
mean most likely is 12.
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Maximum-likelihood estimation is a well-developed subject and considerably
beyond our scope. We are content here to introduce the concept and quote the well-known
result that the maximum-likelihood estimates of the mean and standard deviation of a nor-
mal distribution are the sample mean and sample standard deviation, respectively.

20.4.3.3 Bayesian Estimation

Unlike maximum-likelihood estimation, the Bayesian approach treats the unknown param-
eter as a random variable. Furthermore, it assumes that something is known about the
unknown parameter in advance. Bayesian estimation assumes that the unknown parameter
has a known, or assumed, a priori PDF before any samples are taken. After the training set
has been measured, Bayes® theorem is used to allow the sample values to update, or refine,
the a priori PDF. This results in an a posteriori PDF of the unknown parameter value. We
hope that this PDF has a single narrow peak, centered on the true value of the parameter.

As an example of Bayesian estimation, suppose we wish to estimate the mean of a
normal distribution with known variance. Before measuring the training set. we can use
whatever knowledge is available to establish an a priori PDF on the unknown mean value.
We call this a priori density function p(g).

We denote the known functional form of the PDF of the unknown mean by p(xju).
This states that, given a value for g, we then know p(x). If we let X represent the set of sam-
ple values obtained by measuring the training set, Bayes’ theorem gives the a posteriori
PDF of u after the training set has been measured:

p(X|w)p(p)
p(X|w)p(p)du

P X) = (18)

What we really want is p (x|X). the best estimate of the density p(x), given the training set
measurements X. One way to achieve this is to set up the joint (two-dimensional) PDF of
both x and u and then integrate out the g-component; that is,

px|X) = J. plx, u| X)du (19)

The joint density in the integrand can be written as a product of two independent one-
dimensional PDFs. Then Eq (19) becomes

p(e1x) = [ pCelpudu @0
Thisis the desired result. since p(x|y) is the assumed functional form and p (u)X) is the a pos-
teriori PDF of the unknown mean from Eq. (18).

An Example. To see how p(ulX) affects p(x|X), suppose that p(u)X) has a single
sharp peak at 4= pi. This means that our a priori knowledge has combined with the training
set to specify y within narrow limits around the value p,. If the peak is sufficiently sharp, we
can approximate p(u}X) by an impulse at L

pluX)= 8(u~ py) Qn
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Then Eqg. (20) becomes

plx|X) = J. x| ) &4t ~ o) dy (22)

which, by the sifting property of the impulse, is
p(x[X) = p(x{to) (23)

This says that t, is the best estimate of the unknown mean.

Suppose. on the other hand, that the a posteriori distribution of the unknown mean,
p{ulX), has a relatively broad peak about p. In this case, p(«X) becomes a weighted aver-
age of many PDFs, all having different means in the neighborhood of g4 This has the effect
of smearing or broadening p(x{X) to reflect our uncertainty about the mean value.

As mentioned earlier, maximum-likelihood and Bayesian estimation produce similar,
if not identical, results in many common cases. For example, both approaches tend to estab-
lish the unknown mean at the mean of a large training set. Bayesian estimation altows us to
combine any a priori knowledge we have with the quantitative data of the training set to esti-
mate the unknown parameter. Furthermore, the width of p(¢|X) is an indication of how con-
fidently we have estimated the unknown parameter.

Using Bayesian Estimation. To summarize. the steps involved in Bayesian
estimation are as follows. First, we assume an a priori PDF for the unknown parameter or
parameters. Second, we collect sample values from the population by measuring the train-
ing set. Third, we use Bayes’ theorem to refine the a priori PDF into the a posteriori PDF,
using the sample values. Finally, we form the joint density of x and the unknown parameter
and integrate out the latier to leave the desired estimate of the PDF.

If we have strong ideas about the probable values of the unknown parameter, we may
assume a narrow a priori PDF. If, on the other hand, we know little about the parameter, we
should assume a relatively broad PDF.

The effect of using sample values to refine the a priori PDF is shown from

n
pulX) = %p(xiu)p(w = }Hp(x,iﬂ)p(u) (24)
i=1
where ¢ is the denominator of Eq. (18) and IT indicates an n-term product. Since the 1 sam-
ples are taken independently, the probability of pulling out the entire training set is merely
the product of the individual probabilities of pulling out each sampie.
If the samples are tightly clustered about the sample mean i, then p(X|g) has a
sharp peak at or near y = . If the assumed a priori density p () is relatively flat in that
area, then

pal) = [ pstmpximpundy (25)
The function p(xt) is the assumed form of the PDF with u as a parameter. As far as the inte-
gralin Eq. (25) is concerned, p (x{) is a function of x and g The function p(Xj) is the prob-
ability that the sample set X would be drawn if the PDF indeed had the mean vatue y. It is
given by Eq. (24). is a function of y, and becomes increasingly sharp as n increases. Qur
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prior knowledge of the unknown parameter g is given by p(u). which is the assumed a prioni
PDF of the unknown mean.

Prior Knowledge. We now consider two cases that illustrate the role of prior
knowledge and the training set in Bayesian estimation. In case 1, we have strong feelings
about the value of (. and we take a relatively small number of samples in the training set.
This means that we would assume that p(u) is narrow about i, our preconceived ideaof the
mean value. If # is small. p(X]) is broad about the sample mean y,. Then Eq. (25) can be
approximated by

pum:jpuw&w—uo)dn = plapy (26)

This indicates that the Bayesian estimate of the unknown PDF is basically of the assumed
parametric form, with our preconceived value i substituted for the mean.

In the second case. suppose we do not have strong feelings about the mean value and
that we employ a large training set. Thus, we assume a p(u) that is broad about y, the sam-
ple mean. Then the Bayesian estimate of the unknown PDF is

P X) :J‘p(ftlulé(# - H)dp = p(xlp,) 27

In this case, the large training set has overpowered our timid a priori estimate and substi-
tuted the sample mean into the assumed form of the unknown PDF. Thus. as the number of
samples increases, the final estimate of the mean moves from our initial estimate g, toward
the sample mean g,. Our a priori confidence is represented by the sharpness of p(u): The
sharper this function is, the more slowly the estimate moves toward g, with increasing n.

Maximum-likelihood estimation allows us to use the training set to estimate the
unknown mean. Bayesian estimation allows us to combine our prior knowledge with the
training set to estimate the unknown mean. If our prior knowledge is meager compared to
the knowledge embodied in the training set, then both methods tend to converge toward the
sample mean.

20.4.3.4 An Example of Classifier Training

We conclude our discussion of statistical classification with an example that illustrates
training a classifier. The vbjects to be classified are the human chromosomes. Under the
optical microscope, the 46 chromosomes from the nucleus of a human lymphocyte (white
blood cell) appear in scattered disarray [Figure 20-3(a)]. The 46-chromosome complement
is known to consist of 22 pairs of morphologically similar, homologous chromosomes and
2 sex-determinative chromosomes (XX for the female and XY for the male). The two long
arms and the two short arms of each chromosome connect at the centromere of that
chromosome.

For diagnostic purposes, it is customary to arrange the chromosome images into
groups of similar morphology. This arrangement produces the karvorype of Figure 20-3(b).
The groups are designated by the letters A through G, as indicated. This display format
facilitates visval examination for abnormal or missing chromosomes. With modern speci-
men preparation techniques it is possible to stain the chromosomes so that all 24 types are
distinguishable. but this example serves better to illustrate the points under discussion here
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Figure 20-3 Human chromosomes: (a) digitized microscope image: (b) karyotype

As a pattern recognition task, our job is merely to assign each incoming chromosome
to one of the seven groups, A through G. We shall measure two features of each chromo-
some: total length and arm length ratio. The latter feature is called the centromeric index and
is the ratio of long-arm length to total length.

Figure 20-4(a) shows a two-dimensional histogram of the measurements from the
2,300 chromosomes found in a set of 50 normal cells. In the two-dimensional feature space,
the abscissa is chromosome length, while the ordinate is centromeric index. Gray level is
indicated by a combination of derivative shading and contour lines. The histogram has been
smoothed slightly by convolution with a lowpass filter. Multiple clusters are clearly evi-
dent, indicating the morphological differences of the homologous pairs.

Figure 20-4(b) shows a similar histogram for only those chromosomes that belong to
the C group. This subset of chromosomes was identified by an expert cytogeneticist. The
histogram of all non-C group chromosomes appears in Figure 20-4(c).

Training the classifier in this case consists of partitioning the feature space into dis-
jointregions, one for each karyotype group. The smoothed histogram in Figure 20-4(b) can
be viewed as an unnormalized estimate of the PDF for C-group chromosomes. It can be
written as

felx, y) = Np(C)p(x, y|C) (28)

where N (= 50) is the number of cells in the training set, p(C) is the a priori probability that-

an unmeasured chromosome belongs to the C group, and p(x, y|C) is the PDF for C-group
chromosomes. The normal male karyotype has 15 and the female karyotype 16 chromo-
somes in the C group, which includes the X chromosomes. Thus, if males and females are
equally likely, the a priori probability is

15.5

p(C) = 36 (29)
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Figure 204 Chromosome PDFs: (a) all chromosomes; (b) C group only; (¢) non-C
group chromosomes: (d) C group decision region

Eq. (14) gives the decision rule for the maximum-likelihood classifier. This means that we
should assign a chromosome with feature values (x, v) to the C group if the histogram of
Figure 20-4(b) is greater at (x, y) than the histogram of Figure 20—4(c). We can identify this
region of maximum likelihood by subtracting the digital image of Figure 20-4(c) from that
of Figure 20—4(b). This region is shown in Figure 20-4(d) for the C group. A similar pro-
cedure for the other groups produces the classifier presented in Figure 20-5.

20.4.4 Classifier Performance

There are several ways to estimate the performance of a classifier after it has been designed
and trained. If its dimensionality is low, and the PDFs are known or can be estimated, one
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Figure 20-5 Chromosome classifier

can compute the probability of error as the area under the tails. Alternatively, one can run
the classifier on a known test set, preferably one that is different from the training set.

As a general rule, in pattern recognition applied to digital images, the quality of the
image limits the reliability of the measurements, and this in turn limits the accuracy of clas-
sification by causing overlap of the PDFs. The quality of the image is degraded by optics,
noise, and distortion. These combine with the in-class variability of the objects to broaden
the PDFs.

The classifier should be appropriate for the problem, but a more sophisticated classi-
fier will not necessarily perform better than a simple one. Overlap of the classes in feature
space establishes the fundamental limitation on a classifier’s accuracy: No classifier, how-
ever sophisticated, can distinguish between two objects of a different type when they have
the same measurement values.

20.5 NEURAL NETWORKS

A different approach to pattern recognition that has attracted considerable interest in recent
years comes out of the field of artificial neural network technology. Initially inspired by bio-
logical nervous systems, the development of artificial neural networks has more recently
been motivated by their applicability to certain types of problems and their potential for
parallel-processing implementations. Out of these have emerged a number of network
designs that are capable of both supervised and unsupervised training in pattern recognition
problems

20.5.1 Neural Network Architecture

A neural network is a collection of interconnected identical nodes, or processing elements
(PEs), each of which is relatively simple in operation. Each PE receives inputs from several
of the “upstream” PEs in the network, generates a scalar output, and sends it “downstream”
to another group of PEs.
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The interconnection scheme, or network architecture, is one of the major design
choices. The PEs are commonly organized into layers. The number of PEs in each layer is
a design choice. In some networks each PE in one layer receives input from every PE in the
previous layer and sends its output to every PE in the subsequent layer. Some network archi-
tectures. however, permit communication among PEs within a layer, and feedback
architectures even allow for communication to PEs in previous layers. The final layer is
called the output layer, and all other layers are termed hidden layers.

20.5.2 The Processing Element

The basic processing element of a neural network operates rather simply. It merely sums the
product of its input vector and a weight vector, transforms the result according to a sigmoid
transformation function, and outputs the (scalar) result. This result then passes on to become
the input of one or many other PEs through the network interconnections. Figure 20-6
depicts a typical processing element.

The actual processing done by such a PE can be described as a function of a dot prod-
uct; that is,

N
0=glXx W= ,{Em,} = glS] 30
i=1
where O is the (scalar) output, X is the input vector, and W is the weight vector associated
with the given PE. The weights used in this summation are, in fact, the parameters that are
adjusted during the training process, after which they remain fixed in ordinary usage.

The weighted sum is subjected to a nonlinear transformation by the activation func-
tion, g[-]. This is a function with a sigmoid shape. It is monotonically increasing, is differ-
entiable, and approaches 0 and | asymptotically at large negative and large positive values
of its argument, respectively. Its primary purpose is to limit the output of the PE to the range
[0.1]. The form of the function g is a design choice, and it can exert considerable influence
on the behavior of the network. By convention, outputs are positive, but interconnection
weights can be either positive (reinforcing) or negative (inhibiting).

to other processing elements

i)

Figure 20~6 Schematic of a
processing element
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During a (supervised) training exercise, feature vectors of known objects from the
training set are presented in random order to the network. The interconnection weights of
the PEs are adjusted slightly each time, using a fixed training rule, to “nudge” the output
of the network in the direction of the correct value. As training proceeds, performance
improves, until the network has finally converged upon the proper set of weights for
each PE.

20.5.3 Neural Network Operation

In a pattern recognition application, the input to the network is the feature vector of the
unknown object. The feature vector is presented to each of the PEs in the first layer of the
network. Often the feature vector is augmented by an additional element that is always
unity. This provides for an additional weight in the summation that acts as an offset in the
activation function. The input information then propagates through the various layers until
an output vector appears at the output layer. The unknown object is assigned to the class
somehow specified by the output vector. The network, then, accepts a feature vector as
input and generates an output vector indicating a membership value corresponding to the
class to which the unknown object belongs.

In a four-class problem, for example, when a class-2 object is presented to the net-
work, the correct output vector (i.e., the targer vector) is [0100]. In general, the result will
not be so clear cut, but one hopes that the output of node 2 will at least exceed that of its
competitors.

Afterthe PE definition and interconnection architecture have been fixed, the behavior
of the network is determined by the weights in the branches that connect the elements. Val-
ues for the connection weights are adjusted during the training of the network and are held
constant when the network is operating in a production mode.

Most current applications of neural networks are implemented by digital simulation.
They use either software or digital signal processing (DSP) chips to emulate paraliel com-
putation. Such an implementation generally involves configuring simulation software for
the chosen network architecture and then training the network. A stripped-down version of
the simulator is later embedded in the final application for use in a production environment

In any digital simulation of a group of interconnected PEs, there is the question of the
order of processing, that is, the sequence in which the elements are updated. Thus, the
updating rule is an important design factor of a neural network.

20.5.4 Neural Network Performance

The advantages most often stated in favor of a neural network approach to pattern recogni-
tion are that (1) itrequires less input of knowledge about the problem than other approaches,
(2) it is capable of implementing more complex partitioning of feature space, and (3) it is
amenable to high-performance parallel-processing implementatigns.

Advocates of this approach also point out the awesome pattern recognition capabil-
ities of the human brain. suggesting that artificial neural networks have the potential per-
haps to approach that level of performance. Pattern recognition implementations tested to
date, however, generally tend to approach only the performance of well-designed statistical
classifiers.
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The disadvantages of neural network solutions, compared with statistical approaches,
include (1) the extensive amount of training required, (2) slower operation when imple-
mented as a simulation on a conventional computer, and (3) the unavailability of a detailed
understanding of the decision-making process that is being used (e.g.. the decision surfaces
in feature space).

The underlying principles in play here are (1) that any classifier, however imple-
mented, acts merely to partition feature space into regions cormesponding to each class and
assign objects accordingly, and (2) that the performance of a classifier is ultimately limited
by the overlap of the classes in feature space. These combine with the practical difficulty of
obtaining a representative training set and using it to establish optimum partition surfaces,
to establish the ground rules for developing a classifier.

A neural network will excel only when it has been trained 1o carve up the feature
space better than a comparable statistical classifier can do. Even so, its performance is fun-
damentally constrained by overlap of the classes.

We next introduce two networks that are amenable to pattern recognition: the back-
propagation network 5,6} and the counterpropagation network |7]. Applications of neural
networks to problems in fields other than pattern recognition are not addressed.

20.5.5 The Backpropagation Network

The standard configuration for a two-layer backpropagation network is shown in Figure
20-7. The number of PEs in each layer varies with the application. More hidden layers can
be added between the input hidden layer and the output layer. We assume here that all input
vectors have their values scaled between 0.1 and 0.9.

When the network is operating, each PE in the hidden layer forms a dot product of its
weight vector and the input vector. The resulting weighted sum, S, is then transformed by
the activation function

gl8) = 31

1+e®
This is a differentiable sigmoid function that approaches 0 and | at the two extremes of its
argument.
The vector of results from the hidden layer is passed to the output layer, where the PEs
process it in the same manner and produce the resultant vector.

20.5.5.1 Classifier Training

At the start of training, all connection weights in the network are set to random values in the
range {—0.5, +0.5|. All input vectors are scaled so that the minimum and maximum values
for any component are 0.] and 0.9, respectively.

A training pattern is one particular input vector and its corresponding target vector.
One of these is selected at random from the training set, and the input vector is propagated
through the network. After the resulting output is compared to the targel vector, the con-
nection weights between the hidden and output layers are adjusted in such a manner as to
make the output vector slightly nearer the target vector. After that, the hidden layer imme-
diately below the output layer is similarly adjusted.
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Figure 20-7 Backpropagation network

While Figure 20-7 shows only a two-layer network, in general any number of layers
can be used. We use the more general nomenclature in Table 201 in the following discus-
sion of backpropagation training.

The training proceeds from top to bottom, beginning with the PEs in the output layer.
The amount of adjustment to the ith weight at the input of the jth output layer node (k= N) is

Awyy = NOng"[S,v) Oy . (32)
where the error
5,‘.‘, =1 0/., (33)

is the difference between the jth element of the target vector (i.e., the desired output vatue)
and the actual output value of output layer node j.
Eq. (32) is known as the generalized delta rule [6). It is based on the method of
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TABLE 20-1 BACKPROPAGATION NETWORK NOMENCLATURE

N = number of layers
N, = number of nodes in layer &
Ny = number of output nodes

k=1....N = layer index
J=1....N; = node index for a particular layer k
i=1... N, =input index for a particular node in fayer k

wy = ith input weight of the jth node in layer &
S = weighted sum of inputs to node ; of layer k
0y = output value of node j of layer k
#;= jth element of the target vector

84 = error at the output of node j in layer k

gradientdescent. The amount of adjustment [Eq. (32)] is some percentage 1 of the error S
at that output node, multiplied by the slope of the activation function g'(S;y), times the ith
element of the output vector coming from the previous hidden layer. The latter is just the
input that this weight acts upon.

Next. the weights at the input of each hidden layer node are adjusted by an amount

Aw, = 10,8 1S3 0y 34

This is similar to Eq. (32), except that now the error term, O represents the error contrib-
uted by all the output nodes: that is,

Niiy
Sy = Ewm»ldkﬂ 35)
i=1
If there are more than two layers, the training process continues from output toward input,
layer by layer, using Egs. (34) and (35). In the training process, then, the errors are back-
propagated through the network in a manner similar to the forward propagation of input
data that occurs during normal operation. The errors propagate in reverse, and the results of
this propagation guide the adjustment of the interconnection weights
The process is repeated for all remaining pairs of input and target vectors. It is then
repeated for the whole training set a number of times, until the error over all input vectors
falls below a preset threshold.
Atany stage in the training, a global error measure is

(36)

where P is the number of patterns in the training set, Ny is the number of output nodes, and
Op =1~ O, isthe error, for the pth input pattern, between the jth elements of the target and
output vectors.

The update equations (34) and (35) are obtained by differentiating this error measure
with respect to the connection weights. The amount by which the weights are updated is
simply taken to be proportional to the negative gradient of Egys. As a result, each update
moves the network along an error surface. always in the direction of steepest descent.
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The error surface “valley™ into which the network eventually settles may not be the
deepest one. That is, the network may converge to a Jocal minimum of error instead of the
global minimum, as desired. Nevertheless, if this error is low enough, the performance may
still be acceptable.

If necessary, one can retrain the network using a different set of initial random
weights to start the network at a different position on the error surface, thereby improving
its chances of finding the global minimum, or at least a lower focal minimum. One can also
try training a redesigned network that uses a different number of hidden nodes.

During training, one can monitor the RMS error at the output layer (i.e., the difference
from the target vector) for each input pattern. As a rule of thumb, training can be stopped
after the RMS error falls below approximately 0.01. Once this is true, the network is said to
have converged and has *‘learned the mapping.” The connection weights then become fixed.
the network's overall performance can be tested, and the network can be put into a produc-
tion mode and used on real data.

20.5.3.2 Overtraining

The training process can be allowed to go on too fong. Recall that any pattern recognition
system, whether implemented by statistical, network, or other means, merely partitions the
measurement space into regions corresponding to the different classes. With the Bayes clas-
sifier, designed assuming normat statistics, the partitioning is done by second-order hyper-
surfaces in n-dimensional feature space. The complexity of the partitioning is thus
somewhat restricted by inherent limitations upon how convoluted a second-order hypersur-
face can be.

With a neural network, the decision surfaces that result from extensive training can be
quite complex, particularly if the nuraber of nodes and interconnections is large. If the size
of the training set is not large, this can lead to a situation in which the network merely
becomes tuned to (“memorizes”) the particular training set, rather than adjusting itself to
recognize all members of the classes at large.

One can envision a partitioning of the feature space wherein the network has placed
a small hyperellipsoid around each point in a small training set. This will, of course, produce
a low error on the training set, but poor performance in general.

Overtraining can be avoided by using a large training set and a test set that is distinct
from the training set. When the error rate, measured on the test set, ceases to diminish and
begins to increase, overtraining has commenced.

20.5.5.3 Design Considerations

The size of the network is an important consideration from both the performance and com-
putational points of view. It has been shown [8,9] that one hidden layer is sufficient to
approximate the mapping of any continuous function and that at most two hidden layers are
required to approximate any function in general {10].

The number of PEs in the first hidden layer is usually dictated by the application.
When a backpropagation network is used to classify objects, that number is equal to the
length of the feature vector. Likewise. the number of nodes in the output layer is usuatly the
same as the number of classes.
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The number of subsequent hidden layers and the number of PEs in each such layer are
design choices. In most applications, the latter number is a small fraction of the number of
units in the input layer. It is usually desirable to keep this number small to reduce the danger
of overtraining. On the other hand, too few PEs in the hidden layer may make it difficult for
the network to converge to a suitable partitioning of a complex feature space. Once a net-
work has converged, it can be shrunk in size and retrained, often with an improvement in
overall performance.

As with statistical classifiers, data used for training must be representative of the
population over the entire feature space in order for the network adequately to model the
probability density function of each class. It is also important that the training patterns be
presented randomly. The network must be able to generalize to the entire training set as a
whole, not to individual classes one at a time. Presenting classes of vectors sequentially
can result in poor convergence and unreliable class discrimination. Training on patterns
randomly generates a type of noise that can help jog the network out of a local minimum.
Noise is sometimes added to the training set for this purpose and has been found to assist
convergence.

20.5.6 The Counterpropagation Network

The more recently developed counterpropagation architecture (7] differs conceptually from
the architecture of the backpropagation network. Although the operation of a counterprop-
agation network is easier to comprehend, it generally requires of the designer more insight
into the problem than does the backpropagation network.

The counterpropagation network is capable of unsupervised learning. That is, the
training set need not be preclassified. As training advances, the network will locate natu-
rally occurring clusters of points in feature space and make classes out of them. In applica-
tions where the data are expected or known to occur in separate classes, but suitable
preclassified input data are unavailable, this can be quite useful.

The interconuection architecture for the forward-mapping counterpropagation net-
work is the same as for the backpropagation network in Figure 20-7. However, whereas the
backpropagation network can have many layers, the counterpropagation network is limited
to two. Further, the activation function of each PE is linear (rather than sigmoidal), and its
output is merely the dot product of Eq. 30.

The other important difference is the type of processing done in the hidden layer. That
layer is called a competitive layer because its nodes compete to generate an output value.
The hidden node computing the largest resuit wins the competition and outputs a value of 1.
All other hidden nodes output a value of 0.

Since only one hidden node at a time is active, and it outputs a value of 1 to all the out-
put layer nodes, the resulting network output is actually a vector of connection weights from
the upper layer. Those connection weights that are connected to the output of the winning
hidden layer node become the output vector. As a result, the weights of the output layer
function as a type of lookup table. generating the desired output each time a class is recog-
nized by one of the hidden nodes.

The counterpropagation network’s pattern recognition capability is embodied in the
computation done by the hidden layer’s PEs. Because of the competitive nature of the
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hidden layer, that computation reflects the degree of similarity between the input vector and
an ideal vector corresponding to the connection weight vector of each hidden layer node.
The node computing the highest result will be the one having an input weight vector that is
most similar to the input vector.

PEs can use either of two computation methods. The more common one, described
earlier in reference to backpropagation, is the dot product. This is the magnitude of the pro-
jection of one vector onto another. Therefore, at any hidden layer node.

Sp = X- W, = [X[[|W, [ cos (8) 37N

where Bis the angie between the input vector X and the weight vector W)).

Both the input vector and the output layer weight vector are normalized, so that the
dot product at the hidden node is equal to the cosine of the angle between them. The result
at each hidden node thus ranges from —1.0 for vectors that are exactly opposite each other
to 1.0 for vectors pointing in the same direction. Accordingly, this computation considers
objects to be similar if their angular direction from the origin of feature space is similar. 1t
does not compute the distance between the two points in feature space. This suffices. how-
ever, for those pattem recognition problems where the class means surround the origin of
feature space (or can be transformed to do s0).

An alternative computation at the jth hidden layer node is

where §; is now the distance between the input and weight vectors. The winning hidden
node here is the one computing the minimum resull.

Neithér input nor weight vectors in this case are normalized, but it is useful to scale all
components to the same range of values. This prevents numerically large parameters from
dominating the computation.

205.6.1 Supervised Training

Without performing an actual training exercise, one could develop a forward-mapping
counterpropagation network by calculating average (prototype) feature vectors for a num-
berof different classes and setting the weights on the hidden layer interconnections to those
values. Each hidden node would then compare the input vector against its prototype feature
vector (encoded in its connection weights) by means of Eq. (37) or (38). The node comput-
ing the largest dot product result or the minimum distance result would be the one whose
prototype feature vector most closely matched the input vector.

The number of hidden layer nodes must equal the number of classes, and the number
of input terminals must equal the number of features. The output layer could be a single
node that encodes the class number, with each input weight equal to the class number rec-
ognized by the corresponding hidden layer node. For example, if hidden layer node | wins
when the input vector most closely matches the class-3 prototype vector, then the weight
connecting that node and the output node would be 3. Since the winning node always out-
puts a 1 and all others output 0, the dot product computation at the output layer produces a
value of 3, the winning class number.
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20.5.6.2 Network Design

The number of hidden nodes should be comparable to the number of expected classes. Since
one may not know this number in advance, the number of hidden nodes should be set some-
what greater than a best estimate of the number of classes. The computation method (angle
or distance) for the hidden layer should be selected on the basis of which fits the distribution
of classes in feature space better. If this is unknown, both methods may be tried.

20.5.6.3 Unsupervised Training

The “one-shot” training method presented in Sec. 20.5.6.1 shows the operation of a coun-
terpropagation network in a production mode, but does not illustrate unsupervised training.
The training in that section was supervised in that the network was developed using proto-
type weight vectors from classes already known to the network designer.

Whereas in the backpropagation network all layers are trained at once, in the counter-
propagation network only the hidden layer is trained. Unsupervised training normally pro-
ceeds as follows. First, all connection weights are initialized by making them equal,
random, or evenly spread about feature space.

As with the backpropagation network, input vectors are randomly selected from a
training set. are preprocessed. and are presented to the network. Then, connection weights
are modified according to an update rule. After each input vector is presented, the winning
node is determined. Only the connection weights associated with the winning node are
updated, and that is done according to the rule

Awyj = alx; - wy) 39
where etis called the learning rate. Each weight vector component is adjusted by some pro-
portion arof the difference between it and the corresponding input vector component.

Each adjustment nudges the weight vector of the winning node in the direction of the
input vector, as depicted by simple vector addition in Figure 20-8. If the same input vector
is presented again, the same node would win the competition and be nudged even closer.
However, since input vectors are randomly presented, and no vector can be presented twice

a(x - w)

(a) ()

Figure 20-8 Weight adjustment: (a) normalized- vectors; (b) unnormalized
vectors
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until atl others have been presented at least once, the weight vectors for each node will be
nudged in many directions during the training exercise.

By competing for the input vectors, an average prototype weight vector gradually
develops for each cluster in feature space. For example. the weight vectors initially start off
equal (Figure 20-9(a)) and gravitate toward the average vector for each of the clusters that
exist in feature space ( Figure 20-9(b)). Some network designers prefer to start with weight
vectors that are random or that are uniformly spread about feature space.

Figure 20-9 Prototype vectors: (a) initially equal; (b) gravitation toward the
centroids of clusters in feature space

The hidden nodes are monitored during training to detect when a particular input vec-
tor causes the same node to win more than once. When this occurs for all training vectors,
the network can be said to have converged. Many (but usually not all) of the nodes in the
hidden layer become regular winners as their weight vectors converge toward the mean vec-
tors of the classes.

As far as the network is concerned, there are only different classes of input vectors. It
does not “know” what each of the classes should be called. Hence, the node-to—class num-
ber correspondence is generally established in supervised training, as described earlier.

Once all the weights have been determined, unknown input vectors can be presented
to the network. A winning node will emerge, based on the similarity between the input vec-
tor and its weight vector, and the appropriate class number will appear at the output.

20.5.6.4 Design Considerations

The calculations involved in counterpropagation do not demand a neural network imple-
mentation, since the basic equations are derived from relatively simple algorithms and con-
cepts. However, a network framework allows a possible parallel implementation for an
accelerated hardware design, and it facilitates a number of interesting algorithm extensions
that can greatly enhance its processing capabilities.
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For example, a problem in counterpropagation is the stability-plasticity dilemma. As
training proceeds, it is possible for hidden nodes to oscillate between two or more clusters,
changing endlessly rather than converging. One solution is to start training with a high
learning rate, to move the hidden node weight vectors quickly into the vicinity of clusters,
and then to decrease the learning rate as training proceeds.

Another possibility is to initialize the hidden node weight vectors to individual input
samples. In this way, candidate clusters are available from the start, and competition can
often filter out the better anes. However, forcing the weight vectors to locations in the fea-
ture space too quickly can limit the network’s ability to react to new data, thus reducing its
plasticity.

Too few hidden nodes can also result in network instability, since there might be more
classes than there are hidden nodes. On the other hand, tco many hidden nodes can result in
a system that attempts to draw meaningless distinctions.

20.6 PROPORTION ESTIMATION

In many applications, it is necessary to go a step beyond classification and tabulate the num-
ber of each type of object found. Frequently, what is needed is an estimate of one or more
proportions—that is, what portion of the total population of objects falls into each class. For
this, we draw upon the topic of proportion estimation from the field of statistics.

20.6.1 The Two-Class, Exrror-Free Case

Definitions. Suppose we wish to determine what proportion p of the students on
a particular campus are female (0 < p < 1). We begin with the following definitions:

p = P{arandomly selected student is female } (40)

¢ = P{arandomly selected student is called female } (41)

Since we are now assuming that we can identify female students without error, p and ¢ are
identical in this case.

We next conduct an experiment by interviewing N randomly selected students on the
subject of gender. We find n of them to be female, and N — n of them male. It is natural to
take the sample proportion,

LN

=5 (42)
as an estimate of the proportion of female students. However, unless N is large enough to
encompass the entire student body, it alone will be nothing better than an estimate of the true
underlying proportion p. If N is small, it can be a rather poor estimate at that. The difference
between the value of § from any particular experiment and the true proportion p can be
attributed to statistical sampling error.

20.6.1.1 The Distribution of the Estimator

If we were to repeat the preceding experiment many times, we would observe different val-
ues for . In fact, § is a random variable with a binomial distribution. For large N (i.c.,
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greater than about 24), this distribution is approximately Gaussian (normal), with respective
mean and standard deviation [11}
[p(-p)
=p and o, = “

q=7r 4 = TN j
Recall that approximately 95 percent of the area of the normal distribution falls within two
standard deviations on either side of the mean. Thus, we can say with 95-percent confidence
that any one observed proportion g lies bftlw‘(:en p- 20, and p + 20, A

As the sample size increases, the distribution becomes progressively more narrow
about its mean p, which 1s the actual proportion of female students on campus. Thus, we can
estimate p as accurately as desired by taking a large enough N.

Since we do not know what p is to begin with, itis difficult to calculate g,. At the out-
set, we can play it safe by assuming the worst case. Notice that p = 0.5 maximizes 0, SO
using that value gives aconservatively broad estimate for the width of the distribution. After
the data are collected, we can substitute ¢ for p in Eq. (43) to get a better estimate.

20.6.1.2 Example: Opinion Polls

As a numerical example, let ¥ = 1,000. Assuming that p =0.5, 6, = 1.58 percent, and our
confidence interval is approximately +3 percent. This is a commonly used scenario for the
political polls that are published in newspapers. They query a thousand people and claim
3-percent accuracy.

20.6.2 The Two-Class Case with Classification Exror

The foregoing theory applies if we classify objects with an error-free, two-class classifier
and use the results to estimate the proportion. Suppose now that our method for determining
gender is less than foolproof. Here, we consider what effect classification error has on pro-
portion estimation [12-14].
Let the two classifier error rates be

£ = P{afemale is called a male} (44)
and

£, = P{amaleis called a female} (45)

Again, ¢ = n/N is (approximately, for large N) normally distributed, but the mean of that
distribution is now
g =p(l-¢g)+(1-p)g (46)

This is just the probability that either a female will be classified correctly or a male classi-
fied incorrectly.

20.6.2.1 Estimator Bias

Notice that the mean of the distribution is no longer p, the true proportion, as it was in the
error-free case. It can be higher or lower, depending on the relative values of two error rates.
Here, classification error has introduced bias into our estimate of the proportion. Of course,
if both error rates are zero, this case reduces to the previous one.
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The standard deviation ot the distribution of ¢ is
TR

B N

This tends to zero as the sample becomes larger. Like the mean, it can be either larger or
smaller than in the error-free case. The distressing thing is that larger sample sizes cause the
distribution of § to become narrow about the wrong answer. Left unchecked, this could
seriously interfere with automatic proportion estimation.

0, (47

20.6.2.2 Unbiasing the Estimator

Although the value ¢ that results from any one experiment is a biased estimator of p, it is an
unbiased estimator of g, the probability that a student will be classified as female (Eq. 41).
If the error rates are known, we can compute an unbiased estimate of p from

- 9-&

A P “8)
Here, we have solved Eq. (46) for p and substituted § for g. Now p is once again the mean
of the distribution of our estimator p, and we can estimate the proportion as accurately as
we wish, provided that we are willing to collect enough data.

Notice that any error in the value of €, or £ will undermine the accuracy of this
approach. Since these are classifier error rates, they usually must be estimated by
experiment. The test set, then, must be of adequate size and representative of the entire
population.

20.6.3 The Multiclass Case

We can extend the preceding development to cover the case where the population has
more than two classes [15].

20.6.3.1 Definitions

Suppose there are K different types of objects in the population. Then we have a vector pof
proportions, with elements

p; = P{randomly selected object belongs to class i} (49)
where i = 1, ..., K. The classifier error rates can be specified in the format of a confusion
matrix C having elements

¢;; = P{object of class i is assigned to class j} (50
where j= 1, ..., K. In these terms, the confusion matrix is an array of classification proba-

bilities. Other authors often use the same name for an array of unnormalized classification
results.

We let q be the vector of object classification probabilities with elements
q; = P{randomly selected object belongs to class j} (51)
given by
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I3
4= y,pC, or q=C'p (52)
i=1
If the classifier examines N objects and assigns n; of them to class j, then the maximum like-
lihood estimator of q is the vector q , having elements

ny
q, = N (53)

20.6.3.2 The Estimator

In analogy to the two-class case, we now seck a vector P that (a) is based on @, (b) is an
unbiased estimator of p. and (c) minimizes the mean square estimation error given by

X
MSEE = ﬁZl REL(p- pi)?) )
i=
where &[ | is the expectation operator and X is a vector of non-negative weights which
allows usto emphasize those classes in which errors are most costly. While the values of the
A;’s are arbitrary, we can, without loss of generality, scale them so that they sum to 1. If no
relative weighting is desired, we can make all the elements of A equal.
The unbiased estimator of p is [15]

p=1C"T"q (55
This is the multiclass generalization of Eq. (48). It says that multiplying the observed pro-
portions by the inverse of the confusion matrix removes the bias introduced by misclassi-
fication errors. As before, the error rates must be known accurately.

20.6.3.3 The Befuddlement Matrix

The actual mean square estimation error is [15]

K
-1 (1= py+ LpT
MSEE = N;l,p,(l p)+ p'BA (56)

where the matrix B has elements

K
Bui = Y Cutl Gi' 1P - 8 (57
i=1

where 8, is the Kronecker delta function, i.e.,

: I, m=1
- ;
o, mel o9
Dependent only on the confusion matrix, B is an alternative expression of the classifier error
rates. It is called the befuddlement matrix to avoid confusion. Its elements are non-negative.
If the classifier is a good one (i.e.. if the off-diagonal elements of C are small), then B is
approximately the confusion matrix with 1 ~ ¢;j substituted along the diagonal [15].
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As with B, the elements of p and A are nonnegative. Thus, the second term of Eq. (56
can never be negative and can never decrease the MSEE, no matter what values p and .
take on

When the classifier 1s error free (i.e., when C = I, all the elements of B are zero, anc
the second term of Eq. (56) drops out. This leaves the first term as the estimation error tha
results only from limited sample size. The second term, then, represents the additional esti
mation error that results from misclassification.

Since the estimator is unbiased [thanks to Eq. (55)] both terms of Eq. (56) tend to zerc
with increasing sample size. Hence, one can, in theory, estimate the proportions to any
desired degree of accuracy (even with a poor classifier) by examining a large enough num-
ber of objects.

Eq. (56) also allows us to compare different classifiers to select the one that best sup-
ports proportion estimation. Given the confusion matrix of a particular classitier, one can
compute the befuddlement component of MSEE (i.e., p'BA) that the classifier will contrib-
ute. The classifier contributing the least befuddlement error is superior for the task of pro-
portion estimation.

With a poor classifier. the befuddiement error term in Eq. (56) will be dominant, and
many additional samples will be required to overcome misclassification effects. On the
other hand, if the classifier is good enough that the befuddlement error term is significantly
less than the sampling error term, then further improvement of the classifier may not be
worth the effort.

20.6.3.4 Two-Class Befuddlement

Let us now return to the two-class case. If € and &, are small, the befuddiement matrix is

approximately [15]
£ €
B = [' ‘w (59)
& &

and the befuddiement error is given by
P'BA = [&+ pl& - £)1(A + Ay) (60)
Since the A’s appear only as a sum, they have merely a scaling effect in this case. Further-
more, if p is small (i.e., females are rare), then it is & (misclassifying a male) that contributes
most to MSEE, and conversely if p is large. If the mix is approximately equal (p = 0.5), then
both errors are equally troublesome.
Often aclassifier has an adjustable parameter that controls a trade-off between &, and

&. One can decrease one at the expense of increasing the other. In that case, Eq. (60) gives
guidance on how to optimize the setting.

20.7 SUMMARY OF IMPORTANT POINTS

1. Features used for classification should be discriminative, reliable, independent, and
few in number.

2. Atraining set used to establish classifier parameters should be representative and
unbiased.
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. Classifier performance (error rates) can be estimated by classifying a known test set.
. Effective features have small within-class variance, low correlation, and large vari-

ance-normalized separation between class means.
Bayes' theorem {Eq. (11)] gives the probability that a measured object belongs 10 a
particular class.

6. Bayes’ decision rule minimizes the risk of operating a classifier.

12.

13.

PROBLEMS

. Unknown parameters may be estimated by maximum-likelihood or Bayesian tech-

niques.

. A neural network is a collection of interconnected identical processing elements

arranged in layers. Each node computes a weighted sum of its inputs and passes its
output on to the nodes in the next layer.

. In a neural network used for pattern recognition, the feature vector is input to the first

layer, and the last layer outputs a class assignment.

. Neural networks are trained by repeated application of the training set, with small

adjustments made in the interconnection weights at each step.

A neural network classifier is subject to overtraining, where it customizes itself to the
training set.

The performance of a well-trained neural network classifier is usually similar to that
of a well-designed statistical classifier. Less knowledge of the problem is required for
the development of a neural network classifier, but less knowledge of the decision-
making process is available.

Classification errors introduce bias into a proportion estimate. With a biased estima-
tor, the estimate does not converge to the true underlying proportion as the sample
size increases.

Bias can be removed from a proportion estimate by multiplying the vector of
observed proportions by the inverse of the confusion matrix [Eq (55)]. Then a large
sample size yields proportion estimates of arbitrarily good accuracy.

. With an unbiascd estimator, the mean square estimation error has two components,

one due to sampling and one due to misclassification |Eq. (56)]. Both components
approach zero for large sample size.

The better classifier for proportion estimation is the one that has the lower befuddle-
ment error. p’BA.

1. The mean weight of an orange is 100 grams, with a standard deviation of 25 grams. The mean

weight af a grapefruitis 180 grams, with a standard deviation of 40 grams. Oranges are one and
one-half times as common as grapefruits. The seven fruits in a particular box weigh 80, 100. 120,
140. 160, 180, and 200 grams. How many oranges are there in the box?

. A particular campus has an approximately equal mix of male and female students. In a two-class
student gender proporiion estimator. the two misclassification errors are always equal, but they
can be reduced by further refinement of the algorithm. What value of &, and &, will make the
befuddlement error equal to the sampling error? How low do & and &, have to go so that the
befuddlement error is only one-eighth of the sampling error?
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1.
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Ona particular campus the student body is approximately three-quarters men. In an existing two-
class student gender proportion estimator, the misclassification errors are both 0.25. How many
students must be interviewed to reduce the MSEE 10 | percent? Either error rate can be reduced
by further refinement of the algorithm. Which one should you endeavor to reduce in order to cut
down the required sample size? If you reduce only that one, what values of €, and & will make
the betuddlement error equal to half the sampling error? Then how many students must be inter-
viewed to reduce the MSEE to | percent?

Develop atwo-class, two-feature Bayes classifier and train it to identify male and female humans
using height and body weight as features. Write a brief report describing the design, training, and
performance of the classifier.

. Develop a Bayes classifier program that can identify the suit of playing cards (i.e., diamonds.

hearts, clubs, and spades) in digitized images of the suite symbal. Test the program on a poker
hand.

. Train a neural network to classify random vectors from three distributions. Using a small training

set, plot the error on the training set and on a separate test set as a function of the amount of train-
ing. Carry the experiment out to the point of demonstrated overtraining.

. Using the same classes, features, and training and test sets, compare the performance of a neural

net and a Bayes classifier. Write a report summarizing the advantages and disadvantages of each.
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CHAPTER 21

Color and Multispectral
Image Processing

21.1 INTRODUCTION

In previous chapters, we discussed two-dimensional digital images. Such images can be
thought of as having a gray level that is a function of two spatial variables. A straightfor-
ward generalization to three dimensions would leave us with images having a gray level that
is a function of two spatial vanables and one spectral variable. These are called multispec-
tral images. When the spectral sampling is restricted to three bands, and these correspond
to the red, green, and blue spectral bands to which the human visual system responds, we
call the procedure color image processing.

A three-dimensional image can be formed by sampling not only the two spatial coor-
dinates of an optical image, but also the wavelength spectrum of the light at each point.
Thus, instead of quantizing the total light intensity falling upon each pixel, one samples and
quanlizes the electromagnetic spectrum of that illumination. This forms a three-dimen-
sional image in which gray leve! is a function of two spatial variables and a third variable,
optical wavelength.

The discipline concerned with processing such images is commonly called multispec-
tral image analysis. The resulting images are sometimes referred to as multidigital images.
They are usually organized as a series of two-dimensional digital images, each of which was
obtained by digitizing the original image in a narrow spectral band.
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21.2 MULTISPECTRAL IMAGE ANALYSIS

Perhaps the greatest effort devoted to multispectral analysis has been in the field of remote
sensing { 1], Multispectral images are obtained from aircraft or spacecraft that overfly a
region of interest on the earth’s surface. Each pixel of the image is sensed by a battery of nar-
row-band light-measuring devices. Thus, the image is digitized with multivalued pixels.
Twenty-four or more spectral channels are commonly used. The resulting image is processed
as a set of 24 or so two-dimensional digital images. Each two-dimensional image shows the
object as it would appear through a narrow-band optical filter. The spectral range covered by
multispectral analysis need not be limited to the visible spectrum. Commonly, the range of
interest extends from the infrared through the visible spectrum and into the ultraviolet.

A considerable portion of multispectral analysis is devoted to pixel classification. In
this process, the image is partitioned into regions that correspond to different types of sur-
faces, such as lakes, fields, forests, and residential and industrial areas. Each multivalued
pixel is classified as to the surface type using its set of spectral intensity measurements. The
classification is accomplished with techniques similar to those discussed in Chapter 20. Fre-
quently, algebraic operations such as subtraction and forming ratios are performed on the
set of images to enhance surface differences. While the image taken in any particular spec-
tral band will suffer from shading due to illumination effects, ratio images show surface
properties more reliably. The interested reader should consult the literature on remote sens-
ing for an introduction to this subject [1].

21.3 COLOR IMAGE PROCESSING

Iris

21.3.1 Color Vision

The most familiar form of multispectral imaging is normal color vision. The retina of the
human eye is covered with photoreceptor cells (Figure 21-1) that are functionally analo-
gous to the receptor sites (pixels) on a CCD chip. The photoreceptor cells absorb light from
the image that is focused on the retina by the lens and cornea. They generate nerve impulses
that travel to the brain, via approximately a million fibers in the optic nerve. The frequency
of these impulses encodes the brightness of the incident light.

Retina

Visual axis

Optic nerve

Figure 21-1 The human eye (right
eye, from above)
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The photoreceptor cells are a mixture of two types, rods and cones, so called for their
physical shape. The rod cells are the more sensitive, providing us with very light-sensitive.
monochromatic night vision. The cones afford color vision, but only at higher light levels.

The cones occur in three types, differing mainly in the photochemistry they employ to
convert light into nerve impulses. The cones divide the visible portion of the electromag-
netic spectrum into three bands: red, green, and blue. For this reason, these three colors are
referred to as the primary colors of human vision. Figure 21-2 shows the sensitivity spectra
of the three types of cones in the human visual system [2].
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Figure 21-2  Sensitivity spectra of human photoreceptor cells

The nerve impulses generated by 1he photoreceptor cells in response to light pass
through a layer of bipolar cells and a layer of ganglion cells. The artificial neural networks
described in Chapter 20 are modeled after the architecture and operation of these retinal
cells. The axon fibers of the million or so ganglion cells form the optic nerve, which con-
ducts the image data to the brain.

21.3.2 Tricolor Imaging

Because of the nature of the human visual system, the bulk of product development effort
and expense in electronic imaging has been devoted to tricolor systems, particularly televi-
sion cameras, digitizers, displays, and printers. Thus, the three-color model takes on a spe-
cial importance. Not only is color image enhancement a tricolor exercise, but quantitative
color image analysis is also commonly done on tricolor equipment, since it is produced in
high volume at relatively low cost.

Common examples of tricolor imaging systems include color photography and color
television (Chapters 2, 3). In both cases, the visible spectrum is divided into three bands—
red, green, and biue—approximating the spectral quantization employed by the human eye.
In color photography, separate images are developed on three sandwiched photographic
emulsions. In color television, three image sensors are employed, one each behind red,
green, and blue optical filters. For display purposes, red, green, and blue images are super-
imposed, either on the color print or on the color display screen. This overlay produces
approximately the same effect on the retina as the original scene and thus looks normat.
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While a tricolor digital image can be thought of as a scalar function of three coordi-
nates (two spatial and one spectral). it is usually more convenient to treat it as an ordinary
(two-dimensional) image having three gray levels (red. green, and blue) at each pixel. In
other contexts, it is more useful to consider it an overlay of three monochrome digital
images. Color image processing and analysis remain simple if one is able to visualize these
two alternatives clearly. Then, many of the concepts discussed in previous chapters can be
applied with little modification.

21.3.3 Color Specification

. RGB Format. There are several ways one can quantitatively specify a color. such as
that of a pixel in a color digital image. The most straightforward way is to use the red, green,
and blue brightness values, scaled between. for example. zero and one. We call this conven-
tion the RGB formatr. Each pixel—and, indeed, any color it is possible to visualize-—can be
represented by a point in the first quadrant of three-space. as shown by the color cube in Fig-
ure 21-3. The gray level histogram of a tri-color image is a scatter of points in RGB-space.

Cyan White
—
B !
| Magenta
Blue +
[}
I
i y
|
) /
‘::‘____ e — __} Yellow
R .
Bla Red Figure 21-3  Rectangular color space

The origin of the RGB color space represents no brightness of any of the primary col-
ors and is thus the color black. Full brightness of all three primaries together appears as
white. Equal amounts of the three color components at lesser brightness produces a shade of
gray. The locus of all such points falls on the diagonal of the color cube and is called the
gray line. Three of the corners of the color cube correspond to the primary colors—red,
green, and blue. The remaining three corners correspond to the secondary colors—yellow,
cyan (blue-green), and magenta (purple).

HSI Format. Another useful specification scheme, called HS!I format, is a for-
malization of the color system developed by Munsell and commonly used by artists 3,4].
Its design reflects the way humans see color, and it offers advantages for image processing
as well.

In HS1format, I stands for intensity, or brightness. It is, for our purposes, just the aver-
age of the R, G, and B gray-level values, although different schemes with unequal weight-
ing of the colors are also used [5]. The intensity value specifies the overall brightness of the
pixel, without regard to what its color is. One can convert a color image to monochrome by
averaging the RGB components together, thereby discarding the color information,

The two parameters that contain the color information are the hue () and saturation
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($). although equivalent terms are sometimes used. These two parameters are illustrated by
the color circle in Figure 214, Hue is expressed as an angle. The hue of a color refers to
which spectral wavelengih (i.e.. which color of the rainbow) it most closely matches. Arbi-
trarily, a hue of 0° is red, 120° is green. and 240° is blue. Hue traverses the colors of the vis-
ible spectrum as it goes from 0 to 240°. Between 240° and 360° fall the nonspectral (purple)
colors that the eye perceives.

200 7T T

SN
/

\ \,,4\//

2307 Figure 21-4  The color circle

The saturation parameter is the radius of the point from the origin of the color circle.
Around the periphery of the circle fall the pure, or saturuted, colors, and their saturation val-
ues are unity. At the center lie neutral (gray) shades, that is, those with zero saturation.

The concept of saturation can be illustrated as follows. If you had a bucket of bright
red paint. it would correspond to a hue of 0° and saturation 1. Mixing in white paint makes
the red Jess intense. reducing its saturation, but without making it darker. Pink would cor-
respond to a saturation of .5 or s0. As more white is added to the mixture. the red becomies
paler and the saturation decreases, eventually approaching zero (white). I, on the other
hand, you mixed black paint with the bright red, its intensity would decrease (toward black ).
while its hue (red) and saturation (1.0) remained constant.

Taken together, the three color coordinates define a cylindrical color space (Figure
21-5). The gray shades tall along the axis from black at the bottom to white at the top. The
fully bright, fully saturated colors fall on the perimeter of the circular top surface.

There are many other color coordinate systems that are used. Those established by the
Commission Internationale de 1'Eclairage (CIE), an international standards committee for
light and color, are perhaps the most widely used. They are based on experimental data from
color-matching experiments conducted on human observers

21.3.4 Color Coordinate Conversion

For image-processing purposes. it is useful to be able to convert between RGB and HSI
color coordinates. Some processes are naturally more successful when carried out in one
system or the other.

21.34.1 RGB-o-HSI Conversion

The conversion from RGB to HST format can be approached as tollows. Recail that the gray
line is the diagonal of the color cube in RGB space, and it is the vertical axis in cylindrical
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HSI space. Thus, we can begin by establishing an (x, v, 2) coordinate system in which the
RGB cube is rotated so that its diagonal lies along the z-axis and its R-axis lies in the xz-
plane (Figure 21-6 [6]). This rotation is given by

1 ] 1
x = —|[2R-G- B} y=—1G-B] 7= —
J6 V2 J3
Next, we convert to cylindrical coordinates by defining polar coordinates in the xy-plane.
We have

[R+ G+ Bj (1)

p= «/174'-»—2 ¢ = ang(x, y) (2)
where ang(x, v) is the angle a line from the origin to the point (x, y) makes with the x-axis.
This is basically the arc tangent. but with attention paid to which quadrant the point is in.

We now have cylindrical coordinates, where (¢, p, z) corresponds to (H, S, ), but
there are two problems with saturation: It is not independent of intensity, as we would like

Figure 21-6 Rotating the RGB cube
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it to be. and the fully saturated colors (those having no more than two of the primary colors
present) fall on a hexagon in the xy-plane (Figure 21-7(a)), rather than on a circle. The rem-
edy is to normalize p by dividing by its maximum for that value of @. This leads to the sat-
uration tormula [6]

. p _, 3min(RGB) _, 3 ,
Svpm“—-l TR1CiB =1 lmm(R,G,B) 3)

The fully saturated colors are now on a unit-radius circle in the xy-piane (Figure 21-7(b)).

Figure 21-7 The x, y plane of color space: (a) unnormalized polar
coordinates: (b) normalized saturation

While the hue can be taken to be ¢ inequation (2), an equivalent method is to compute
the angle

1 .
. 5[(R—(:)]+(RfB)

0 = cos” (4)
(R-GY+(R~-B)(G~B)
and the hue is then
[ G2B
= { . (5)
22-06 G<8

21.3.4.2 HSI-to-RGB Conversion

The formulas for converting from HSIto RGB take on slightly different form, depending upon

the sector of the color circle in which the point to be converted falls {7]. For 0° <H < 12¢°,

_ 1 Scos (H)

k= ﬁ[ * cos (60° - HJ

while for 120° < H < 240°,

[ +Scos (H-~ ]20"):’
cos ( 180°— H)

B=%(I-S) G=I-R-B (6
~

R=L-s B=f3I-R-G (T)

J3

¢=1
N
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and for 240° £ H < 360°.

G="L(-8 R=SI-G-B @&
/3

N

- —240°)
B ! | Scos (H-240 )J

= Al e m

There are several variations of HSI conversion {5.8). From a color image-processing point
of view. the specific choice may not materially affect the result, as long as hue is an angle.
saturation is independent of intensity. and the transformation is invertible.

21.3.5 Color Image Enhancement

21.3.5.1 Color Balance

Otten when a color image is digitized. it will not appear properly when displayed. Differemt
sensitivities, gain factors, offsets (black levels), ete., in the three color channels perform dif-
ferent linear transformations on the three component images during digitizing. The result is an
image withits primary colors “out of balance.” All the objects in the scene are shifted in color
from how they should appear. Most noticeably, objects that should be gray take on color.

The first test of color balance is whether all the gray objects indeed appear gray. The
second testis if the highly saturated colors have the proper hue. If the image has a prominent
black or white background. this will produce a discernible peak in the histograms of the RGB
component images. If these peaks occur at different gray levels, it signals color imbalance.

The remedy for color imbalance of this type is to use linear gray-scale transformations
on each of the individual R, G, and B images. Normally. only two of the component images
need to be transformed to match the third. The simplest way to design the required gray-
scale transformation function is to (1) select relatively uniform light gray and dark gray
areas of the image. (2) compute the mean gray level of both areas in all three component
images. and (3) use a linear contrast stretch on two of the component images that will make
them match the third. If cach of the two areas has the sume gray level in all three component
images. color balance has been achieved.

If the camera and digitizing system are stable. the required transformations can be
determined before the digitizing session by digitizirig a black-and-white step-wedge test
target. By using several steps of the wedge. any nonlinearity present can be detected and
removed. The process is similar to standard photometric calibration (Chapter 6), except that
the output gray levels should match in all three component images.

21.3.5.2 Contrast and Color Enhancement

In working with the RGB components of a tricolor digital image. one must be careful to
avoid upsetting the color balance. Essentially all of the image-processing techniques previ-
ously discussed will produce very predictable results if applied to the intensity component
of an image in HSI format. In many ways, the intensity component can be treated as a mono-
chrome image. The color information, embedded in the hue and saturation components, will
usually tag along without protest. Any geometric operations, of course, must be carried out
in exactly the same way on all three components, whether these are in RGB or HSI format.

Saturation Enhancement. Ore can make the colors in an image more bold by
multiplying the saturation at each pixel by a constant greater than 1. Likewise. a constant
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less than | reduces the apparent intensity of the colors. A nonlinear point operation can be
used on the saturation image. as long as the transformation function is zero at the origin.
Changing the saturation of pixels with near-zero saturation can upset the color balance.

Hue Alteration. Since hue is anangle, one logical thing to do is add a constant to
the hue of each pixel. This has the effect of shifting the color of each object up or down the
rainbow. If the angle added or subtracted is only a few degrees. the process will “cool” or
“warm" the color image respectively. Larger angles will drastically alter its appearance. A
general point operation performed on the hue image will exaggerate color differences
between objects in portions of the spectrum where the slope of the transformation function
is greater than 1, and conversely. Since hue is an angle, operations processing the hue com-
ponent image must treat the gray scale as periodic, recognizing that, for eight bits, forexam-
ple,255+ 1=0,and 0 | = 255.

21.3.5.3 Color Image Restoration

One can apply the techniques discussed in Chapter 16 to the R, G, and B images individually
in a straightforward extension to color. There are, however, some special considerations
that apply to tricolor images.

If an image is being restored or enhanced for the sake of its appearance, one does well
to take note of the strengths and weaknesses of the human eye. Detail, for example, is much
more visible in intensity than in color. Blurring of edges. then. is much more disturbing if
it affects intensity rather than hue or saturation. Similarly, graininess (random noise) of a
reasonable amplitude is more apparent in intensity than in color. Finally, the eye is much
more sensitive 1o graininess in flat areas than in busy areas containing high-contrast detail.
This applies to both intensity and color (hue and saturation) noise.

With the foregoing in mind, we can construct a general outline for approaching a
color image enhancement or restoration project:

1. Use z linear point operation to ensure that the RGB image fits properly within the gray
scale and is in color balance.

»

Convert to HSI format.

3. Use a lowpass filter or, perhaps better, a median filter on the hue and saturation
images to reduce the random color noise within objects. Some blurring of edges in
these images will not be noticeable in the final product, so this step can involve sig-
nificant noise reduction. The filter used must preserve the average gray level (i.e.,
MTEF(0,0) = 1).

4. Use a space-variant approach (e.g., linear combination filters; see Chapter 16) to
restore the intensity image. This step sharpens edges and enhances detail, while
reducing graininess in flat areas. Again, MTF(0,0) = 1.

§. Use linear point operations on all three components, as required, to ensure proper uti-

lization of the gray scale.

6. Ceavert to RGB format, and display or print the image.

Beginning with a good-quality digitized image. the amount of visible improvement possible
with this approach can be quite striking.
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21.3.5.4 Pseudocolor

The term pseudocolor refers to generating a color image from a monochrome image by
mapping each of the gray levels (located along the axis of the color cylinder) to a point in
color space. This is simply assigning a color to each gray level by some rule that can be
stored in a lookup table.

The attraction of pseudocolor stems from the fact that the human eye can reliably dis-
cern many more different colors than it can different shades of gray. Thus, while one might
be able to appreciate only 40 or so of 256 gray levels on a monochrome display, many more
shades might be visible when mapped to different colors. There are, however, monochrome
techniques (e.g., contour lines, gradient shading, etc.) that can render subtle variations more
visible. (Recall Figure 20-4.)

A pseudocolor mapping is usually more satisfactory if it employs some pattern, rather
than arandom assignment of colors. Normally, the grayscale axis maps toa continuous line
that curves its way through color space. Mapping the black and white points onto them-
selves is often useful. In general, the more conservative mappings are the more successful,
since substantial visual agony can result from the more ambitious color assignment
schemes.

Basically a detail of the image display process, pseudocolor has been glorified with
terms like pseudocolor processing, and pseudocolor analysis. A favorite tool of salespeo-
ple, it finds frequent use in system demonstrations. It can bring a glaze over a customer’s
eyes more quickly than any other known display technique.

My own searchings have produced a painfully short list of demonstrably productive
pseudocolor applications. In one, developed by Donald Winkler at the NASA Johnson
Space Center, a real-time pseudocolor display was used to assist operators in setting the
light level on a digitizing microscope. The entire gray scale was mapped onto itself with the
exception of level 255, which was mapped to a bright red. The operators’ instructions were
“Increase the lamp current until you see red, and then decrease it until the red goes away.”
This application resulted in thousands of properly digitized images. It also completes the
aforementioned list.

21.3.6 Color Image Analysis

Much of the previous discussion of monochrome image analysis also can be applied directly
to color images. There are, however, some differences worthy of note.

21.3.6.1 Color Compensation

In some applications, the goal is to isolate various types of objects that differ primarily or
exclusively in color. In fluorescence microscopy, for example, different constituents of a
biological specimen (e.g, different components of cells) are stained with different colored
fluorescent dyes. The analysis often involves being able to visualize these objects sepa-
rately, but in correct spatial relationship to each other.

If the preparation procedure stains three chemical components of the specimen, for
example, with red, green, and blue fluorescent dyes, one can digitize and display the spec-
imen as a normal tricolor image. The RGB component images are then registered mono-
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chrome images, each showing objects of a specific type. This paves the way for image
segmentation and object measurement using techniques previously discussed.

Given the broad and overlapping sensitivity spectra of commonly used color image
digitizers, as well as the varied emission spectra of available fluorescent dyes (fluoro-
phores), one seldom obtains complete isolation of the three types of objects in the three
component images. Normally, each type of object will be visible in all three of the color
component images, although at reduced contrast in two of them. We refer to this phenom-
enon as color spread.

We can model the color spread effect as a linear transformation {9,10]. Let the matrix
C specify how the colors are spread among the three channels. Then each element ¢, is the
proportion of the brightness from fluorophore j that appears in color channel i of the digi-
tized image. Let x be the three-by-one vector of actual fluorophore brightness values at a
particular pixel, scaled as gray levels that would be produced by an ideal digitizer (one with
no color spread or black-level offset). Then

y=Cx+b 9)
is the vector of RGB gray levels recorded at that pixel by the digitizer. C accounts for the
color spread, while the vector b accounts for the black-level offset of the digitizer. That is,
b; is the gray level that corresponds to black (zero brightness) in channel i.

Eq. (9) is easily solved for the true brightness:

x = C'+[y-b] (10)
Color spread can thus be eliminated by premultiplying the RGB gray-level vector for each
pixel by the inverse of the color spread matrix, after the black level has been subtracted from
each chaanel.

The foregoing analysis assumes that the exposure time is the same for each color
channel, or at least that it is the same as that used in the calibration study that determined the
color spread matrix. Sometimes it is necessary to use different exposure times to compen-
sate for large differences in brightness among the three color components of the specimen.
We can account for this in the following way.

Let the diagonal matrix E specify the relative exposure time used in each channel in
a particular digitization. That is, e;; is the ratio of the current exposure time for color channel
i to the exposure time used for the color spread calibration image. Then Eq. (9) becomes

y = ECx+b an
which can be solved for

x = C'E'[y-b] (12)
Since E is a diagonal matrix, its inverse is diagonal as well, having diagonal elements that
are simply the reciprocals of the corresponding elements of E. Further, C"'E"! can be
thought of as a modified color compensation matrix: It is merely C' after each ith column
has been divided by e;;. Thus, there is a simple way to modify the color compensation matrix
to account for variation in exposure time,
The preceding development assumes that gray levels are linear with brightness. For
some cameras, an RGB point operation might be required to establish this condition prior to
color compensation.
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21.3.6.2 Example of Color Compensation

Figure 21-8 shows an RGB image of human bone marrow cells that have been stained with
DAPI, a blue fluorescent dye. The image was digitized by a color television camera mounted
on a fluorescence microscope. In this preparation, cells that are in the process of dividing
also absorb FITC. a green fluorescent dye. Finally, the DNA located at the centromeres of
the two number-8 chromosomes is labeled with Texas Red, a red fluorescent dye.

Ideally, all the cells would be visible in the blue channel. dividing cells would be vis-
ible in the green channel as well, and two dots per cell, corresponding to the number-8 chro-
mosomes, would appear in the red channel. In the figure, however, all components appear
in all channels due to overlapping sensitivity spectra of the three color channels.

The color spread matrix for the instrument that recorded the image in Figure 21--8
appears in Table 21-1. The matrix states that, for example, only 44 percent of a DAPI mol-
ecule’s brightness is recorded in the’blue channel, while 32 percent of it shows up in the

.
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Figure 21-8 Three-color fluorescence microscopy: (a) intensity; (b) red:
(c) green; (d) blue




Sec.21.3 Color Image Processing 559
TABLE 21-1 COLOR SPREAD MATRIX

Texas Red FITC DAPI

Red 0.85 0.26 0.24
Green 0.05 0.65 0.32
Blue 0.10 0.09 0.44

green channel and 24 percent finds its way into the red channel. The values in this matrix
were determined experimentally from digitized images of cells stained with single fluoro-
phores, and they would be different for other combinations of dyes, camera, and optics.

The color compensation matrix C~' specifies what must be done to correct the color
spread. The inverse of the matrix in Table 21-1 is

1.24 -45 -35
C'=1005 169 -1.26 113)
-29 -24 261
Thus, to correct the red channel image, one should, at each pixel, take 124 percent of the
gray level in the red channel image. add 5 percent of the green channel value, and subtract
29 percent of the blue. The second and third rows likewise specity how to correct the green
and blue channel images, respectively.
A numerical example illustrates how the computation proceeds at each pixel in the
RGB image. Using the color spread matrix in Table 21-1 and illustrative values for x uand
b. Eq. (11) gives the resulting recorded gray level values:

100[|.85 .26 24201 18 251
y=ECx+b= |0 10[|05 .65 32{|143|+|22] = {158 (14)
002][.10 .09 44{[104| [20 178

Here we have assumed that twice the normal exposure time was used in the blue channel.
Then Eq. (12) recovers the true brightness values:

124 0450351 0 o]([251] [18 201
x=C'E'(y-b) ={005 169 -126/| ¢ 1 0 158 —1 220 | =1 143/ (15}
-0.29 -0.24 261)| 0 0 05 178 20 104

The matrix product in Eq. (15} is simply

r

l 1.24 -0.45 -0.18
C'E'=[005 169 -063 (16)
-0.29 ~0.24 1.31
which is the same as C™', except that the elements in the third column have been halved to
account for the longer exposure in the blue channel. Since the matrix is the same for all pix-
els in the image, it can be computed once and used repeatedly.
Figure 21-9 shows the result of color compensation applied to the image in Figure 21-8.
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Figure 21-9 The result of color compensation: (a) intensity: (b) red;
(c) green; (d) blue

Here. the three differently stained types of objects have been effectively isolated to the three
color component images. This makes image segmentation and measurement a much simpler
task. Color compensation also increases the saturation of the displayed color image, since
color spread tends to desaturate the image.

21.3.6.3 Color Image Segmentation

Segmenting a color image by thresholding becomes a process of partitioning color space.
The different objects in the image often correspond to separate clusters of points in a three-
dimensional histogram defined in RGB or HSI space. A three-feature Bayes classifier
design can prove helpful in partitioning the space.

The hue and saturation of an object are normally dictated by the light-absorbing or
-reflecting properties of the material of which the object is made. The intensity of the object,
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however, is seriously aftected by illumination and viewing angle. A shadow, for example.
falling across an object will normally have much more effect on the intensity of the pixels
therein than on the two color parameters. Thus. it may be productive to segment the image
in the hue-saturation plane (i.e., on the color circle rather than in three-dimensional color
space), thereby ignoring intensity completely. Some neise reduction by smoothing or
median filtering the two color parameters may prove helpful as well.

21.3.6.4 Color Image Measurement

Once segmentation is complete, measurements of size and shape are the same as with a
monochrome image. Brightness, however. now includes the added aspect of color. One can
compute the average hue and average saturation of each object, as well as its average inten-
sity. Classification proceeds as before.

21.4 SUMMARY OF IMPORTANT POINTS

1. Multispectral images are digitized functions of 1. y, and optical wavelength that show
the reflectance spectrum of the object at each pixel.

2. Normaily, in tricolor image processing. the color balance should be achieved with the
image in RGB format and the buik of the processing or analysis performed in HSI
format.

3. Mostof the techniques developed for monochrome images are applicable to the inten-
sity component of a tricolor digital image.

o

The spreading of primary-colored objects to other color channels can be compensated
for by multiplying the RGB values by the inverse of the color spread matrix.

PROBLEMS

1. Suppose you have a test target that is a black square within a white square. When you digitize the
target with a particular RGB tricolor system, you get bimodal histograms in all three channels.
The peaks are located as follows: K = [62,242), G = [31.251], B = [12.238]. Does this system
require color balance? It 50, design a color point operation that will do the job. Make it so that
black has gray level 16 and white has gray level 242.

2. Suppose you digitize u test target consisting of four gray bars uniformly spaced in brightness
from black to white. The average HSI values of the four bars are [H. §, [] = [259.0.571.32],
190,(0024,145], [82,0.116,259]. [81.0.152,372]. Plot the four points in HS space. What is the
color appearance ot each of the four bars? Is the digitizer color balanced? If not. will a linear point
operation put it in color balance? If so. design such an operation. If not, design a piecewise lincar
point operation that will.

3. Suppose you digitize a test target consisting of four gray bars uniformly spaced in brightness
from black to white. The average HSI values of the four bars are (H, S, I} = 10,0.25.23},
[TO1.0.16,144], '199,0.192.300]. |300.0.083.416]. Plot the four points in HS space. What is the
color uppearance of each of the four bars? [s the digitizer color balanced? It not. will alinear point
operation put it in color balance? If so. design such an operation. If not. design a piecewise linear
point operation that will.
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PROJECTS
1.
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Develop a program for RGB-t0-HS1 and HSI-t0-RGB color image conversion. Test the program
on an image containing all extreme values of R, G, and B. Subtract an RGB image that has been
converted to HSI and back from the original image, and describe the contents of the difference
image.

. Perform an image restoration on a digitized color image using the outline in Sec. 21.3.5.3, but

only stationary (non-space-variant) filtering. Report on the practical limits of each of the
enhancement steps and the amount of improvement attained.

. Perform an image restoration on a digitized color image using the outline in Sec. 21.3.5.3 and

space-variant filtering (e.g., linear combination filters). Report on the practical limits of each of
the enhancement steps and the amount of improvement attained.

. Develop a program that can manipulate an HSI image as described in Sec. 21.3.5.3, and use the

program to improve the image of a friend. Report on the methods and results.

. Develop a demonstrably productive pseudocolor application. Publish the method and its results

in a prestigious journal. Send me a Christmas card with the pseudocolor image on the front and
the reprint attached. Include comments relevant to the situation
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CHAPTER 22

Three-Dimensional
Image Processing

22.1 INTRODUCTION

In previous chapters, we discussed two-dimensional digital images. Such images can be
thought of as having gray levels that are a function of two spatial variables. The most
straightforward generalization to three dimensions would have us deal with images having
gray levels that are a function of three spatial variables. We call these images spatially three
dimensional. Several examples are ocean water temperature as a function of x, y, and depth;
atmospheric pollution levels as a function of x, y, and altitude; and gravity field strength as
a function of three dimensions in outer space. Perhaps more common examples are three-
dimensional images of transparent microscope specimens or of larger objects viewed with
X-ray illumination. In these images, the gray level represents some local property, such as
optical density per millimeter of path length.

Most common in human experience is the ordinary three-dimensional world in which
we live. Indeed, most of the two-dimensional images we see have been derived from this
three-dimensional world by camera systems that employ a perspective projection to reduce
the dimensionality from three to two. By modeling this projection, one can implement the
inverse projection to learn more about the three-dimensional object that produced a given
image in the first place. Similarly, given a mathematical description of a three-dimensional
object, one can compute the image that would be obtained by a camera at a specified loca-
tion. Thus, another topic deserving of the name three-dimensional image processing con-
cerns the simulation of image-forming projections and their inverses.

563

564 Three-Dimensional image Processing Chap. 22

We address five topics in three-dimensional image processing in this chapter. Thesc
topics are appropriate for treatment using hardware and software oriented toward two-
dimensional digital image processing. Logically, then, these applications build upon the
techniques discussed in previous chapters. By contrast, three-dimensional computer graph-
ics has a different hardware and software emphasis. For an introduction to this fascinating
field, the interested reader should consult a textbook on the subject [1]. The following sub-
sections introduce the five topics treated in this chapter.

22.1.1 Spatially Three-Dimensional Images

Consider a three-dimensional object that is not perfectly transparent, but that does allow
light to pass through. We can think of a local property that is distributed throughout the
object in three dimensions. This property is the local optical density. It might be specified
in units of optical density per millimeter of path length. For example, if the object were a
slab of uniform local property oriented perpendicular to the illuminating beam, the meu-
sured optical density of the slab would be proportional to both the value of the local property
and the slab thickness.

Thin specimens of biological tissue appear transparent under a microscope. In this chap-
ter, we discuss how three-dimensional imaging can be performed using optical microscopy

22.1.2 CAT Scanners

In the X-ray portion of the electromagnetic spectrum, many materials, including the human
body, are transparent. Computerized axial tomography (CAT) is an X-ray technique that
produces three-dimensional images of a solid object. The technique is used in medical diag-
nosis, for viewing structures deep inside the human body. It is also used in nondestructive
testing (NDT), for examining critical parts for evidence of internal flaws. NDT is used on
aircraft engine parts, aerospace components, nuclear reactor pressure vessels, and a variety
of metal and composite components having a high-reliability requirement.

CAT scanners have made a significant impact on the fields of health care and NDT in
the past two decades. CAT is a discipline that requires digital image processing for its very
existence: The recorded data must undergo significant processing before any image is visible.

22.1.3 Stereometry

When a camera forms an image of a three-dimensional scene, it necessarily discards certain
information about that scene. This loss of information s a direct result of the perspective
projection that reduces the dimensionality from three to two. For example, a feature of a cer-
tain size in the image could result from either a large distant object or a small nearby object.
This range ambiguity is a result of the information loss in the imaging projection.

When a three-dimensional scene is photographed by a pair of cameras located at
slightly different positions. the range ambiguity can be resolved. The two images produced
are called a stereoscopic image pair. A range image is an image in which gray level repre-
sents not brightness, but rather the distance from the camera to the reflecting surface in the
scene that gives rise to the corresponding pixel brightness. Each pixel in a digitized image
can be viewed as projecting a slender cone out through the imaging lens (Figure 22-1). In
the brightness image. the gray level of a particular pixel indicates the amount of light
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reflected off the first surface intersected by the pixel cone. In the range image, the gray level
represents the length of the pixel cone.

‘The combination of a brightness image and a range image restores much of the infor-
mation lost in the imaging projection. It is not, however, a complete description of the orig-
inal scene, since surfaces may be obscured in the image. Nonetheless, for many purposes.
the range image is a useful adjunct to the brightness image. Stereometry is the technique of
deriving a range image from a stereo pair of brightness images. It has long been used as a
manual technique for creating elevation maps of the earth’s surface. Later in this chapter,
we discuss computer-implemented stereometry.

22.1.4 Stereoscopic Display

It it is possible to compute a range image from a stereo pair, then it should be possible to
generate a stereo pair given a single brightness image and a range image. In fact, this tech-
nique makes it possible to generate stereoscopic displays that give the viewer a sensation of
depth. If a stereoscopic image pair is presented to a viewer in such a way that each eye sees
one of the two images, the resulting visual sensation of depth can duplicate that of viewing
the original scene. Stereo display techniques can increase the available information in a
computer-driven display.

22.1.5 Shaded Surface Display

It is frequently desirable to generate either monocular or stereo pair images of a three-
dimensional object that exists only as a mathematical description. By modeling the imaging
system. one can compute the digital image that would result if the object existed and if it
were digitized by conventional means. Shaded surface display grew out of the domain of
computer graphics and has developed rapidly in the past few years. It is commonly done on
hardware systems designed for two-dimensional digital image processing and is thus appro-
priate for discussion here.
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22.2 THREE-DIMENSIONAL IMAGING

In this section, we discuss images defined in three-dimensional space. The local property
(e.g.. brightness, density) is defined throughout a solid volume. The generalization from
two to three dimensions is quite direct, but the data-handling requirements are considerably
more severe in three dimensions.

22.2.1 Optical Sectioning

"The optical microscope is a commonly used tool in histology and microanatomy. These dis-
ciplines are concerned with the structure and function of physiological specimens on a
microscopic scale. The specimens, however, are three dimensional, and this presents prob-
lems for analysis with a conventiona) optical microscope. First, only those structures in or
near the plane of focus are visible. Furthermore, structures just outside the focal plane are
visible, but they appear blurred. Structures farther away from the focal plane are not visible,
but they contribute to the recorded image as well.

The effect of three-dimensionality can be overcome by serial sectioning, a technique
that involves slicing the specimen to produce a series of thin sections that may be studied
individually to develop an understanding of the three-dimensional structure of the specimen.
Serial sectioning has two major disadvantages: a loss of registration that occurs when the sec-
tions become separated after slicing, and an unavoidable geometric distortion as the slices are
processed. The latter includes stretching, curling, folding, and tearing of the thin sections.

In many applications, it would be advantageous to obtain a three-dimensional display
of the biological specimen. A three-dimensional display is important because improper
interpretation of two-dimensional section images has led to a variety of misunderstandings
of structure {2]. A three-dimensional display can be produced by digitizing the specimen
with the focal plane situated at various levels along the optical axis (optical sectioning) and
then processing each resulting image to remove or reduce the defocused information from
structures located in neighboring planes. In this section, we address the use of digital image
processing for deblurring optical section images and for three-dimensional display of the
optically sectioned specimen.

22.2.2 Thick Specimen Imaging

Figure 22-2 diagrams the optical system of a microscope imaging a specimen of thickness
T.The three-dimensional coordinate system has its origin at the bottom of the specimen, and
the z-axis coincides with the optical axis of the microscope. The lens-to—image-plane dis-
tance d;is fixed, and the in-focus plane falls at z = 7', a distance dsbelow the center of the
lens. The image plane has its own coordinate system (x', y'), with its origin on the z-axis.
The focal length of the objective lens determines the distance d;to the focal plane

from the lens equation

1, r_1

ity (H
This, in turn, determines the magnification, or power, of the objective:

d;

= ‘Tf (2)
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Since the image distance d; and the focal length f are fixed, the focal plane may be placed
anywhere within the specimen simply by moving the specimen up and down as a unit. Thus,
we can place the focal plane at any desired level z'. The focal length of the objective is
related to the other microscope parameters by

d; M did
= i 2 g4, = Z8f
4 M+1 M+17 di+d @

and the distance from the center of the lens to the focal plane is

d _M+1 fd;
%=t T )

For this analysis, we assume that the specimen has been stained with a fluorescent dye, and
this produces a three-dimensional distribution of brightness throughout the specimen. The
analysis of a light-absorbing specimen is similar.

We can describe the intensity (brightness or optical density) distribution by the func-
tion f(x, y, z). We denote the (two-dimensional) image that results when the focal plane is
located at level z'by g'(x’, y', z').
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The dimensions of interest are those of the specimen, not those of the magnified
image. Since we are processing a digital image anyway, it is more convenient to refer all
scale factors (pixel spacing. spatial frequency, etc.) to the coordinate system of the speci-
men rather than that of the image plane. This also simplifies the notation.

We define an ideal (distortion-free) projection from the image plane back into the
focal plane. This projection of g'(x’, ¥', z') to form g(x, y, z’) counteracts the magnification
and 180° rotation introduced by the imaging projection, and it places the image back intothe
coordinate system of the specimen. Thus. a point at x, y, z in the specimen volume images
toa point at x, v, z'in the focal plane. We are ignoring the slight change in magnification that
is produced by defocus.

We now wish to establish the relationship between the image gix, y, ') and the spec-
imen function f(x, y, z). Figure 22-3 illustrates the simplified case, where the specimen has
zero intensity, except in the object plane located at z = z; that is,

flx,x2) = fi(x, »&z-z) (5)
This corresponds to two-dimensional imaging with the object out of focus by the amount
7, ~ 2", Since a defocused lens is still a tinear system, we can write the convolution relation
g5 3,2 = fley,z) *h(x y,2-2) (6)

where A(x, v, z; = 2') is the PSF of the optical system, defocused by the amount z; - 2",

We can model the three-dimensional specimen as a stack of object planes located at
small intervals Az along the z-axis, that is,

;Ti Zg.’(xt,\:z»

Object plane
Axy.z) Z 7‘4 d—T—
£13.2) + —2_ 4
—+3 Xy ——j—_L Figure 22-3 Imaging a planar

Focal plane specimen
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N
N flxvinnAz (7)
i=1
where
7
N=— 8
Az @

The image of this stack obtained with the focal plane located at 2" is the sum of the individual
plane images: that is.
N
g 3. 2) = Y Flx v iAz) % h(x, v, 2"~ iA2)Az 9)
i=1
If we substitute z = Az and take the limit as Az approaches zero (and N approaches infinity),
the summation becomes an integration, and Eq. (9) reduces to
T
gy, 2y =] floy ) *xh(xy ' -2)de (10
0
If we specify that f(x, y, 2) is zero outside the field of view and outside the range 0<: < T,
and write out the two-dimensional convolution, we are left with

g,y ) = J J‘ J‘ SOy DR -x y-y, - dx dy' dz an

Thus, microscope imaging of a thick specimen involves a three-dimensional convolution of
the specimen function with the PSF.

22.2.3 Deblurring Optical Section Images

We now seek a means of removing the defocused information from optical section images.
In other words, we wish to recover the function f(x, y, z) from a series of images g(x, v, )
taken at different focal plane levels z". While this approach faces theoretical limitations
(3.4}, it can be done well enough to make it an important tool in biological research, par-
ticularly fluorescence microscopy.

22.2.3.1 Deconvolution

We could recover the specimen function by three-dimensional deconvolution, subject to the
restrictions imposed by zeros in the transfer function. Transforming Eq. (11) yields the fre-
guency domain relation

Gu,vow) = F(u, v, w)H(u, v, w) (12)
where u, v, and w are frequency variables in the x-, y-, and z-directions, respectively. The
spectrum of the specimen function is

Flu,v,w) = G(u, v, wyH (4, v, w) (13
where

1

H(u,v.w) = m

(14)

is the inverse three-dimensional OTF.
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Transforming back to the spatial domain yields
f(x,y,2) = g(xy,2) 3 K (x,y,2) (15)
Writing out the z-component of the convolution integral produces

f(xy,2) = I g(x, v, ) * k' (x, v 2-2")dZ (16)
where ¢’ is now a dummy variable of integration.

If we make the z-axis discrete by dividing it into intervals Az by letting z = jAz, 2" = iAZ,
and dz' = Az, Eq. (16) becomes

FO6, j8) = Y gla A7) ¥ 1 (%, y, jAz- iA2)AZ an
|= oo
When the focal plane moves outside the specimen (i < 0 or i > N), the information content
of the resulting image becomes rather meager (except at low frequencies, as discussed
later). Thus, we can approximate Eq. (17) by the finite summation
N+
f(x,y, jAy) = z g(x,y,iAz) * h'(x, y, jAz- iAZ)Az (18)
i=-M
where M is some positive integer. This reduces the restoration of each object plane to a finite
summation of two-dimensional convolutions.

While three-dimensional deconvolution might result in restoration of the specimen
function f(x, y, 2), it is fraught with difficuities. First, there is the complexity of computing
the spectrum of the three-dimensional PSF. Second, there is the computation of h'(x, y, 2),
the inverse three-dimensional transform of Eq. (14). Finally, Eqg. (18) also represents con-
siderable computational effort, especially if Az is small and if N + 2M must be large in order
to enclose the specimen.

22.2.3.2 Simultaneous Equations

For a second approach, let us again approximate the specimen by a stack of object planes
separated at equal intervals Az along the z-axis. We generate a series of optical section
images by digitizing the specimen repeatedly while moving the focal plane up the z-axis in
the same increments Az. We make the substitutions

Z = jAz I<j<N dz = Az (19)
and the jth section image is obtained from Eq. (9); that is,

N
g(x,y,jd2) = Y f(x,y,iA2) *h(x, v, iAz- jAD)AZ 20)
i=1
where h(x, y, z) is assumed to be approximately symmetric in z.
We can simplify the notation by temporarily dropping x, y, and the constant Az as
understood and writing i and j as subscripts. With these changes, Eq. (20) becomes

N N-j
g = fivh, = Y fi,*h @n

i=1 i=l-j
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This states simply that the jth section image is a sum of convolutions of the various speci-
men planes with the appropriate defocus PSFs. (Recall that (i — /)Az is the defocus distance.)
We can simplify the situation by taking the two-dimensional Fourier transform of
Eq. (21). This moves us from the spatial to the frequency domain, where convolution cor-
responds to multiplication. By definition,
G, = Flg(x,y. jAn}  F = F{f(x, y,iA2)} H, = F{h(x, y, iA2)} (22)
and Eq. (21) becomes
N-y
G = 3 fiH @3)
i=1-j
Given a set of optical section images, G, for | << N, Eq. (23) represents a set of N simul-
taneous linear equations in N unknowns. Thus, we have a second possibility for recovering
the specimen function f(x, v, 2): We could use Cramer’s rule or some other such technique
to solve the system of equations represented by Eq. (23) for the F;'s. The computational
complexity of this task, however. is formidable. In reality, £, G;, and H; are two-dimen-
sional functions of frequency. Hence, the system of equations would have to be solved for
every sample point in the (two-dimensional) frequency domain. While this could be done
(provided that a solution exists), it is questionable whether the results would justify the
computational expense.

22.2.3.3 An Approximate Method

Rather than an exact solution, which recovers the specimen function completely, what may be
of more practical use is an approximate method that significantly improves the situation at rea-
sonable expense [5,6). We now abandon the notion of an exact (and consequently simulta-
neous) solution and seek instead to develop a simpler technique that yields good performance.

Let us pull the / = 0 term out of Eq. (21), leaving two summations, one for positive i
and one for negative i. We have

-1 N-j
g = rhot 3 S rhi+ Y S *h 24)
i=1-j iz
which may be rearranged as

-1 N-j
fj*h()‘_‘g;‘ Zfi+j*h:—zfi+)*h: (25)
i=i-j i=1

where hy is the in-focus PSF of the microscope. This equation states that the specimen at
level j, convolved with the in-focus PSF, is given by the image at level j minus a sum of
adjacent specimen planes that have been blurred by out-of-focus PSFs &;. In this summa-
tion, i represents the distance between the focal plane and the object plane.

Eq. (25) suggests that we can recover the specimen at level j by subtracting, from the
image at level j, a series of adjacent specimen planes blurred by the defocus transfer func-
tion. We do not have available the adjacent specimen planes f;,;, but we do have access to
the adjacent plane images g;, ;.

We see from Eq. (24) that each image contains the corresponding specimen plane plus
a sum of defocused adjacent specimen planes. Since the defocus transfer function tends to
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discriminate against high spatial frequencies (fine detail), but passes low-frequency infor-
mation, we can make the general statement that the image spectrum G; contains the speci-
men spectrum F; plus excess low-frequency information from adjacent planes. The farther
away the planes are, the less medium-frequency information they contribute, but the very
lowest frequencies accumulate, in the image, from all the planes.

We can approximate the specimen f; by a highpass—filtered version of the image g;;
that is,

1= ky (26)

where k, is some heuristically determined highpass filter with a transfer function that takes
on the value zero at zero frequency and unity at the high frequencies of interest. This will
remove the large amount of excess low-frequency information and make the approximation
reasonable. If, furthermore, we ignore the blurring effect of the in-focus PSF, we can write
the following approximation to Eq. (25):

-1 N-j
fi=8i- Z gwj*k()*hl_zgi+j*k0*hl (27
i=1-j i=1
It may be necessary to use only some small number M of adjacent planes to remove most of
the troublesome defocused information. Eq. (27) then becomes

M
Lm0 = 8- Y g b g H ) vk (28)
i=1
This suggests that we can partially remove the defocused structures by subtracting 2M adja-
cent plane images that have been convolved with the appropriate defocus PSF and a high-
pass filter ko. The filter and the number M of adjacent planes must be selected to give
reasonable results. While we cannot expect this technique to recover the specimen function
exactly, it does improve optical section images at modest expense.
Figure 224 illustrates the results of the foregoing simple deblurring algorithm for
optical sections. The algorithm involves only the two adjacent plane images (M = 1) and
is (5]

fi=58-2(g;_1+8s1)*h (29)
where h, is a PSF that approximates the blurring due to defocus by the amount Az.

Figures 224 (a) through (c) show three digitized optical section images of a Golgi
stained (silver-impregnated) horizontal cell in the catfish retina (Az = 5 p). The blurred
upper and lower plane images appear in Figure 22-4(d) and (f). The result of deblurring
Figure 22-4(b) with Eq. (20) is shown in Figure 224 (e). Notice that structures which
appear only in Figure 22—4(b) are preserved at full contrast, while defocused structures
from adjacent planes are removed. Structures visible in all three planes have lost some of
their contrast because the excess low-frequency information was not removed from adja-
cent plane images (i.e. Eq. (26) was not used).

Extensions of this technique (7] have come into relatively common usage and are
available on several commercial systems. Their main advantage is that they yield signifi-
cantly improved three-dimensional images with only about one second of processing time
required [7].
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PSF, yields approximately the recorded image [7]. The convergence of the technique is
improved if one or more constraints are imposed upon the solution. The most common con-
straint is that the specimen function must be nonnegative. Here, we no longer have a linear sys-
tem, and enforcement of such constraints can possibly lead to resolution beyond the diffraction
limit. (Recall Sec.16.3.}

Starting from an initial approximation, f,(x, v, <), the error that remains after the ith
iteration is (Recall Eq. (21))

(e v, 2) = g(x, y, 1) — f(x, . ) * hix, v, ) (30)

where fi(x, v, z) is the ith approximation of the specimen function, g(x, y, z) is the recorded
image, and h(x, y, z) is the (known) three-dimensional PSF.

After each iteration, the estimate is updated by some process based on the error func-
tion. For example, an additive correction is

fraeyd) = fil y 0+ 8., (x5 2) 31
where & . ((x, y,z) is the update. Then the constraints are imposed. In this case,
fiolny, 220 32)

is an appropriate restriction for the estimate of the specimen function,
Agard, et al. [7] have used

&.1(x6y.2) = ¥(x y, Delx, y,2) (33)
for the update, where

Uity 2+ hix. »2)- Al 34
A .

Yy, z) = 1

is a scaling function and A is a constant.

Faster convergence results, however, when a highpass—filtered version of e; is used
for the update in Eq. (33) [7). We can see why this is true by switching to the frequency
domain and setting the error after the i+1st iteration to zero. We have

E . y(u,v,w) = G(u, v, w) —[i"',(u, viw)+ A (u, v, w)TH(u, v, w) = 0 (35
which can be solved for

E(u,v.w)
H(u, v, w)
This is justa deconvolved version of the previous step’s residual error function. Of course,
deconvolving the error function is no easier than solving the original problem. But the result
indicates that judicious use of highpass filtering, which can approximate the required
deconvolution, will reduce the number of times the correction must be applied.

This method has produced good reconstructions in a variety of biological investi ga-
tions [8]. It requires processing times on the order of one hour.

Ay (e, v, w) = (36)

Constrained iterative least squares deconvolution. A natural way to
pose the three-dimensional reconstruction problem is to find the specimen function f(x. v, z)
that minimizes
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2 i = 1LF = ol G
s
where /. j. and & are the pixel coordinates of the recorded three-dimensional image data and
* represents three- ~dimensional convolution. As betore. the function /(x v, 2) is refined
iteratively.

Three-dimensional imaging is essentially a noisy lowpass filtering (blurring) process,
with the noise introduced after the blurring. [Inage noise sources may well introduce high-
frequency components that do not correspond to any (blurred) physically possible compo-
nent of the specimen. This situation can force the iterative process to include artitactual
high-frequency components in the recenstructed specimen. Impulse noise in g(x. v. 2), for
example, might correspond to physically impossible high-frequency components in
Fix. v, ). Combined with truncation (and often undersampling)—particularly in the -
direction—least squares reconstruction can lead to inaccurate results. Remedies for these
problems include smoothing ,/A'(,\. v, ) between iterations [7] and terminating the recon-
struction process before the high-frequency artifacts build up.

Constrained iterative regularization. A well-posed estimation problem is
an estimation problem in which a solution (2) exists, (b) is unique, and (c) depends on the
input data in a continuous fashion. For the reasons just mentioned, the least squares recon-
struction problem is i1l posed [9].

Regularization is a procedure that secks a solution which approaches the true input
distribution as the amount of noise is reduced and as the image is sampled more finely and
over adarger volume. Applied to the problem under consideration here, it seeks the nonne-
gative function _/A-(L v. 2) that munimizes

2 Q-1 I;],,Ail + aJ‘JJ’If(.\'. v dx dy dz (38)

ik
where ¢is a constant. The second term enforces smoothness on f'(.\'. Y. Z) to prevent noise
in g4 from introducing unwarranted osctllations. The value of « determines the amount of
imoothing. It ais too small, we face the same problems as with least squares deconvolution.
if it is too large. _f(,r, v. 2) will be too smooth to show the detail of interest.

Carrington {9} presents an iterative numerical method for minimizing Eq. (38) that
produces impressive reconstructions [9-12]. Required processing time on a graphics work-
station is on the order of an hour.

22.2.4 The Defocus OTF

The preceding deblurting techniques require a knowledge of the three-dimensional PSF of
the imaging system. We now investigate the behavior of the transfer function of a defocused
optical system.

22.2.4.1 Square Aperture

Recall from Chapter 15 that the OTF of an optical system under incoherent illumination is
the autocorrelation of 1ts pupil function. For a square aperture of width /, the pupil function
with defocus becomes | 13]
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P(x,v) = n(’-l‘]l1(§)e.uum<xm:, 39

where the complex exponential represents the phase disturbance due to the optical path
length error that results from defocus.
The defocus error is [13}

ll [N

e= gt ‘77%:m (40)
The u-axis component of the image plane OTF is {13]
T(u,0) = A(%]sinc[lzi( I 'M)H @
where
fe = ﬁ and sinc(x) = %(Y) 42)

The object plane OTF results if we substitute d; for d; in Eq. (42).

Notice that Eq. (41) is a sinc function in an envelope that is the in-focus OTF. For
€ = 0 (no defocus), the argument of the sinc is zero, and we are left with the in-focus OTF.
Notice also that the argument is quadratic in the frequency variable u. This effects fre-
quency modulation of the sinc. The “frequency” of the sinc decreases linearly to zero as u
goes from zero to f,.

22.2.4.2 Circular Aperture

For an optical system with a circular aperture of radius A, the pupil function with defocus
becomes

P(r) = H(z—'A)eﬂ‘“"z/"z k = 27? 2= xt+)? (43)

where the defocus is specified by the maximum path length error {14]

w = —d;-8zcos o+ (d? + 2d;67 + 822 cos? )'? a = arc tang (44)

and the image is recorded on a plane located d; + & behind the lens. Hopkins [15] shoved
that the recording plane OTF of a defocused optical system is given by

Ty(s) = %cos(%u.v){ﬁl,(ah— 2(4)””“"‘“”’ (J,, ,(a)- sz(u))}

(45)
4 R$in [(2n+ )]
sm( m)zﬂ( 1) B PO [2n(a) = Ty, , y(a)]
where
a = 2kws B = cos lf% 5 = % g* = ut 4t fo = %3-’ (46)
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Stokseth [14] derived an approximation of the form

Tits) = (1 - 0.695 + 0.0076s +0.043s7) jinc [4kw( t- % )%J (47
where

Jix
jinc (x} = 2—'%‘—) and |s] <2 (48)

The coefficients of the third-order polynomial in Eq. (47) were selected to make the approx-
imation accurate at large values of defocus (w 2 51). At zero defocus (w = 0), the jinc term
is unity, and the polynomial differs only slightly from the in-focus OTF.

In deblurring optical sections, we are interested primarily in the adjacent planes,
where defocus is relatively small. We can make the approximation more accurate for small
defocus by substituting the in-focus OTF for the polynomial [16]. This produces

e q)~ LB - sin2B)ji ( ,M)i]
Hiw, q) 7(( B~ sin2f)jinc [4ku 1 7T (49)
Note the similarity between the approximate OTF for a circular aperture in Eq. (49) and the
OTF for a square aperture in Eq. (41). This approximation is accurate at zero defocus and
differs less than 1 percent from Stokseth’s approximation at w = SA.
Figure 22-5 illustrates the effect of defocus on the OTF. Curves were computed from
Eq. (49) for several amounts of defocus w. As expected, the OTF narrows markedly with
defocus. The circularly symmetric OTFs may be inverse Fourier transformed to produce the
defocus PSFs required for three-dimensional reconstruction. Using the Hankle transform
(see Sec. 10.4.5) simplifies this task.

Figure 22-3  The defocus OTF

22.2.5 Microscope Defocus

Eq. (49) allows us to calculate the microscope OTF for various amounts of defocus. Figure
22-6 shows an out-of-focus point source located a distance Az beyond the focal plane of a
microscope. While it casts an out-of-focus image on the image plane, it produces an in-focus
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-locus [

Figure 22-6 A defocused optical system

image at a point & in front of the image plane. Like d; and dj, these two distances must satisfy
the lens equation

11 .1

Fo d,‘-+Az+d,»+ 52 0
Therefore,

= 4,198y

&= di-g N

and
d; - &
Az = %Z_}_d, (52)

relate the out-of-focus distances on both sides of the lens. Given a specimen-space defocus
value Az, we can calculate the corresponding & to use in Eq. (44). We must also ubstitute
d; - & for d; in Eq. (44), since it is now the location of the in-focus image plare. Then
Eq. (49) gives the defocus OTF. The defocus PSF.can be obtained with an inverse Fourier
transformation.

22.2.5.1 High Magnification

Working with high magnification (M >> 1) and small defocus (& << d;), one can make some
approximations that simplify some of the preceding formulas significantly. In Eq. (44) a&
a small angle, and the third term in parentheses is by far the smallest of the three. Thus, we
can replace cos?(c) with 1, and that equation simplifies to

w = 8[1 - cos(a)) (53)
The double-angle formula for the cosine allows us to write

w = 282 sinz(g) G4



Sec.22.2  Three-Dimensional tmaging 579

and since, for angles less than about 0.2 radian, the sine and the arc tangent are approxi-
mately equal to the angle,

w=&%% = %:arclanz(dMé)= &ZN_A/;i (55)
Moving now to object space, expanding Eq. (52) over a common denominator yields
_ fdi- foz~dids + b2d; + fd;

- di-6-f

The denominator is dominated by d,. so we can neglect the other two terms. When we do,
the result can be written as

Az

(56)

4 f fdf
=82 - +f+ 5
Az 5|: : :] f 7 ds (57)

Using the relations in Sec. 15.2.1, one can show that the last three terms of Eq. (57) sum to
zero, while the first reduces to &[1/M — 1/(M + 1)], so that

sefl o1 .6
AZ"&[M M+l] = MM+ (58)
or, since M is large,
Az=iz, (59)
M

We now have simple expressions relating the object-plane and image-plane defocus dis-
tances {Eq. (59)] and the defocus path length error to the image-plane defocus distance
{Eq. (§5)]. Substituting Eq. (59) into Eq. (53) yields
2
w = aMA (60)
2

which relates the defocus path length error to the specimen-space defocus distance. Note
that the approximations involved in this development introduce errors on the order of /M.
or about one percent at 100x. The exception is the approximation that leads to Eq. (53). Its
effect is illustrated next.

22.2.5.2 An Example

Consider a 100%, 1.2NA oil immersion (n = 1.6) objective in green (A =0.55 p) light. We
seek to determine the object-space defocus distance that produces a quarter-wavelength
defocus error and to determine the resulting defocus OTF and PSF.

Assuming that the optical tube length 4, is 200 mm, and using equations from
Sec. 15.5.3, we find the values shown in Table 22--1. One-quarter wavelength of focus error
(w = A/4) yields Az = 0.191 u for the corresponding defocus distance. Figure 22-7 shows
how quarter-wave defocus affects the OTF and the PSF.

Figure 22-8 shows, under this set of conditions, the relationship between the specimen-
space defocus distance Az and the defocus error w, using both the exact [Eq. (44)] and the
approximate [Eq. (60)] expressions for w. Although w is negative for negative Az, the defocus
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(@

(b)

(d)

Figure 22-7 The effect of defocus on the psf and OTF: (a) in focus; (b) 1/4-
wave defocus; (c) 1/2-wave defocus; (d) 3/4-wave defocus

TABLE 22-1 CALCULATIONS FOR THE MICROSCOPE DEFOCUS EXAMPLE

d;

df=;{=2mm f=M+1=1.98mm
9 = tan"{(NA) = 50.2° A = d;tan(6) = 2.4 mm
afA D 2NA _
a=lan’[—:|=0.69" fc-T—4‘36°Pl~\
d;
8z = M _ WM 1.91 mm A= % -0 u

NAT  NA? M
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OTF [Eq. (49)] is symmetrical in w, and the sign has no effect. Notice that the approximate
expression for w is symmetrical in Az, whereas the exact expression is not. This is the result
of the approximation [Eq. (53)] that paved the way for significant simplification of the exact
expression. Notice also that, for small amounts of defocus (in this example), there is roughly
one wavelength of defocus error per micron of specimen-space defocus distance.

——

Path
length
error(i)

Figure 22-8 Defocus path length
error versus defocus distance in
specimen space, exact and
approximate formulas (100x, 1.2NA
Defocus (ym) ———» objective. green light)

22.2.5.3 Depth of Focus

The quarter-wave defocus OTF in Figure 225 can be taken to be the limit of useful reso-

lution of the defocused microscope. If we establish one-quarter wavelength of defocus error

as the limit of the focal depth of the objective { 17], then the depth of focus is, from Eq. (60),

DOF = Az{%) = —L (6l)
4/ 2NA*

22.25.4 Practical Considerations

Notice in Eq. (49) and Figure 22-5 that the OTF becomes narrower with increasing
amounts of defocus, but does not lose amplitude at zero frequency. Thus, as a point source
goes out of focus, its image becomes larger and dimmer, but its integrated brightness
remains approximately the same. This can be demonstrated in the fluorescence microscope
with subresolution fluorescent beads [7,11]. The phenomenon gives rise to a z-axis trun-
cation problem that affects low spatial frequencies. If the series of optical sections is taken
through less than the entire specimen block, then structures outside the imaged area will
contribute {low-frequency) information to the image. The reconstruction algorithm may be
affected by this information. For many applications the lowest frequencies are of little
interest, and such errors in the reconstruction are tolerable. Since noise tends to dominate
the highest frequencies, it is the medium-frequency information that is reconstructed most
accurately.

One can also determine the three-dimensional PSF experimentally in the fluorescence
light microscope by digitizing a series of defocus images of a subresolution fluorescent
bead [7,11,18]. While this is subject to noise and sampling constraints, it avoids the approx-
imations inherent in diffraction theory, and it accounts for any asymmetry and aberrations
in the optical system. Done carefully, such an approach can yi~ld superior reconstruction
performance [7).
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22,3 COMPUTERIZED AXIAL TOMOGRAPHY

Biological tissue, including the human body. is opaque to light in the visible spectrum,
except in very thin sections. Biological tissue does, however, transmit X rays. Some struc-
tures in the body—bones, for example—absorb X rays more heavily than other structures.
Conventional radiography (Figure 22-9) produces an image in which the three-dimen-
sional structures in the body are projected onto a plane and superimposed upon each other.
In radiography. no lens is involved, but rather, the subject stands between a point source
and the recording film. The structures in the body cast superimposed shadows on the film.
This creates difficulty in interpreting the multiple overlapping images of different struc-
tures. Radiologists frequently use multiple views (X rays taken at different angles) to
resolve ambiguities.

-

~
X-Ray
source

Subject

Film —-

Figure 22-9 Conventional radiography

22.3.1 Tomography

Conventional tomography is an X-ray technique that isolates objects in a particular plane of
interest (Figure 22-10). Tomography employs a source and film that move during the
exposure. In Figure 2210, the source moves down while the film moves up in such a way
that any point P in the plane of interest always lies on a line connecting the source withthe
corresponding point P’ on the film. Structures outside the plane of interest become blurred
because their images on the film move during the exposure. Objects near the plane of inter-
est are blurred less than remote objects. The technique is useful where image detail is
required in deeply imbedded structures, such as those of the middle ear. One disadvantage
is that the required X-ray dosage is usually higher than in normal radiography.

22.3.2 Axial Tomography
Computerized axial tomography (CAT) is a technique that incorporates digital image
processing to obtain three-dimensional images [19-24]. The devices involved, com-

monly called CAT scanners, reconstruct the three-dimensional image of the X
ray-absorbing object.
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4 Focal plane
/ P

Moving source

l—Moving
film
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\

Subject

Figure 22-10  Conventional tomography

The technigue is illustrated in Figure 22-11. A planar X-ray beam penetrates the
object, and the transmitted beam intensity is measured by a linear array of X-ray detectors.
This produces the transmitted intensity function shown in the figure. A series of these
intensity functions is recorded as the apparatus rotates about the object through a small
angle between each exposure. A complete series would cover 180° of rotation in steps of
from 2° to 6°.

ODJem Detector .
array Transmitted in ensny
)
o o
X-ray
e Figure 22-11  Axial tomography

The resulting set of one-dimensional intensity functions is used to compute a two-
dimensional cross-sectional image of the object at the level of the beam. This process is
repeated as the beam-detector unit is moved down the object in small steps, producing a set
of cross-sectional images that can be “stacked” to form a three-dimensional image of the
object.

The projection process is described analytically by the Radon transform 25], given by

d.(p, 8) = I J. d(x, v) 8l x cos(8) +y sin(8) - sldx dy (62)

where d(x, ) is the aehsny distribution of the object in the plane at level z and the beam direc-
tion forms an angle 6 with the y-axis (Figure 22-12). For any p and 6, the value of d,(p, 6)
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dip.t)
Density

Detector array \ Junction

Object %/{ >
/

Dig.8)

Figure 22-12  CAT reconstruction

is the amount ot density that falls along the line that passes within a distance p of the origin
and is oriented at an angle 6 with the y-axis. For aty 8, d,(p, ) is the {one-dimensional) pro-
jection of d(x, y) onto a line ortented at an angle 6 with the x-axis.

22.3.3 Image Reconstruction

Figure 22-12 illustrates the Fourier transform technique for CAT image reconstruction. The
transmitted intensity function is used to compute the projected density function d(p, 6) using

{,
d,(p. 6 = log {l(p 9)] (63)

where I, is the incident beam intensity and /(p, 6) i¢ the transmitted intensity at position p
along the linear detector array.

Under the similarity properties of the two-dimensional Fourier transform (see Chap-
ter 10), we can write

F{d,(p. O} = D.(q. ) (64)
where 8is an angle measured with respect to the u-axis,
g = Nl +v? (65)
and
D(u,v) = F{d(x, y)} 66)

Thus, each projected density function d,{(p, 6) yields a function D, (g, 6) that is a radial slice
through the two-dimensional Fourier transform of the object. A set of D, (g, 6,), where 6,
covers 180° in small steps, can be interpolated to determine D (x,v) approximately. This, in
turn, can be inverse transformed, yielding d(x, y). Performed over a range of z, the technique
produces d(x, y, 2), the three-dimensional X-ray density image of the object.

Some CAT scanners use simpler, though less exact, reconstruction algorithms to
reduce the computational load. The simplest such algorithm is back projection. The back
projection operation [25] is

R
b(x,y) = J d, [xcos (8) + ysin (6), 8] d6 67

0
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With this technique. each projected density function d,(8, p) is expanded (projected back)
along the beam axis to form a two-dimensional image containing bars parallel to the axis.
When all such images at one z-level are superimposed (summed), one obtains an approxi-
mate reconstruction of a cross section at that level. The reconstructed function b(x, ¥) is
actually d(x. y) blurred by a PSF having the form

hix, v) = (68)

l
Jilay?
While simple back projection was used in early CAT scanners, modern instruments use
more accurate methods. These methods are commonly implemented by highpass filtering
each (one-dimensional) projection prior to back projection. Using a filter with an MTF that
increases with frequency linearly from zero produces the inverse Radon transform {25},
which reconstructs d(x, v).

The accuracy or resolution obtained by a CAT scanner depends on several parame-
ters, including (1) how finely the projected density function is sampled, (2) how finely it is
quantized, (3) the reconstruction algorithm used, (4) the interpolation method used, (5) the
beam thickness, and (6) the sample spacing in the z-direction.

As in other radiography techniques, noise presents a problem in axial tornography. The
principal noise source is due to the random distribution of photons in the illuminating beam.
This effect is called quantum mottle in radiology. It is a result of the necessarily low exposure
dosage to the patient and is similar to photoelectronic noise, discussed in Chapter 16.

Lowpass or median filtering of the reconstructed cross-sectioned image discriminates
against the random noise. but at the expense of resolution. Thus, in each case, there iv a
trade-oft between noise and resolution. The techniques discussed in Chapter 16 are gener-
ally applicable. The noise situation can also be improved by higher beam energy. However,
while this is practical in nondestructive testing of mechanical components, thereis a clinical
rade-off between image noise and X-ray dosage to human subjects.

22.4 STEREOMETRY

Stereometry is a technique by which one can deduce the three-dimensional shape of an
object from a stereoscopic image pair. To do this, one must model the geometry of image
formation. Figure 221 diagrams an object, a light source, and a camera system. We estab-
lish a three-dimensional coordinate system centered upon the optical center of the lens sys-
tem. The optical axis of the camera coincides with the z-axis.

The object of interest is an opaque surface in front of the camera. Depending on the
reflectance of that surface. a portion of the light striking it is reflected, scattering in all direc-
tions. Some portion of the scattered light passes through the lens aperture and forms an
image of the object at the image plane of the camera.

If the image is to be digitized, we can think of the image plane as being covered with
an array of pixels. In Figure 22—1. one of the pixels is projected back through the lens to form
an image of that pixel on the object. The projection of the pixel forms a pixel cone, extending
out from its apex at the center of the lens until it encounters the first opaque surface.

The pixel cone’s intersection with the object defines that region of the object to which
the pixel corresponds. A portion of the light incident upon the pixel's image is scattered
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back into the lens aperture. All of this light is converged by the lens to fall upon the given
pixel and thus to determine its gray level.

In addition to brightness, we can associate another value with the pixel in question.
The distance from the center of the lens to the point p defines the range of this pixel. Notice
that if other surfaces lie behind the object, they are obscured. Thus, the range of a pixel is the
distance along its pixel cone from the center of the lens to the first opaque surface encoun-
tered. We can generate a range image by assigning each pixel a gray level proportional, not
to its brightness, but to the length of its pixel cone.

22.4.1 Stereoscopic [maging

Figure 22-13 diagrams a dual camera configuration suitable for stereoscopic imaging. A
three-dimensional coordinate system has its origin at the center of the lens of the left cam-
era. In this example. the optical axes of the two cameras are parallel and lie in the XZ-plane.
Under these conditions, the cameras are said to be boresighted. The Z-axis coincides with
the optical axis of the left camera. Both camera lenses have focal length £, and they are sep-
arated by the distance d.

22.4.1.1 Range Equations

Suppose the point P, with coordinates (X,,, ¥,, Z,), is situated in front of the cameras, casting
an image on both image planes. Then, using similar triangles in the XZ-plane and in the YZ-
plane, we can show that a line from P through the center of the left camera leas will intersect
the Z = —f (image) plane at

Xo=-x4  v=ord

( ‘0

Similarly. a line from P through the center of the right camera lens will intersect the image
plane at

(69)

X, = - (X, +dy L - v, = -v,L

! Z, " °Z,

We now set up a two-dimensional coordinate system in each image plane. It is convenient

to have each of them rotated 180° from the main coordinate system, so as to counteract the
rotation that is intrinsic to the imaging process. Thus,

(70)

Left camera
X,
' Origin
‘{ Zo
d e——f
R

1 ,x, T

Right camera

P
XoYolo

Figure 22-13  Stereoscopic imaging
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x =X w=-Y x, = -X,~d ==Y, an

Now the coordinates of the point images are

f f
=X, = =Y,= (72
Y; 7z W 52 )
and

S IR 3)

Notice that the y-coordinate of the point is the same in both images.
Rearranging Eqs.(72) and (73) allows us to write
V4

Z
=x= = x—2-d (74)

XU f f

Solving this for Z, produces

7, = 44 (75)
X, =X
the normai-range equation. This equation relates the normal component Z, of range to the
amount of pixel shift between the two images. Notice that in Eq. (75) Z, is a function only
of the difference between x, and x,, and not their individual magnitudes. Since Z, must be
positive, x, 2 x;. Notice also that the numerator may be rather small compared to Z,,. This
implies that the denominator (the pixel shift) will be extremely small for large Z,. Thus,
small inaccuracies in determining the position of a feature in the two images can produce
large errors in range calculations.
Again using similar triangles, this time in three-space, we can write

2, 2442
R _Aff+xi+y (16)
Z, f
Rearranging and substituting Eq. (75) for Z, produces
R = dyf’+xf+y a7

X, ~x;

which is the true-range equation. This gives the total distance from the origin to the point
P. For narrow-angle (telephoto) systems, X,, Y, << Z,, and x; and y; are small compared to
f. Then Eq. (77) can be approximated by Eq. (75).

Given corresponding pixels in the left and right images, one can calculate either the
normal range from Eq. (75) or the true range from Eq. (77). However, it is a nontrivial task
to find the value of x, that corresponds to each x;, particularly in view of the high level of
accuracy required.

22.4.1.2 Range Calculations

Stereomeltric ranges can be calculated in the following way. First, for each pixel in the left
image, determine what pixel position in the right image corresponds to the same point on the
object. For a boresighted system, as diagrammed in Figure 2213, this can be accomplished
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on a line-by-line basis, since any point on the object maps to the same vertical position (and
hence to the same scan line) on both images. Next. calculate the difference x, — x; to produce
a displacement image, in which gray level (properly scaled) represents pixel shift. Then,
using the displacement image. calculate Z, at each pixel by Eq. (75) to produce a normal-
range image. Finally. celeulate the X-coordinate and Y-coordinate of each point by

X, = .x‘;i’ Y, = y,z—” (78)

! of

The foregoing procedure allows us to calculate the X,Y.Z-coordinates of every point on the
object that maps to a pixel in the camera. Using Eq. (77) to compute R as a function of X and
Y produces atrue-range image. In either case, we have succeeded in mapping the visible sur-
face of the object in three dimensions.

In Figure 22-13. the cameras are boresighted. Except in cases where Z,, 1s much larger
than d. it may be necessary to converge the cameras to ensure that their fields of view over-
{ap to include objects in the near field. In a converged system, the camera axes are not par-
allel, but conrverge to some point in the XZ-plane. In this case, the same techniques apply,
but the range equations are slightly more complex. If the two camera axes do not evenlie in
the same plane, the situation is even more complex | 26]. Sometimes it is necessary to deter-
mine the camera geometry from a stereo image pair. This can be done by a least squares fit-
ting procedure that uses six or more points ot known X,¥,Z-position to determine the
imaging geometry of each camera [26-28].

22.4.2 Stereo Matching

Figure 22—14 llustrates a technigue that can be used to locate the right image pixel position
that corresponds to a particular left image pixel. To obtain accurate range information, one
may have to do this with sub-pixel accuracy. Suppose the given pixel in the left image has
coordinates x, v, We fit imaginary windows around that pixel and the pixel having the same
coordinates in the right image. Next, we compute a measure of the agreement between the
images inside the two windows. This can be calculated using cross-correlation, a sum of
squared differences, or a similar technique. In any case, the image agreement measure
should reach a maximum when the two windows contain the same features.

We repeat the process as the window in the right image moves toward the right. At
some point, the moving window will be centered at x,, v, and will contain essentially the same

X X Xy
i 1 4
T T T
— |

+ 8
| S
—
\__ __Stationary Moving /

window window

Leftimage Right image

Figure 22-14  Pixel shift calculation
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detail as the fixed window in the left image. When this happens. the image content in the two Figure 22-16 shows a stereo pair from the Viking Lander. Stereometry was used in
windows is approximately the same, and the measure of image agreement is maximized. the near field to establish a set of grid lines on the surface.
Noise in the images tends to corrupt the image agreement measure. The situation

can be improved somewhat by increasing the size of the correlation window. Doing so
reduces the resolution of the resulting range image, however, since large windows tend to
smear over abrupt changes in range. Thus, the window size should be as small as possible,
consistent with maintaining a low probability of miscalculating the pixel shift. The pixel
shift calculation is also more reliable if the surface of the object exhibits considerable tex-
ture or high-frequency detail. it is very difficult to determine the range of a smooth sur-
face. Sometimes it is helpful to project a random texture pattern onto such a surface to
achieve an accurate range measurement.

22.4.3 Stereometry with Wide-Angle Cameras

The Viking Mars Lander spacecraft employed stereoscopic imaging. Each Lander had two
digitizing cameras spaced | meter apart. In these angle-scanning cameras, however, the pix-
els were equally spaced in azimuth and elevation angle, rather than being equally spaced in
the image plane. Thus, the coordinates of a pixel are given by the azimuth and elevation . v ol =
angles of the centerline of its pixel cone. As illustrated in Figure 22-135, the azimuth is the
angle between the yz-plane and a vertical plane containing the pixel cone axis. The elevation
angle is the angle between the xz-plane and a plane containing the x-axis and the pixel cone
axis. The reference axes (zero azimuth, zero elevation) of the two cameras lie parallel to
each other in the xz-plane.

Using the geometry in Figure 22-15, we can write the normal-range component in
terms of the two camera azimuth coordinates 6;and 6, as

d

.= 79
© 7 n6,—anb, )

The two remaining coordinates of the point P are given by

Figure 22-16  Stereo pair of images from Viking Lander camera (courtesy
X = ztan$, (R0) NASA/JPL)

and Stereoscopic camera systems for robots sometimes employ fish-eye lenses which

y = ztang, @« cover a wide angular field of view, but produce distorted images. (See Sec. 8.4.2.) Here it

) ) ) ) is necessary to rectify the images prior to stereometry [29,30].
where ¢, is the elevation coordinate and is the same for both cameras. i ¢ g p o 12930

22.5 STEREOSCOPIC IMAGE DISPLAY

cal;ﬁ:va |:_____ P N A three-dimensional scene can be re-created for a viewer through stereoscopic display tech-
T 5 Z=tan6 niques. This is the basis of the “3-D" movies and stereascopic photography that have been
b popular since the beginning of the twentieth century. It also provides a means of displaying

_l_ three-dimensional digital images, such as biological cells {8].

v X34 _ung,
Rignt 6, T r 22.5.1 Display Geometry
camera

Figure 2217 illustrates the viewing geometry for stereoscopic display. The stereoscopic
Figure 22-15  Stereoscopic angle- image pair is positioned a distance D in front of the viewer’s eyes, which are separated by
M scanning camera the interocular distance S. A small feature located at coordinatés x;, v; in the left image and

X,, ¥ in the right image will appear to the observer as if it were located at point P.
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P Figure 22-17  Stereoscopic display

A geometric devclopment similar to that surrounding Figure 22-13 produces a range
relation
DS (82)

X, - X,

which is reminiscent of Eq. (75). The x-coordinates of corresponding points in the two
images are related by

DS
X = x- o (83)
Thisimplies that for distant objects (2 = e), the right- and left-cye coordinates are identical. As
an object is shifted left in the right-eye image, its apparent position moves toward the observer.

Stereoscopic photography is a technique that uses a camera configuration similar to
thdt shown in Figure 22-13 and a viewing apparatus similar to that of Figure 22-17 torepro-
duce three-dimensional scenes. Suppose that the two cameras in Figure 22—13 produce pos-
itive transparencies at the image plane. These transparencies can be rotated 180° about the
z-axis and positioned in front of the observer, as in Figure 22-17. If the relationship

DS = fd 134)
is satistied, the scene will appear as if the observer had viewed it firsthand.

Two conditions must be satisfied to obtain accurate reproduction of a three-dimen-
sional scene. First, there should be converging lenses in front of each of the viewer’s eyes s¢
that the viewer can focus his or her eyes at infinity and still see the two transparencies in
focus. Positive lenses with focal length equal to D are commonly used. Without these lenses.
the viewer must uncouple the learned connection that exists between the focus and the con-
vergence of the eyes. While ane can learn to do this, it is unnatural and uncomfortable.

Second, the viewing geometry is exact only when the viewer’s line of sight falls along
the z-axis. If the viewer fixes his or her gaze on other points in the image, the original scene
is not reproduced exactly. Normally, this approximation is not distracting.

22.5.2 Stereo Display Generation

Suppose the left-eye image and the normal-range image are given, and it is desired to pro-
duce the right-eye image for stereoscopic display. This requires only a geometric transfor-
mation of the form

X, = x- = Y=V (83)
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which is merely a copying operation with variable horizontal shift.

The transformation for a single line of the image is illustrated in Figure 22-18. The
right-eye image is generated by copying the gray level at coordinate x; into the pixel located
at x,. Ateach point (x;, y), the amount of shift is a reciprocal function of the range.

4

\- Fill

g

N » Figure 22-18 The pixel shift
0 Y transformation

It is desirable that x, be a nondecreasing furiction of x,. If this function had negative
slope over some interval, it would produce a right-for-left reversal in the generated image.
As illustrated in Figure 22--18, we can use a horizontal fill technique to remove any local
areas of negative slope.

Ini areas of zero slope, features of finite size in the left image becortie compressed to
a point in the right image. This occurs, for example, when the right eye is looking directly
along a surface that is visible to the left eye. Negative slope in the pixel shift transformation
corresponds to the case in which the two eyes are looking at opposite sides of the same sur-
face. In normal scenes, both of these conditions are rare.

For proper stereoscopic effect and comfortable viewing, one should keep the maxi-
mum pixel shift to no more than about 5 percent of the image width. In this case, the occur-
rence of zero or negative slope in the pixel shift function is quite rare.

Given a monocular brightness image and a range image of a particular scene, one
might obtain a more pleasing stereo display by generating both right-eye and left-eye
images. The right-eye image is generated by Eq. (85), but using only half the prescribed
amount of shift. The left-eye image is generated by shifting an equal amount in the opposite
direction. This technique can produce a superior display for an image containing nearby
objects with considerable shape-related detail.

Figure 22-19 illustrates a stereoscopic image pair produced by a transformation of the
form of Eq. (85). The left-eye image is a grid pattern, and the normal-range image is a Gaus-
sian function. The right-eye image is the one produced by Eq. (85).

22.5.3 Display Quality

The surfaces displayed by stereoscopic techniques should have an abundance of fine detail
or texture to assist the viewer’s eye in the matching process. The human visual system exe-
cutes a process that is apparently similar in effect to that described earlier for stereometric
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Figure 22-19  Stereo pair of a grid

ranging. Thus. smooth (untextured) surfaces are usually difficult to view properly in a ste-
reoscopic display. Artificially introduced surface texture can help.

In stereo work, it is important that the display pixels not be visible. If they are, the
viewer's eyes will be confused in attempting to cross—correlate the pixel patterns in the two
images. This can create visual discomfort and destroy depth perception in the display.
Reproduction of the picture by a screening process can also introduce conflicting texture.
For further discussions of the human visual system in this regard, the interested reader
should consult a text on the subject [31,32).

22.5.4 Display of Optical Section Stacks

A series of optical section images can be displayed as shown in Figure 22-20. The stack of
transparent sections can be observed from any viewpoint specified by an azimuth, eleva-
tion, and range. The section images are projected onto an imaginary viewing screen, where
they are superimposed by summation. The projection is accomplished by a geometric oper-
ation and is illustrated in Figure 22-21. A computer-generated rectangular grid image was
projected with azimuth 60°, elevation 45°.

Figure 22-22 shows two stereo image pairs, each generated by projecting a stack of
retinal cell images for two viewpoints.

22.6 SHADED SURFACE DISPLAY

Shaded surface display is a technique used to generate an image of a three-dimensional
object that exists only as a mathematical description. Although the discipline is usually
thought of in connection with computer graphics [1], it requires a digital image display sys-
tem. Therefore, we introduce this related subject here.
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Elevation

Section image stack

Figure 22-20 Image stack projection geometry

Figure 22-21 Projection of a grid
image
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Figure 22-22  Stereo pair of image stacks

The object of interest is given by a mathematical description, in a three-dimensional
coordinate system, of its opaque outer surface. The user specifies the location of all light
sources and of the imaginary camera that is to generate the image. The latter position is
called the viewpoint. The display algorithm then computes the image that the imaginary
camera would make of the object.

Surface display requires modeling of three things: the spatial description of the sur-
face, the light-reflecting phenomenon at the surface, and the geometry of the light sources
and the imaging projection.

22.6.1 Surface Description

The three-dimensional surface of the object is ordinarily described by a polyhedral approx-
imation [33]. Selected points on the object’s surface form the vertices of the polygonal faces
of the polyhedron. Triangles are commonly used for the faces, since it is always possible to
pass a plane through three points. A planar quadrilateral cannot always connect four points
on a surface. Figure 22-23 shows an image generated using a polyhedral approximation
employing rectangles.

The description of the surface may be in the form of a list describing each polygon by
the three-dimensional coordinates of its vertex points. Such a description is somewhat
redundant, however, since each point is actually the vertex of several adjacent polygons and
thus will appear in the list more than once. The actual format of the file containing the
description of the surface (the polygon file) involves a trade-off between compact storage
and ease of access while computing the projected image. Clearly, the more polygons used
to define the surface, the more accurate the representation will be.

22.6.2 Surface Reflection Phenomena

Figure 22-24 illustrates the reflection of light from a flat surface. A point source at distance »
provides incident light that makes an angle 6 with the normal to the surface. A camera is
located on a line that makes an angle ¢ with the normal. The light intensity falling upon the sur-
face is proportional to cos()/r%.

596 Three-Dimensional Image Processing Chap. 22

(b)

Figure 22-23  (a) Graphic (wire grid) display; (b) shaded surface display
{(courtesy James Blinn, NASA/JPL)

Light
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Reflecting
surface Figure 22-24 Surface reflection

There are two important types of reflection: diffuse scattering and specular reflection.
Diffuse scattering is characteristic of matte or chalky surfaces, and reflected intensity on
these surfaces can be modeled as proportional to cos(¢). Specular reflection is characteristic
of shiny or metallic surfaces. The intensity due to specular reflection can be modeled as pro-
portional to [cos(6 — ¢)]", where n is between 0.5 and 10. The larger values of n make the
surface appear more shiny.

The apparent brightness of a uniformly radiating surface varies as 1/cos(¢) because,
as the viewer moves away from the normal (increasing ¢), the same amount of energy from
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the surface projects into a smaller area of his or her retina. We can now write the reflected

intensity equation as

cos () |

R T T, 5 I - s (6+ ¢)" <B< 6
2 C()Sw){BCOS(fP)'f( B)[cos (8+ ¢} 0 1 (86)

where B and n are surface reflectance parameters and A is a constant of proportionality.

The parameter B determines how the incident light is divided between diffuse and

specular reflection. For a purely diffusing surface, we canlet B = 1. If r is very large, it can

be assumed constant over the extent of the object and can be absorbed into the proportion-

ality constant. Then Eq. (86) reduces to

1 = Ccos(9) 87

a computationally simple surface brightness rule.

I=A

22.6.3 Imaging Geometry

Figure 22-25 shows the model for computing the image of the object’s surface. The cone
from any pixel p projects through the lens, and its axis intersects the surface at some point P
that falls on a particular polygon. Thus, the gray level (brightness) of pixel p can be com-
puted from Eq. (86) if the normal vector to the surface of the polygon at P is known. The
image is generated, pixel by pixel, by first determining upon which polygon the pixel cone
axis falls and then computing the light intensity reflected into the camera using the geometry
of Figure 22-25.

Perhaps the most challenging aspect of shaded surface display is the organization of,
and search algorithm for. the polygon file. The generation of such images can be quite slow
and expensive, particularly if file management is not handled efficiently. Image generation for
real-time display usually requires special-purpose high-speed image-processing hardware.

The image is ordinarily generated in the conventional line-by-line digital image-pro-
cessing fashion. Any image line intersects only a limited number of polygons. Thus, the
search algorithm needs to work with only a few active polygons at a time. If one pixel on the
line does not fall on an active polygon, the previously unused polygons are searched to find

Light
source 7y

— Figure 22-25 Surface display
Pixel geometry
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which one should be activated. If no pixel on the line falls on a particular active polygon, that
polygon becomes inactive. Some pixels may fall on no polygon at all (outside the object),
and these can be set to black or some other background gray level. For more information on
search algorithms, the interested reader can consult a textbook [1] or the literature on com-
puter graphics.

22.6.4 Smooth Shading

The polyhedral approximation to a curved surface produces an artificial appearance in the
computed image (Figure 22-23(b)). The polygon edges represent highly visible discontinu-
ities in brightness. Using a larger number of polygons helps, but it is an expensive remedy.

Goroud [34] advanced a computationally simple method for achieving a smooth sur-
face approximation. Each vertex on the surface is actually the vertex of several adjacent
polygons. The surface normal vector at each vertex point is defined as the average of the
normal vectors of the surrounding polygons. When a pixel cone axis intersects a surface
polygon, the local surface normal vector is obtained by interpolation from the surrounding
vertices, as illustrated in Figure 22-26. This technique causes the normal vector to vary
smoothly rather than abruptly over the surface, and it produces a smooth surface appear-
ance, as shown in Figure 22-27.

Figure 22-26 Normal vector
interpolation
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22.7 SUMMARY OF IMPORTANT POINTS

w

o 90 =1 &N

. Thick specimen imaging involves a three-dimensional convolution of the specimen

function with the defocus PSF.

. Theoretically, optical section images can be deblurred exactly by three-dimensional

deconvolution or by a simultaneous linear equation approach.

. Practically, optical section images can be deblurred approximately by subtraction of

blurred neighboring plane images.

. The defocus OTF of a circular lens is given by Eq. (49).
. Computerized axial tomography uses the projection property of the two-dimensional

Fourier transform to reconstruct an image from a set of its projections.

. A range image can be computed from a steree pair {Eq. (75)].

. A stereo pair can be generated from a brightness image and a range image [Eq. (85)].
. Surface texture is helpful in stereometry and stereoscopic display.

. Shaded susface display techniques produce images of objects that exist only as a

description of 4 mathematical surface.

PROBLEMS
1.

How many calibration points (known X, ¥, Z) do you need to determine the imaging geomeltry
(f, d) of a boresighted stereo camera system? What are the restrictions on the position of the
points?

. How many calibration points do you need to determine the imaging geometry of a stereo camera

system when the cameras have the same focal length, but are not boresighted? Assume that the
cameras are mounted on 4 bar such that the lens center of the right camera is at Z = 0 in the coor-
dinate system of the left camera.

. Suppose you have two pictures of a scene taken with the same camera, but from slightly difterent.

and unknown, positions. Assuming that nothing has changed in the scene between exposures,
how many calibration points do you need to establish the imaging geometry of this system?

. Suppose you have a boresighted stereoscopic camera system (Figure 22~13) with 50-mm lenses

separated by 70 mm. Where on each sensor plane will the image of a small object located at
(X, ¥,2)=(3 m.2m. 6 m) fall? What is the true range to the object?

. Suppose you have a boresighted stereoscopic camera system {Figure 22-13) with 135-mm Jenses

separated by 100 mm. Where is an object (X, ¥, Z = ?) that falls on the sensor planes at x, =
51.9231 mm, x, = 52.4423 mm, and y = 20.7692 mm? What is the true range to the object?

. Suppose you have a boresighted stereoscopic camera system (Figure 22-13) with lenses sepa-

rated by 60 mm. An object at ¥ = 0.4 meter falls on the sensor planes at x, = —14.5833 mm. x, =
-12.8333 mm. and y = 11.6667 mm. What is the focal length of the lenses? What is the true range
to the object?

. Suppose you are calibrating a boresighted stereoscopic camera system (Figure 22-13) with lenses

of unknown focal length and unknown camera separation. An object at (X, Y, Z)=(0. 0,2 m) falls
on the sensor planes at (x;, v, ., ¥) = (0, 10 mm, 0), and another object at (X, ¥. 2) = (0,0, 10 m)
falls on the sensor planes at (x,, x, . v) = (0. 2 mm. 0). Can you determine fand d from those mea-
surements? 17 so. de so: if not, please explain your failure to do so.
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8. Suppose you are calibrating a boresighted stereoscopic camera system (Figure 22-13) with lenses
of unknown focal length and unknown camera separation. An object at (X, Y, 2)=(1 m,0m, 10m)
falls on the sensor planes at (x;, x, , y) =(10 mm, 12 mm, 0). Can you determine fand d from those
measurements? If so, do so; if not, please explain your failure to do so.

9. Suppose you have a boresighted stereoscopic camera system (Figure 22—13) with 200-mm lenses
separated by 250 mm. The image of an object falls onthe sensor planes at (x;, x,, y) = (3.3333 mm.
3.5000 mm, 1.0000 mm). You have a one-pixel (x10-micron) uncertainty in the sensor plane
measurements. What is the most likely true range to the object? How close might the object be?
How far could it be?

10. A boresighted stercoscopic camera system has been dropped from the cargo hold of a DC-9 by

the overnight shipping company. You aim the camera at a star and get (x,, x, , y;, y, ) = (17.6654,
17.6654, ~2.0504, —2.0405) mm. Has the instrument been damaged? How do you know?

11. Suppose your artillery position is under attack from four enemy armored tanks. You have an

Acme high-resolution battlefield stereoscope (see Figure 22-13) with boresighted 500-mm
lenses 1 meter apart. You click on each tank and get the following sensor plane position data:

Tank No. 1 x, = ~70.0000 mm. x, = —69.6667 mm, y = 1.3333 mm

Tank No.2 x;= ~5.0000 mm, x,= —4.5000 mm, y = 1.5000 mm

Tank No.3 x; = 150.0000 mm, x, = 151.0000 mm, y = 2.0000 mm

Tank No.4 x,=  75.0000 mm, x, = 75.1667 mm, y = 0.2500 mm
The tanks have a gun ravhge of 1,000 m, and your gunrange is 2,000 m. The tariks are not moving,
but tanks 1 and 3 have their guns facing your direction. Which tanks would you fire on, and in
what sequence?

12. Below are single scan lines (starting at x = 0) from each of a stereo pair of digital images. The

cameras are boresighted, with f= 100 mm and d = 300 mm, and both lines are at y = 0. The pixel
spacing is 15 microns. The image shows an enemy tank on a battlefield, with a wooded area
behind. What is the true range to the tank? How far away are the woods? (Hint: Start by plotting
the two scan lines on the same graph.)

Left:
[25,30,26,32,25,31,25,31.26,29,25,31,31,26,26,31,25,29,24,28,25,31,25,30,25,33,26,30,25,
29,26]

Right:

[33,36,32,37,33,39,32,38.32,38,33,36,32,36,32,38,38,33,33,36,31,35,32,38,32,37,32,40,33,
37,32}

13. Develop the stereo equations (analogous to Eq. 75) for the case where the stereo camera axes

converge to a point (X, ¥, 2) = (0, 0, Z,).

PROJECTS

1. Develop a program to locate corresponding paints ina stereo image pair and generate a displace-
ment image.

2. Develop a program to compute a normal-range image from a displacement image, given the
imaging geometry.

3. Develop a program to compute a true-range image from a displacement image, given the imaging
geometry.
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4.

S.

Develop a prograni to determine the imaging geometry for a stereometric camera system, given
pixel coordinates and ranges of several calibration points in space.

Develop a progrars 1o generate random dot stercograms, given the normal range Z(x, ¥} in func-
tional form.

. Develop a progran: (o generate random dot stereograms, given the normal range z(x, y) as a dig-

ial image.

- Develop aprogram to deblur optical section images, and test the program on a biological specimen.
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APPENDIX 1

Glossary of Digital
Image-Processing Terms

This glossary is provided to help the reader avoid confusion brought about by the special-
ized usage of common words in this book. The following definitions conform reughly to
general usage indigital image processing, but by no means constitute a standard in the field.
They tend to agree, but not exactly, with definitions in glossaries published in the fields of
image processing [1-3] and computer technology [4-6].

Algebraic operation - an image-processing operation involving the pixel-by-pixel sum,
difference, product, or quotient of two images.

Aliasing - an artifact produced when the pixel spacing is too large in relation to the detail in
an image (Chapter 12).

Arc-(1)acontinuous portion of a circle; (2) a connected set of pixels representing a portion
of acurve,

Binary image - a digital image having only two gray levels (usually zero and one, black and
white).

Blur - a loss of image sharpness, introduced by defocus, lowpass filtering, camera motion,
etc.

Border - the first and last row and column of a digital image.

Boundary chain code - a sequence of directions specifying the boundary of an object.
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Boundary pixel - un interior pixel that i1s adjacent to at least one background pixel (contrast
with interior pixel, exterior pixel).

Boundary tracking - an image segmentation technique in which arcs are detected by
searching sequentially from one arc pixel to the next.

Brightness - the value, associated with a point in an image, that represents the amount of
light emanating or reflected from the object at that point.

Change detection - an image-processing technique in which the pixels of two registered
images are compared (e.g. by subtraction) to detect differences in the objects therein.

Class - see pattern class.

Closed curve - a curve whose beginning and ending points are at the same location.
Cluster - a set of peints located close together in a space (e.g., in feature space).
Cluster analysis - the detection, measurement and description of clusters in a space.

Concave - the characteristic of an object whereby at least one straight-line segment between
two interior points of the object is not entirely contained within the object (contrast
with convex). :

Connected - the characteristic of the pixels of an object or curve whereby any two points
within the object can be joined by an arc made up entirely of adjacent pixels also con-
tained within the object.

Contour encoding - an image compression technique in which a region that has a constant
gray level is encoded by specifying only its boundary.

Contrast - the amount of difference between the average brightness (or gray level) of an
object and that of the surrounding background.

Contrast stretch - a linear gray-scale transformation.

Convex - the characteristic of an object whereby all straight-line segments between two
interior points of the object are entirely contained within the object (contrast with
concave),

Convolution - a mathematical process for combining two functions to produce a third
function. Convolution models the operation of a shift-invariant linear system
(Sec. 9.3).

Convolution kernel - (1) the two-dimensional array of numbers used in convolution filter-
ing of a digital image; (2) the function with which a signal or image is convolved.

Curve - (1) a continuous path through space; (2) a connected set of pixels representing a
path (see arc, closed curve).

Deblurring - (1) an image-processing operation designed to reduce blurring and sharpen
the detail in an image: (2) removing or reducing the blur in an image, often one step
of image restoration or reconstruction.
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Decision rule - in pattern recognition, a rule or algorithm used to assign an object in an
image to a particular class. The assignment is based on measurements of the features
of the object.

Digital image - (1) an array of integers representing an image of a scene; (2) a sampled and
quantized function of two or more dimensions, generated from and representing a
continuous function of the same dimensionality; (3) an array generated by sampling
a continuous function on a rectangular (or other) grid and quantizing its value at the
sample points.

Digital image processing - digital processing of images, the manipulation of pictorial
information by computer.

Digitization - the process of converting an image of a scene into digital form.

Edge - (1) a region of an image in which the gray level changes significantly over a short
distance; (2) a set of pixels belonging to an arc and having the property that pixels on
opposite sides of the arc have significantly different gray levels.

Edge detection - an image segmentation technique in which edge pixels are identified by
examining neighborhoods.

Edge enhancement - any image-processing technique in which edges are made to appear
sharper by increasing the contrast between the gray levels of the pixels located on
opposite sides of the edge.

Edge image - an image in which each pixel is labeled as either an edge pixel or a nonedge
pixel.

Edge linking - an image-processing technique in which neighboring edge pixels in an edge
image are connected to form an edge.

Edge operator - a neighborhood operator that labels the edge pixels in an image.
Edge pixel - a pixel that lies on an edge.
Enhance - to increase the contrast or subjective visibility of.

Exterior pixel - a pixel that falls outside all the objects in abinary image (contrast with inte-
rior pixel).

False negative - in two-class pattern recognition, a misclassification error in which a pos-
itive object is labeled negative.

False positive - in two-class pattern recognition, a misclassification error in which a nega-
tive object is labeled positive.

Feature - a characteristic of an object, something that can be measured and that assists in
classification of the object (e.g., size, texture, shape).

Feature extraction - a step in the pattern recognition process in which measurements of the
objects are computed.
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Feature selection - a step in the pattern recognition system development process in which
measurements or observations are studied to identify those that can be used to assign
objects to classes.

Feature space - see measurement space.

—j2mn _

Fourier transform - a linear transformation that uses the complex exponential ¢
cos(27tsx) + Jsin(27sx) as the kernel function.

Geometric correction - an image restoration technique in which a geometric transforma-
tion is used to remove geometric distortion.

Gray level - (1) the value, associated with a pixel ina digital image, representing the bright-
ness of the ortginal scene at the point represented by that pixel; (2) a quantized mea-
surement of the local property of the image at a pixel location.

Gray scale - the set of all possible gray levels in a digital image.

Gray-scale transformation - the function, employed in a point operation, that specifies the
relationship between input and corresponding output gray-level values.

Hankel transform - a linear transformation, similar to the Fourier transform, that relates
the (one-dimensiona:) profile of a circularly symmetric function of two dimensions to
the (one-dimensional) profile of the function’s two-dimensional (also circularly sym-
metric) Fourier transtorm (Sec. 10.4.5).

Harmonic signal - a complex-valued signal composed of a cosine real part plus an imagi-
nary sine part at the same frequency (Sec. 9.2.1).

Hermite function - a complex-valued function having an even real part and an odd imag-
inary part (Sec. 10.2.1).

Highpass filtering - an image enhancement (usually convolution) operation in which the
high-frequency components are emphasized relative to the low frequency compo-
nents.

Hole - in a binary image, & connected region of background points that is completely sur-
rounded by interior points.

Image - any representation of a physical scene or of another image.

Image compression - any process that eliminates redundancy from or approximates an
image, in order to represent it in a more compact form.

Image coding - translating image data into another form from which it can be recovered
(e.g.. compression).

Image enhancement - any process intended to improve the visual appearance of an image.

Image matching - any process involving quantitative comparison of two images in order to
determine their degree of similarity.

Image-processing operation - a series of steps that transforms an input image into an out-
put image.
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Image reconstruction - the process of constructing or recovering an image from aata that
occurs in nonimage form.

Image registration - a geometric operation intended to position one image of a scene with
respect to another image of the same scene so that the objects in the two images
coincide.

Image restoration - any process intended to return an image to its original condition by
reversing the effects of prior degradations.

Image segmentation - (1) the process of detecting and delineating the objects of interest in
an image; (2) the process of subdividing an image into disjoint regions. Normally,
these regions correspond to objects and the background upon which the objects reside.

Interior pixel - in a binary image, a pixel that falls inside an object (contrast with boundary
pixel, exterior pixel).

Interpolation - the process of determining the value of a sampled function between its sam-
ple points.

Kernel - see convolution kernel.

Line detection - an image segmentation technique in which line pixels are identified by
examining neighborhoods.

Line pixel - a pixel contained in an arc that approximates a straight line.

Local operation - an image-processing operation that assigns a gray level to each output
pixel on the basis of the gray levels of pixels located in a neighborhood of the corre-
sponding input pixel. A neighborhood operation (contrast with point operation).

Local property - the interesting characteristic that varies with position in an image (e.g.,
brightness or color for optical images; elevation, temperature, population density,
etc., for nonoptical images).

Lossless image compression - any image compression technique that permits exact recon-
struction of the original image.

Lossy image compression - any image compression technique that inherently involves
approximation and does not permit exact reconstruction of the image.

Matched filtering - using a matched filter (Chapter 11) to detect the presence and location
of specific objects in an image.

Measurement space - in pattern recognition, an n-dimensional vector space containing all
possible measurement vectors.

Misclassification - in pattern recognition, the assignment of an object to any class other
than its true class.

Muitispectral image - a set of images of the same scene, each formed by radiation from a
different wavelength band of the electromagnetic spectrum.

Neighborhood - a set of pixels located near a given pixel.
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Neighborhood operation - an image-processing operation that assigns a gray level to each
output pixel on the basis of the gray levels of pixels located in a neighborhood of the
corresponding input pixel (see local operation, contrast with point operation).

Noise - irrelevant components of an image that hamper recognition and interpretation of the
data of interest.

Noise reduction - any process that reduces the undesirable effects of noise in an image.

Object - in pattern recognition, a connected set of pixels in a binary image, usually corre-
sponding to a physical object in the scene represented by the image.

Optical image - the result of projecting light emanating from a scene onto a surface, as with
alens.

Pattern - a meaningful regularity that members of a pattern class express in common and
that can be measured and used to classify objects of interest.

Pattern class - one of a set of mutually exclusive, pre-established categories to which an
object can be assigned.

Pattern classification - the process of assigning objects to pattern classes.

Pattern recognition - the detection, measurement, and classification of objects in an image
by automatic or semiautomatic means,

Pel - contraction of picture element.
Perimeter - the circumferential distance around the boundary of an object.

Picture element - the smallest element of a digital image. The basic unit of which a digital
image is composed.

Pixel - contraction of picture element.

Point operation - an image-processing operation that assigns a gray level to each output
pixel on the basis of only the gray level of the corresponding input pixel (contrast with
neighborhood operation).

Quantitative image analysis - any process that extracts quantitative data from a digital
image.

Quantization - the process by which the local property of an image, at each pixel, is
assigned one of a finite set of gray levels.

Region - a connected subset of an image.

Region growing - an image segmentation technique in which regions are formed by repeat-
edly taking the union of adjacent subregions that are similar in gray level or texture.

Registered - (1) the condition of being in alignment; (2) when two or more images are in
geometric alignment with each other and the objects therein coincide.

Registered images - two or more images of the same scene that have been positioned with
respect to one another so that the objects in the scene occupy the same positions.
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Resolution - (1) in optics, the minimum separation distance between distinguishable point
objects; (2) in image processing, the degree to which closely spaced point objects in
an image can be distinguished from one another.

Run - in image coding. a sequence of consecutive pixels that all have the same gray level.
Run length - the number of pixels in a run.

Run-length encoding - an image compression technique in which the rows of an image
are represented as sequences of runs, each specified by a given run length and gray
level.

Sampling - the process of dividing an image into pixels (according to a sampling grid) and
measuring the local property (e.g., brightness or color) at each pixel.

Scene - a particular arrangement of physical objects.
Sharp - pertaining to the detail in an image, well defined and readily discernible.
Sharpening - any image-processing technique intended to enhance the detail in an image

Sigmoid function - a function having a shape that resembles the letter S. The sigmoid is one
type of gray-scale transformation function. Sigmoid functions are also used in the
processing elements of a neural network.

Sinusoidal - having the shape of the sine function.

Smoothing - any image-processing technique intended to reduce the amplitude of small
detail in an image. Smoothing is often used for noise reduction.

Statistical pattern recognition - an approach to pattern recognition that uses probability
and statistical methods to assign objects to pattern classes.

Structural pattern recognition - an approach 1o pattern recognition in which objects are
represented in terms of primitives and relationships among primitives in order to
describe and classify the objects.

Syntactic pattern recognition - a type of structural pattern recognition that identifies prim-
itives and relationships according to natural or artificial language patterns.

System - anything that accepts an input and produces an output in response.

Texture - in image processing, an attribute representing the amplitude and spatial arrange-
ment of the local variation of gray level in an image.

Thinning - a binary image-processing technique that reduces objects to sets of thin (one-
pixel-wide) curves.

Threshold - a specified gray level used for producing a binary image.

Thresholding - the process of producing a binary image from a gray-scale image by assign-
ing each output pixel the value 1 if the gray level of the corresponding input pixel is
at or above the specified threshold gray level, and the value 0 if the input pixel is
below that level.
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Transfer function - for a linear, shift-invariant system, the function of frequency that spec-
ifies the factor by which the amplitude of a sinusoidal input signal at each frequency
is multiplied to form the output signal,
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APPENDIX 3

Mathematical Background

This appendix lists some of the definitions and results from several fields that are relevant
to the material developed in the text. They are presented in summary form, without deri-
vation. Only those results directly supporting the concepts covered in the text are men-
tioned. For an in-depth coverage of these topics, the reader should consult an appropriate
textbook [1-3].

A3.1 LINEAR ALGEBRA
A3.1.1 Vectors and Matrices

Definitions. A matrix is an ordered rectangular array of numbers. The M-by-N
matrix A has M rows and N columns and is denoted by

apy a2 Ay

o) @ro - a
A=la)=| 21 .z.z A 2,NA )

am. Am2 " AMN

where a; ; are the elements, or entries, of Aand i=1,2,..M, j=1,2,..N are indices.
The transpose of a matrix A is another matrix, denoted A’ and obtained by inter-
changing the rows and columas of A. For example, if
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18
A=[;;_ﬂ then AT =32 @
57

A column vector is an M-by-1 matrix. A rew vector is a 1-by-N matrix. Respectively, these
are.

b

b=(b] =7 and b = [b by by] 3)

where b; are the elements of the vector. Unless otherwise specified, the term vector refers to
a column vector.

A matrix is a square matrix if M = N. A square matrix A is a symmetric matrix if
a,; = a;,;. For example,

1 -1 2
A=|_-13 4 4)
2 40

is a symmetric square matrix.

A diagonal matrix is a square matrix having zero elements everywhere except on the
diagonal; that is, a;; = 0 for i #.

The identity matrix1 is a diagonal matrix having 1’s on the diagonal (i.e., g;; = 1). For
example. the three-by-three identity matrix is

100
I=1010 (5)
001
The trace of a square matrix is a scalar that is the sum of its diagonal elements:
N
ulAl = Ya, (©)
i=1
The scalar product (a constant times a matrix) is defined by
cA = Ac = cla; ] = lca, ] (7)

where ¢ is a constant.
Scalar addition of a matrix and a constant is defined by

c+tA=A+c=[g;l+c =g ;+c] (8)
Matrix addition of two M-by-N matrices is defined by
A+B=B+A =g, ,+b ) [&4]

Matrix addition is defined only for the matrices of the same size.
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The matrix product of an M-by-P matrix and a P-by-N matrix is the M-by-N matrix

P
AB =D =(d,,] = [Za“bk‘]} (10

k=0
The matrix product is defined only for matrices in which the number of columns of the left-
hand matrix equals the number of rows of the right-hand matrix.

For vectors of equal length, the outer product is the (rank 1) matrix

a, arby a\by -+ ajby

ab” = | 2| [b; by - by) =

arby azby - azby an

dy anby ayby - ayby
and the inner product is the scalar

by
a"b = [a; a; - ay) tfz =c (2
b
The Euclidean norm of a vector is defined as the scalar

NoT
lal = JaTa = Y a2 (13)
i=0

If a contains the coordinates of a point in an N-dimensional Euclidean space, then the norm
of a is the distance from the origin to that point. As another example, suppose a” =[xy, y,. 2]
and b7 = [x;,y,,2,] are vectors representing the positions of two points in three-dimensional
space. Then their separation distance is

d=la-bl = Jx,—5)2+ (3 -1 + (2 - 1) (14)

Matrix Inversion. The inverse of a square matrix A is another matrix, A~', of the
same size such that

AA' = AA =1 (15)

where Lis the identity matrix of the same size. The inverse is unique, provided that itexists
If no such matrix exists. then A is a singular matrix. If A is nonsingular, but so close to sin-
gular that computing its inverse is fraught with numerical problems, then it is catted i/
conditioned.

The determinant [A| of a square matrix A is a (unique) scalar-valued function of the
elements of A. It has the properties that (a) |Ij = 1, (b) if A has two identical rows (or col-
umns), then [A| = 0, (c) if B is obtained by multiplying a single row (or column) of A by 3
constant k then |B| = kA, and (d) if A, B, and C are N-by-N matrices that are identical except
for the ith row, and for the ith row, ¢,; = a;; + b, ;. then [C} = |A| + |B}.
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From the foregoing, it follows that (a) the matrix A is singular if |4| = 0, (b) the matrix
A is singular if any row can be obtained by multiplying any other row by a constant (and
likewise for columns), (¢) |A”] = |A], (d) |]A™" = 1/]Al, and (e) |AB| = |BA| = |A|[B|.

The rank R of an N-by-N matrix A is an integer, 1 <R < N. If A is nonsingular, then
R =N. Ris the size of the largest nonsingular R-by-R submatrix that can be formed by dis-
carding rows and columns of A. N R is the number of rows that are linear combinations of
other rows,

If A is an M-by-N matrix, then its pseudoinverse, A™, is the matrix product

A = (ATA)'AT and AA =1 16)
provided that (ATA) ! exists.
Properties. Table A3-1 lists some of the properties of matrices and matrix alge-

braic operations.

TABLE A3-1 MATRIX PROPERTIES

Matrix A =layl
Transpose AT=a;}
Symmetric ap=ay AT=A
Unitary AT =AT
Orthogonal AB =1

A3.1.2 Eigenvalues and Eigenvectors

Eigenvalues. For an N-by-N matrix, there are N scalars A, k = 1,...N, such that
A-AJ =0 an
The Ag’s are the (unique) set of eigenvalues or characteristic values of the matrix.

Each eigenvalue can be thought of as an amount which, when subtracted from each
diagonal element, makes the matrix singular. Since there is no ordering of the eigenvalues
implied by this definition, we can arange them arbitrarily. It is most convenient to index
them from largest to smallest in magnitude; that is, |A) 2|4, |.

If the matrix is singular to begin with, then at least one of its N eigenvalues is zero.
The rank of the matrix is the number of nonzero eigenvalues. The condition number of the
matrix is the ratio of its largest to its smallest eigenvalue. If this is large (but finite), the
matrix is ill conditioned, and inversion may be a numerically challenging process.

Eigenvectors. The N-by-1 vectors v, such that

Avp = v (18)
are called the eigenvectors or characteristic vectors of A. There are N of them, and each cor-
responds to one of the eigenvalues. If A is real and symmetric, then the A;’s are real.

For example, suppose
12
A= 19
7 (19

Then
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Thus, 3 is an eigenvalue of this matrix. with [1, 1] as the corresponding eigenvector, and
likewise for 1 and [1,—1]".

and

A3.1.3 Singular-Value Decomposition
Any M-by-N matrix. A (M 2N) can be written as
A =UAVv/ (22

where U and V are M-by-N and N-by-N matrices, respectively, with orthonormal columns,
and A is an N-by-N diagonal matrix containing the singular values of A along its diagonal.
In particular, the columns of U are the eigenvectors of AAT, and the columns of V are the
eigenvectors of ATA Then, since U and V are unitary,

A = UTAV 23)

Sum of Unit-Rank Matrices. Since A is a diagonal matrix, singular-value
decomposition allows us to express an M-by-M matrix of rank R as a sum of R M-by-M
matrices of rank 1. Each such matrix is an outer product of two M-by-1 eigenvectors and is
weighted, in the summation, by one of the singular values. Specifically,

R
A = UAV' = z A»j“JV/T (24)
j=1
where R is the rank of A and u; and v are the jth columns of U and V, respectively.
As a numerical example, consider the three-by-three matrix

121
A=1[232 29)
121

Its singular-value decomposition is simplified because the matrix is square and symmetric.
The unitary matrices are equal: therefore,

6 10 6
AA" = ATA = 110 17 10 (26)
6 10 6
And they have eigenvalues
A 28.86

A= 0.14 @7
A L0
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and eigenvectors

0.454 0.542 -0.707
u, = v, = |0.766 U, =v;=|.0643| and wuy=v;= 0 (28)
0.454 | 0.542 -0.707

U is a matrix of rank 2, since one of its eigenvalues is zero. The singular values are on the
diagonal of

537 0 0
A=UAV =| ¢ 03712 0 (29)
0 0 0

and the expansion of the singular-value decomposition is

3
A= YA uy (30)
j=1
which, in this case, has only two nonzero terms.
Notice that the second singular value is much smaller than the first. Thus, we can
neglect the second term in the summation without introducing much error of approxima-
tion. Using the first term alone, we have

1.11 1.87 L.11
A=Ay = [187 315 187 31
111 187 1.11

which may be an acceptable approximation to the matrix in Eq. (25).

Matrix inversion. If the M-by-M matrix A is singular, then one or more of its sin-
gular values will be zero. If it is ill conditioned, one or more will be small, and inversion by
ordinary numerical means will be difficult. Singular-value decomposition gives us a way to
handle either case.

Taking the inverse of Eq. (22) yields

Al =UATY (32)
where A™' is a diagonal matrix with elements 1/A;; on the diagonal. Singular values (A;)
that are small or zero make it difficult or impossible, respectively, to compute Eq. (32),

but setting the corresponding diagona) elements of A™' to zero often yields a usable
approximation.

A3.1.4 Systems of Equations

Suppose we have a set of NV equations in M variables, having the form
a Xp+ap 5+ Fa Ny = )
Ay X+ Ay pka+ o H Uy NEN = O

. (33

Uy Xty 2o+ F Ay NXy = Oy
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This can be written in matrix form as

a Gy vt AN |} Xy €
Gy Gz > N | X2 _ | C2 or AX = ¢ (34)
apy Amy o AMN JLAN Y

where x = [x,] is an N-by-1 column vector of variables, ¢ = [¢;] is an M-by-1 column vector
of constants, and A = [a,;] is the M-by-N matrix of coefficients. Normally, A and ¢ are
known and x is to be solved for.
The solution to this system of equations is that particular set of x; values that make all
the equations hold simultaneously. If M = N this is
x=A'c (35)
provided that A is nonsingular.
For example, suppose we have two equations in two variables:
x-2x,=0
20 -3x, =7

I:l 42} —X]:| [O}
= or Ax = ¢ 37
2 3]|x 7

The Eqs. (36) specify two straight lines in two-dimensional x, x,-space (Figure A3-1). The
solution of this system of two simultaneous equations is the particular vector x that specifies
the point where the lines cross. This is

x = Al¢ = 429 286||0| _ |2 38
-286 .143}|7 1
In'Figure A3-1, we see that the two lines do indeed cross at x; = 2, x, = 1. If the two lines
were parallel, then A would be singular, and no solution would exist.

(36)

This can be written as

3 T I I T T

40 1 2 3 ] 5 Figure A3-1 Two equations in two
x— variables
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If A is ill conditioned or singular, we can use singular-value decomposition to obtain
a solution that is usually workable. We substitute Eq. (32) into Eq. (35) to get

x = UTA'Ve (39
As above, A™' is a diagonal matrix with elements 1/A;; on the diagonal. Where diagonal ele-
ments of A are either small or zero, correponding elements are set to zero in A" This yields
the solution that minimizes |AX - ¢].

A3.1.5 Least Squares Solutions

When the number of equations exceeds the number of unknowns, the system of equations
is overconstrained, and (in general) no single solution will satisfy all the equations exactly.
What is required is a best overall solution that satisfies all the equations approximately. One
commonly used approach is to find the solution that minimizes the mean square error of all
the equations.

For example, suppose the system has three equations in two variables:

a1 a2 x (4]
t
Ax = ¢ or |ay, a; } = e (40)
A2
az . 432 €3

Then A is not square and thus has no inverse. In general, there will be no vector x that sat-
isfies all the equations simultaneously. Thus, we seek instead a vector X that satisfies them
all approximately. In particular, we seek the vector that minimizes

jAR —cl? = (A%~c)"(AR-¢) (n

Pseudoinverse Solution. By setting to zero the derivative with respect to X of
Eq. (41), we can solve for X and obtain

= (AA)'ATe = A¢ “42)
Thus, the pseudoinverse of A yields the least squares solution, provided that (A7A)™ exists.

To illustrate, suppose we add one more equation to the previous example. Eq. (40)
then becomes

-1 2 0
Xy

2 e

2 -1t s

Now
’ 0
% = (ATA)Y'ATc = A-c = | ~148.180 246 7} _ [2492 @)

164 189 -.107 0.787

J

is the least squares solution. Figure A3-2 shows the three lines that correspond to the three
equations, as well as the point that represents X , the least squares solution. In this example,
the mean square error (Eq. 41) is 1.607.
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10 1 2 3 4 5 Figure A3-2 Three equations in two
— variables
If we were to change the third element of ¢ to 3, then the third line would move to the
left, and all three lines would intersect at the point (x,, x;) = (1, 2). In this case, x7 = (1,2),
and the mean square error is zero.

Singular-Value Decomposition Solution. If ATA is ill conditioned or singu-
lar, we can use singular-value decomposition to obtain a least squares solution. We simply
use Eq. (39), again setting troublesome elements of A" to zero.

A3.1.6 Linear Transformations

If x is an N-by-1 vector and A is an N-by-N matrix, then

N
yi = zauxj or 'y = Ax 45)
j=1
where i = 1,...,N defines a linear transformation of the vector x. The result is another N-by-
1 vector, y.
A simple example of this is the rotation of a two-dimensional coordinate system

(Chapter 8). Here,
3 0) -sin (6
nio_ C?S( ) -sin(8) || x 6)
¥z sin (8) cos (8) || x;

rotates the vector x through the angle 6.

After the transformation, the original vector can be recovered, if necessary, by the
inverse transformation

x= Ay (CY))
provided that A is nonsingular.
Fora given vector length N, there are infinitely many transformation matrices A. The
more commonly used ones, however, belong to a class having certain useful properties.
If A is a unitary matrix, then '

A" = A*T and AA*T =1 (48)
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and the rows (and columns) of A form a set of orthonormal basis vectors (unit vectors) for
an N-dimensional vector space. Thus, any such transformation can be viewed as a coordi-
nate rotation in N-dimensional space.

The one-dimensional discrete Fourter transform is an example of a unitary linear
transformation, since

N-l
1 . .
Fi = — ) fiexp(—j2nki) = WI (49)

where W is a unitary matrix with elements

Wiy = Lexp(-jZﬂkﬁ.) (50)

JN
In two dimensions, the general linear transformation that takes the N-by-N matrix F into the
transformed matrix G (also N by N) is
N-1N-1

G = Y, 3 FuuBii, k,m,n) 1)

i=0k=0
where i, k, m, and n are discrete variables that range from 0 to N — 1 and 3(/, k, m, n) is the
kernel function of the transformation.
If 3(i, k, m, n) can be separated into the product of rowwise and colamnwise compo-
nent functions—-that is, if
3.k, m,n)y = T,(i, ;)T (k, n) (52)
then the transformation is called separable. Further, if the two component functions are
identical, it is also called symmetric. Then
3@, k,m,n) = T(i,m)T(k,n) (53)
and Eq. (51) can be written as
N-IN-}
Gpp = Z ZFi_kT(i, m)T(k,n) or G = TFT (54)
i=0k=0
The inverse transformation is
F=T'GT" (55)
The two-dimensional discrete Fourier transform is an example of a symmetric, separable
unitary transformation. In this case, T becomes the matrix W from Eq. (50). The inverse
discrete Fourier transform uses W', which is simply the conjugate transpose of “W. The
discrete Fourier transform pair is thus
G = WFW and F = W*TGw*" (56)

Unlike the Fourier transform, many transformations have elements of T that are real. A uni-
tary matrix with real elements is also orthogonal, and the inverse transformation becomes
simply

F=TGT (57)
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If T is also a symmetric matrix, as is often the case. then the forward and inverse transforms
are identical; that is,

G = TFT and F = TGT (58)

A3.1.7 Principal-Component Analysis

Suppose X is an N-by- random vector; that is, each element x; of X is a random variable. The
mean vector can be estimated from a sample of L such vectors by

L
mx=%2x, (59)

1=1
and its covariance matrix by

L
C, = E{(x»m))(x—m‘)r}=I%Zx,vam,mf (60)
1=1
The covariance matrix is real and symmetric. The diagonal elements are the variances of the
individual random variables, while the off-diagonal elements are their covariances.
We now define a linear transformation that generates a new vector y from any x by

y = A(x-m,) 61)

where A is a matrix constructed so that its rows are the eigenvectors of C,. For convenience,
we arrange the rows in order of decreasing magnitude of the corresponding eigenvalue.

The transformed vector y is also a random vector, with zero mean. Its covariance
matrix can be determined from that of x by

C, = ACAT7 (62)

Since the rows of A are eigenvectors of C,, C, is a diagonal matrix having the eigenvalues
of C, along its diagonal (as a result of Eq. (18)). Hence,

C = (63)

These are also the eigenvalues of C,,.

This means that the random vector y is composed of uncorrelated random variables.
Thus, the linear transformation A removes the correlation among the variables. Further-
more, each 4, is the variance of y,, the kth transformed variable. Eq. (61) is referred to as the
Hotelling transform. (See Chapter 13.)

Notice that this transformation is invertible; that is, we can reconstruct a vector X from
its transformed vector y by

x=Aly = ATy (64)
The latter equality holds because A is symmetric.

As a numerical example, suppose a three-by-one random vector x has the covariance
matrix
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(6 2 0
Cc=12 2 - (65)
LO -1 1
which has eigenvalues and eigenvectors
6.854 0.918 0.333 -0.217
A=t 2 Vi=10392] v2=|-0667| V3= | 0634 (66)
0.146 -0.067 0.667 0.742

Then, for one particular zero-mean vector X’ = (2, 1, —0.1),

0918 0392 -0.067] 2 2234
Yy = Ax = | 0333 -0667 0667 || 1| | = [-0.067 (67
-0217 0634 0.742 || -0.1 0.127

From Eq. (62), the covariance matrix of the transformed random vector y is

6854 0 0
C,=ACAT=| ¢ 2 0 (68)
0 0 0146

which has the eigenvalues on its diagonal, as expected. Thus, Eq. (64) allows us to recover
x from y.

Dimension Reduction. We can reduce the dimensionality of the y vectors by
ignoring one or more of the eigenvectors that have small eigenvalues. Let B be the M-by-N
matrix (M < N) formed by discarding the lower N — M rows of A. Then the transformed vec-
tors are smaller (i.e., M-by-1) and are given by

y = Bx (69)
but the x vectors can still be reconstructed (approximately) by
x = BTy (70)
The mean square error of this approximation is
N
MSE = 2 A ()
k=M+1

that is, simply the sum of the eigenvalues corresponding to the discarded eigenvectors.

Considering again the preceding numerical example, suppose we reduce y to two
dimensions by discarding the third row of the transformation matrix A, since A, is consid-
erably smaller than the other two eigenvalues. Then we have

2
G- Bx- [0.918 0.392 —0067] _ [2.234] 2
0

0.333 —0.667 0.667 ~ | ~0.067
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We can reconstruct the original vector, approximately. by

0918 0333 -, ., 2027
x =BTy = | 0392 -0.667 { 6 067} =1 0920 (73)
~0.667 0.667 |- ~0.194

Notice that % differs slightly from x. In this case, the mean square error is just A; = 0.146,
the eigenvalue of the discarded eigenvector. Perhaps more enlightening, the root mean
square error (i.e., JMSE ) is 0.382. Assuming Gaussian statistics, the elements of % will
differ from those of x by less than that value about 60 percent of the time.

If C, is singular, its rank R is less than N, and it will have N ~ R zeroeigenvalues. Prin-
cipal-component analysis gracefully reduces the dimensionality from N to R, yielding a
more tractable problem.

A3.2 SET THEORY

A3.2.1 Definitions

Sets and Elements. A set s a collection of objects, called the elements of the set.
In this discussion, elements are symbolized by lowercase letters and sets by uppercase let-
ters. The set S is termed the universal set, containing all the objects of interest in any prob-
lem, or universe of discourse.

The notation a € A means that the element a is a member of the set A, anda ¢ B
means that a is not a member of set B. Forany object aand set C, eitherae Cora ¢ C. The
notation C = {a, b, ¢} means that a, b, and ¢ are the elements of C. The set denoted by &J and
having no elements is called the null or empty set.

Subsets. If aset A contains all the elements of another set B, then B is a subset of
A (written B < A) and A is a superset of B (written A 2 B). A set is both a subset and a
superset of itself. If A and B contain exactly the same elements, they are the same set (writ-
ten A = B). If B is a subset of A and A contains at least one element that is notin B, then B
is a proper subset of A.

Union and Intersection. If A and B are each subsets of S, then the set C made
up of all the elements of A and all the elements of B forms a subset of S called the urion of
A and B (written C = A U B). The elements that are common to A and B form a subset D
of S called the intersection of A and B (written D = A n B). If A and B have no elements
in common, then their intersection is empty (A N B = &).

Difference and Complement. The clements that are in A but notin B form a
subset E of S that is called the difference between A and B (written E = A — B). The set A’
of elements that are in S but are not in A is called the complement of A with respect to §
(written A'=S - A).

A3.2.2 Properties

The following statements are directly derivable from the preceding definitions [4].
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1. AUA=A

2. AnA=A

3. AuS=S

4. AnS=A

5. Au@=A

6. AND=0
7. (A)'=A

8. AUA'=S

9. AnA'=0Q
10. AUB=BUA
1. AnB=BnA

—
(3

. (AUB)UC=AUBUO)
. ANB)NC=A~BNC(C)
LAUBNO=AUBINALC)
. ANBUO=(ANB)UANC)

—
n & W

16. (AUB)Y=A"NB'
17. (AnBY=A"UB'
18. A-B=ANnB'

-
-

. A-B)-C=A-(BUC)
. fANB=@, then(AUB)-B=A
A-BUC)=(A-B)n(A-C)

NN
-
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Data compression, 432

Data flow interface, 59
Daubechies, I., 334, 341, 343

Deblurring optical section images, 56975

Decimation, 324
Decompression (image), 432

Deconvolution, 158, 312, 389, 399, 404,

412,425

constrained, 573-75

three dimensional, 569

Wiener, 390, 425
Defocus, 367, 571, 575, 577-81, 599
Degrees of freedom, 283
Depth of focus, 581
Delta rule, 531
Differential chain code, 496

Index

Diffraction limit (see also Optics), 403,
405, 407, 574
Diffraction-limited optical systems,
357-66, 382
apertures and pupil function, 357,
359
coherent and incoherent illumination,
355
coherent point spread function, 360
coherent optical transfer function, 361
Fresnel approximation, 359
Huygens-Fresnel principle, 358
image quality factors, 356

incoherent optical transfer function, 363

incoherent point spread function, 362
lens shape, 357
Diffraction theory, 353, 581
Digital convolution (see Convolution)
Digital filtering (see Filter)
Digital image (see Image, digital)
Digital image analysis, 6
Digital image display (see Display)
Digital image processing, 1, §
cumulative effects of, 269, 272
elements of, 2
functional requirements for, 10
philosophical considerations, 7-10
terminology, 4-7
three-dimensional, 563-99
Digitizing, 2, 6
scan-in, 15
scan-out, 15
Digitizer, 13-33
characteristics of, 14
components of, 16-21
electronic image tubes, 21-24
elements of, 13
solid state, 24-28
types of, 15
Dilation, 320, 471-73
Dimension reduction, 296, 517, 648
Discrete
approach, 8, 388
convolution, 416

cosine transform (DCT), 288, 297,441,

442



Index

Fourier transform (DFT), 176,281, 286,
307
Hartley transform (DHT), 289
image restoration, 393
image transforms, 281-301, 438
linear transformations, 282-85
processing, 394
sine transform (DST), 288
two-dimensional convolution, 154
wavelet transform (DWT). 308, 314,
322,332, 335, 347
Displacement (stereometry), 588
Display, digital image, S, 37
calibration, 40, 96
gray scale linearity, 39
high-frequency response, 38
low-frequency response, 38
noise, 39, 47
permanent, 38
photometric resolution, 39
rectification, 125
resampling for, 47
volatile, 38
Display spot, 42, 171
Display windows, 60
Distance transformation, 475-77, 493
Distortion, 366
Dithering, 49
Documentation, software, 55
Drum-feed display, 50
Drum scanner, 20
Dyadic translation, 312
Dyadic wavelet, 314
Dye sublimation printers, 52

E
Edge, 464, 605
approach to image segmentation, 451
detection, 299, 464, 465
enhancement, 164 =
image, 464, 466

linking, 466
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map, 464

point linking, 464

points, 464, 467

spread function, 410, 413
Eigenanalysis, 294
Eigenvalues, 295, 421, 440, 640-42, 64/
Eigenvector-based transforms, 294-97, 441
Eigenvectors, 295, 421, 440, 64042, 647
Electron beam scanning, 21
Electronic image tubes, 21-24
Electronic noise, 39, 47, 414, 425
Ellipse fitting, 506
Emulsion (photographic), 29-31
Enhancement, 143, 158, 164
Entropy (of a message source), 434, 436
Ergodic random process, 232, 245, 250
Erosion, 471-73, 497
Estimation

Bayesian, 522

biased, 539

maximum-likelihood, 521, 524, 541
Euclidean norm, 395, 639
Euler relation, 174
Even symmetry {and the Fourier trans-

form), 178
Event-driven program, 63
Expectation operator, 218-21, 233, 541
Extrapolation of bandlimited functions,
403, 407

f-number, 369
Fast Fourier Transform (FFT), 177, 189
Fast Wavelet Transform (FWT), 328, 347
Feature, 448, 479, 487, 513, 542

correlation, 517

enhancement, 158

extraction, 448

selection, 450, 513-15

space, 448

variance, 516

vector, 448
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Feauveau, J. C., 343
Field curvature, 366
Film grain noise, 415, 426
Film scanning, 28
photocopying, 32
photographic process, 28--32
transmittance and optical density (OD),
28
Filter, 207
bank, 310-12, 315, 320, 329
convolution (see Convolution)
deconvolution (see Deconvolution)
digital, 154
geometric mean, 392, 399, 425
homomorphic, 392
linear (see linear filter)
linear combination, 402, 424, 555
lowpass, 207-09
matched, 230-38
median, 247-50, 555, 561, 585
notch, 211
order-statistic, 247--50
parametric Wiener, 392
.power spectrum equalization, 392
Wiener deconvolution, 390
Filter design, 207-50 (see also Linear
filter)
Gaussian high-frequency enhancement
filter, 212
general bandpass filter, 211
high-frequency enhancement filter
design, 212, 250
ideal bandpass filter, 209
ideal bandstop filter, 210
low-frequency response, 215
optimal, 217, 242
matched detector, 217, 230-38, 242
random variables in, 217, 232, 242
Wiener estimator, 21730, 242
rules of thumb, 213
Filtering, frequency domain, 275
Fish-eye lens, 590
Flat field response, 40, 48
Fluorescence, 55660, 581
Focal length (of a lens), 354, 357, 566, 591

Index

Focal plane, 354, 566, 569
Focus, depth of, 581
Folding frequency, (see Nyquist fre-
quency), 374
Fourier series, 175-76, 307, 314
Fourier transform, 285, 294, 299, 304,
307, 315, 366, 400, 407, 411,
437, 497, 500
conjugate symmetry and, 180
continuous, 172
definition, 172, 193
discrete (DFT), 176, 646
of an even function, 178
existence of, 174
fast Fourier transform (FFT), 177, 189
of Gaussian function, 173
and linear system analysis, 171
properties of, 178-86, 203
addition theorem, 180, 204
convolution theorem, 182, 204
projection, 583, 599
Rayleigh’s theorem, 185
shift theorem, 181, 204
similarity theorem, 18385, 204,
208, 584
symmetry properties, 178-80
of an odd function, 178, 192
of useful functions, 178
Fourier transform in two dimensions,
193-201
circular symmetry, 198
definition, 193
discrete (2-D DFT), 194, 283-85, 287
spectrum matrix, 287
and Hankel transform, 198-201
properties of, 195-98
separability, 195
similarity, 197
projection, 198
rotation, 197
Frame, tight, 333
Frequency domain filtering, 275-77
Frequency sweep target, 410, 425
Fresnel approximation, 360
Frieden, B.R., 364



Index

Gamma, 30, 40
Gas discharge displays. 49
Gaussian, 77, 159
display spot, 41, 46
Fourier transform of, 173, 196
high-frequency enhancement filter, 212
histogram of, 78
Generalized Wiener filter, 399
Geometric calibration, 125
Geometric mean filter, 392, 399, 425
Geometric operation, 115-38, 397
cartographic projection, 129-35
general transformations, 122
geometric calibration, 125
gray level interpolation, 116-19
image format conversion, 128
image rectification, 125-27
image registration, 127
implementation, 116
map projection, 129-35
morphing, 135-37
pixel transfer, 116
spatial transformation, 115, 120-25
for stereoscopic display, 591, 593
Global thresholding, 452
Glyph, 59
Goodman, J. W., 404
Goroud, H., 598
Gradient descent, 531
Gradient image, 462. 482
Gradient magnitude, 110
Gradient-tracking bug, 461
Gradient vector, 458
Graininess, 413, 555
Granularity, 31
Graphical user interface (GUI), 59
Grass-fire technique (see Medial axis
transform)
Gray level, 2
histogram (see also Histogram), 71, 86,
345,435,453
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interpolation, 116, 11719
threshold, 480, 482
Gray scale
linearity of, 39
resolution, 17
test target, 38, 40
transformation function (GST). 83, 85,
95, 554
Green’s theorem, 490
Grossman, A., 309, 311
Group 3 encoding, 435
Group 4 encoding, 435

H and D curve, 30-32
H-equivalent spot, 455, 457, 459
Haar function, 293, 304, 343
Haar matrix, 291
Haar transform, 292, 299, 304, 314, 320,
333, 336, 347
basis functions, 292, 314
basis images, 295
Habibi, A.. 391
Hadamard transform, 290, 441
Halfband filter, 322, 324
Halftone process, 49
Hankel transform, 198-201, 205, 577
Hardcopy, 6, 49
Harmonic signals, 145-48
linear system response to, 146
and sinusoids, 147
and the transfer function, 148
Harris, J. L., 389, 404
Hartley transform, 289
Maugh, E. F., 415
Helstrom, C. W., 390
Herley, C., 343
Hermite function, 180, 204,233, 250, 264,
287, 405
Herringbone algorithm, 328, 333,342, 347
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Heuristic search. 466
Higgins, G. C., 416
High-frequency cutoff, 209
High frequency enhancement filter,
212-15, 250
design of, 213-15
Gaussian, 212
High-frequency response, 43, 48
Highpass filter, 212,397, 413
Higher-order interpolation, 119
Histogram (gray level) 71, 454, 459,
482
algebraic operations and, 102
and cumulative distribution function
(CDF), 75
equalization, 91-94
and image, 77-79
matching, 93
normalization, 75
and point operations, 8691

and probability density function (PDF),

75

properties of, 73-75

and threshold selection, 453

two-dimensional, 73, 78

uses of, 75-77, 453
Hit-or-miss transformation, 470
Homogeneous coordinates, 120
Homomorphic filter, 392
Hotelling transform, 647
Hough transform, 467
Huang, T. S., 398
Hue, 550-55, 560
Huffman coding, 434, 441
Hunt, B. R., 392, 408
Huygens-Fresnel principle, 358

[lumination, coherent and incoherent,
355

Index

Image, 4
averaging, 106-08
compression, 281, 288, 297, 303, 314,
345,431
digitizer (see Digitizer)
display (see Display)
enhancement, 143, 158, 164
file formats, 56
format conversion, 56
multispectral, 548
noise, 376
quality, 37
range, 565, 586, 591
recorder, (see also Hardcopy), 49
registration, 127, 556
segmentation, 448
size, 39
spacecraft, 129, 390
spatially three-dimensional, 564
subtraction, 109
Image plane, 354
Image restoration, 387-426
approaches and medels, 388
classical, 388-93
linear algebraic, 393-97
constrained, 395
discrete, 393-97
implementation, 416-25
local stationarity, 399
noise modeling for, 414
nonstationary, 398
spatially variant, 397
superresolution, 403-08
system identification for, 408-14
temporally variant, 398
unconstrained, 394
Image restoration filters, 388-93
deconvolution, 389
geometric mean, 392
linear combination, 402
parametric Wiener, 396
power spectrum equalization, 392
Wiener deconvolution, 390
Image segmentation, 44782
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Image segmentation (cont.)
gradient based methods, 460
process of, 450
by region growing, 468
segmented image structure, 478
boundary chain code, 479
line-segment encoding, 480
object membership map, 478
threshold selection, 452
by thresholding, 452-60
Imaging systems (see Optics, Optical
systems)
Imaging system MTF, PSF, 372, 377
Impulse, 160
Fourier transform of, 182, 185
properties of, 161
sampling with, 255
Shah function, 254

Impulse response, 149,209, 246, 309, 408,

412
Impulse train (Shah function), 254
Incoherent
illumination, 356, 382
optical transfer function (OTF), 363
point-spread function (PSF), 362, 382
Information content, 433
Ink-jet printer, 51
Inner product, 283, 301, 307, 309, 313,
318, 328, 336, 639
Integrated optical density (I0D), 76, 481,
491, 493, 507
of noisy image, 105
Intensity (color), 550-55, 560
Interconnection weight, 528
Interlaced scanning, 23
International Standards Organization
(I50), 441
Interpolation, 45-47, 253-55, 257, 327,
353,413
Interpolation function, 257
Invariant moments, 495, 507
Inverse transform, 306, 337
Isoplantic, 354
Iterative endpoint fitting, 467
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Joint Photographic Experts Group (JPEG),
441

Karhunen, K., 295
Karhunen-Loéve (K-L) transform, 297,
440, 442
Karyotype, 524
Kemel decomposition, 420-25
Kernel matrix, 282, 284, 286, 288-90.
424, 440
for Haar transform, 294
for Hadamard transform, 290
for Hartley transform, 289
for Fourier transform, 177, 286
for slant transform, 291
Kernel truncation, 418, 426
Kernel vector, 419
Kirsch edge operator, 465
Kirsch’s segmentation method, 462
Knox, K. T,, 398
Kronecker delta function, 285, 313, 541

Labeyrie, A., 398
Lagrange multiplier, 395
Lambert conformal conit projection, 132
Laplacian, 462
kemel, 463
edge detection, 462
filter, 195, 212, 397, 454
of Gaussian filter, 322, 464
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Laplacian (cont.)
pyramid coding, 321

Laser, 16, 49

Lawton. W. M., 333

Least squares solution, 644

Length measurement, 491

Lens, 354, 357, 590

Light-emitting diode (LED), 17

Light sensors, 17

Light source for digitizer, 16

Line detection, 299-300

Line pairs, 44

Line segment encoding, 430, 482

Line-spread function, 409, 413

Linear algebraic restoration, 393, 425

Linear combination filter, 402, 424, 555

Linear filter 207, 219, 275-77
bandpass, 209-212
bandstop, 210
box, 208
Gaussian, 209
high-frequency cut-off, 209
lowpass filters, 207-09, 241
triangle, 208

Linear point operation, 85

Linear system, 352
and the Fourier transform, 171
identification, 18689, 265
and sinusoidal decomposition, 189-92
terminology, 186-93
transfer function, 191, 204

Linear system theory, 143-67
convolution filtering, 163-66
convolution operation, 148-58
digital filtering, applications of, 158
harmenic signal, 145
linearity, 144
properties, 148
shift invariance, 145

Linear transformation, 282-85, 645, 647
discrete linear transformations, 282-85
one-dimensional DFT, 282 -
orthogonal transformations, 285
separable, 646
symmetric, 646

Index

two-dimensional DFT, 283-85, 287
spectrum matrix, 287
unitary, 282, 284, 646
Linearity, 14, 39, 144
Lloyd, S. P., 435, 442
Local operations, 83
Local property, 14, 563
Local stationarity, 399
Loéve, M., 295
Lossless compression, 432, 442
Lossy compression, 432, 436, 442
Low-frequency response, 40
Lower halfband, 322
Lowpass filter, 329
LZW encoding, 433

McGlammery, B. L., 389
Magnification, 7, 354, 371, 373, 568, 578
Mallat, S., 328, 333, 345
Map projection, 129, 134
Maps, properties of, 130
Mariner spacecraft, 134
Markov process, 297, 440, 442
Matched detector, 23042
examples of, 237
optimality criterion for, 232
and Schwartz’s inequality, 233
transfer function, 235
and Wiener estimator compared, 238-47
Mathematical morphology, 470
Matrix, 637
formulation for convolution, 155
inner product, 639
inversion, 503, 506, 639, 642
outer product, 639
product, 639
singular, 639, 649
transpose, 282, 637
unitary, 645



Index

Max, J., 435
Maximum-likelihood classifier, 519, 524
Maximum-likelihood estimation, 521, 524
Mean interior gray level, 77
Mean-square error (MSE), 219-23, 297,
391, 419, 435, 438, 442, 501,
541, 644, 648
minimizing, 221-23
of proportion estimation, 543
Measurement, 448, 487-507
of classifier performance, 515, 526, 529
of PSF, 581
of shape, 492-98
of size, 487-92
of texture, 499-501
Mechanical scanning devices, 20
Medial axis transform, 474, 497, 507
Median filter, 247-50, 555, 561, 585
Membership map, (see Object member-
ship map)
Menu-driven interface, 58
Mercator projection, 132
Microscope, 370, 577-81
Microscope digitizing system, analysis of,
380
Mirror filters, 329
Minimum enclosing rectangle, 492
Muisclassification, 448
Modulation transfer function, (MTF), 31,
352,364
Moments, 494-96
Monotone spot, 455, 460
Morlet, J., 309,311
Morphing, 134-37
Morphological image processing, 470-75
Motion blur, 391, 413
Motion detection, 109
Motion Picture Experts Group (MPEG),
442
Moving-average filter, 208
Multiplication operation
Multiresolution analysis, 303, 314, 320
Multispectral image analysis, 547
Music, as a time-frequency space, 305
Myth of superresolution, 408

Naderi, F., 416
Nathan, Robert, 389
Nearest neighbor interpolation, 117
Negative Frequency, 193
Neural networks, 447, 523-538, 543
architecture, 528
overtraining, 543
performance, 529
training, 529, 543
Noise, 7
in a digitizer, 15
in a display system, 48
averaging for reduction of, 106
electronic, 39,47, 414
modeling, 414
photoelectronic, 414
film grain, 415
nonstationary, 398
random, 217
removal, 158
root-mean square level of, 39
separable, 227
white, 224, 227, 236, 241
Noise power ratio, 401
Noncircular spots, 457
Nondestructive testing (NDT), 585
Nonlinear point operations, 85, 89-91
gray-scale transformation function
(GST), 84
Sigmoid (S-shaped) GST function, 86,
90
Nonlinear system, 145
Nonparametric classifier, 521
Nonstationary signal, 391, 398
Notch filter, 211
NTSC standard, 23
Numerical aperture, 371
Nutting, 415
Nyquist (folding) frequency, 287, 322,
418
Nyquist sampling criterion, 374, 383

Object classification, 513-38
Object isolation, 448
Object membership map, 478, 482
Object-oriented development, 65
Objective function, 395
Odd symmetry and the Fourier transform,
178
One-over-f noise, 414
Opening, 473
Optical cutoff frequency, 363, 370, 371,
383
Optical density (OD), 28
Optical sectioning, 566, 593
deblurring optical section images,
569-75
defocus OTF, 575
thick specimen imaging, 566
Optical system, 353, 387
aberrations in, 36668
defocused, 367
linearity and shift invariance, 354
resolution, 368
Optical transfer function (OTF), 355,
361-64, 382
coherent, 361
of defocused optical system, 367
from degraded image spectrum, 413
incoherent, 363
Optics, 353-56
diffraction-limited system, 357-66,
382
apertures and pupil function, 357,
359
coherentand incoherent illumination,
355
coherent optical transfer function,
361
coherent point spread function,
360
Fresnel approximation, 359
Huygens-Fresnel principle, 358
image quality factors, 356

Index

incoherent optical transfer function,
363
incoherent point spread function, 362
lens shape, 357
Optimal filter, 217, 242
Opinion polls, 539
Order of moments, 494
Order-static filter, 24749, 250
Orthogonal transformation, 285
Orthogonal wavelet, 313, 343
Orthographic projection, 132, 134
Orthonormal, 285
basis functions, 303, 307, 314
basis vectors, 282, 285, 300, 646
scaling function, 332
transformation, 283, 418
wavelet transform, 328, 334, 345
OQuter product, 286, 301, 421, 422, 639
Overcomplete transform, 310, 313, 344
Oversampling, 47, 258, 274,277, 375,407
Oversegmentation, 466
Overtraining, 533

p-equivalent CCS, 457, 459

Padding, 155, 394

Palette, 57

Parametric classifiers, 521

Parametric Wiener filter, 392, 396

Passband, 210

Pattern classes, 448

Pattern recognition system design, 450,
513

Perimeter-derived profile, 456

Perimeter function, 455, 457-59, 482

Perimeter measurement, 488-90

Periodic functions, 174

Periodic noise, 194

Permanent displays, 38

Phosphor, 16

Photocopying, 32



Index

Photodiode, 18, 24
Photoelectronic noise, 414, 425
Photoemissive device, 17
Photographic process, 28-30
Photometric calibration, 93-95, 487, 554
Photometric resolution, 39
Photometric units, 487
Photomuitiplier tube, 17
Photon noise, 26, 242
Phototransistor, 19
Picture, 5
Picture element (see Pixel)
Pipeline processing, 470
Pixel, 2, 6
cone, 565, 585, 589, 598
shift (stereometry), 588
spacing, 7, 351, 353, 369, 373, 375, 383
transfer (in geometric ops.), 116
Platform independence, 66
Plumbicon, 24
Point operations, 83-97
applications of, 84, 91-96, 555
contrast enhancement, 84
contour lines, 84,
clipping, 85
display calibration, 84, 96
histogram equalization, 91
histogram matching, 93
photometric calibration, 84, 93
gray-scale transformation (GST)
function, 83, 85, 555
and the histogram, 86-91
linear, 85, 88
nonlinear, 85, 89-91, 555
Point source, 354
Point-spread function (PSF), 352, 354,
356, 382, 572
Poisson distribution, 26, 414
Polar boundary function, 491, 497, 507
Polygon file, 597
Polynomial warping, 123, 501
Power spectrum equalization (PSE) filter,
392
Power spectrum, 201-05, 218, 242, 250,
390, 398, 414, 425, 437, 440
autocorrelation function, 201-03, 205

cross-cofrelation function, 203, 205
estimated noise, 242-44
parameters, 400
Pratt, W.K., 391
Prewitt edge operator, 465
Primary colors, 49
Principal axis, 491, 495, 507
Principal-component analysis, 295-97,
647, 649
Printer (image), 51
Dye sublimation, 52
Ink-jet, 51
Thermal wax transfer, 51
Probability density function (PDF), 75,
450, 515, 518, 521
Processing element, 527, 528, 533
Profile function, 457, 459, 482
Program operation, 63
event-driven program, 63
real-time program, 63
Projection
cartographic, 129-34
back, 584
perspective, 563
property (Fourier transform), 198, 409,
583, 599
Proportion estimation, 538, 543
Pruning, 474
PSF measurement, 408, 581
Pseudocolor, 556
Pseudoinverse filter, 396
Pseudoinverse method, 123,419, 502,
640, 644
Pupil function, 357-59, 364, 366, 382,
575
Pyramid algorithm, 303, 320
Pyramid representation, 315

Quantization, 7, 322, 345
Quantum mottle, 585

Rabedeau, M. E.. 413
Radiography, 582-85
Radon transform, 583, 585
Random function, 175
Random noise, 217
Random texture, 499
Random variabie, 217
ergodic. 218-20
Range image, 564, 586-88. 591, 599
Rank (matrix), 422, 640
Raster, 6
Rate distortion theory, 435-38, 442
Rayleigh criterion of resolution, 373, 383
Rayleigh distance, 369-71
Rayleigh sampling criterion, 375
Rayleigh’s theorem (Fourier transform).
185
Readout noise, 26
Real-time program, 63
Reciprocity law, 30
Rectangular pulse, 158, 330
Fourier transform of, 178, 184
Rectangular pulse detector, 237
Rectangular wave transforms, 290-94
Haar, 292-94
Hadamard, 290
Slant, 291
Walsh, 291
Rectangularity measurement, 492
Redundancy, 344, 431, 434, 442
Region, 450, 460
Region growing, 468, 482
Regular functions, 334
Regularization, 575
Reichenbach, §. E., 457
Representation, 4
of an image, 281
multiresolution, 320
transform, 304, 312, 345
time-frequency, 305
vector, 283, 420
Resampling, 47, 375, 383
Resolution, 368, 372, 404, 408

Index

Resolution cells, 369

Ringing, 167

RS-170 scanning convention, 23

Robbins, G. M., 398

Roberts edge operator, 465

Root-mean square (RMS) error, 533

Root-mean square (RMS) noise level, 39

Rotary motion blur, 397

Rotating drum film recorder, 50

Rotation property (Fourier transform),
197,410

Rotation, separable, 121

Row stacking, 281, 394, 420

Run length encoding (RLE), 433, 441

Sampling, 7, 253-717, 281, 352
aperture, 270
critical, 259
density, 7
effects, 8
error, 538
with a finite spot, 154, 171
and interpolating a function, 253, 281
oversampling, 47
resampling, 47
with the Shah function, 253-55, 277
and truncation, 404
undersampling and aliasing, 257-58,
259-62
Sampling theorem, 256, 353, 404
Saturation (color), 55055, 560
Sawchuk, A. A, 398
Scalar quantization, 435
Scale, 320
Scaling function, 330, 333
Scaling vector, 330, 332, 342
Scanning, 6
mechanisms, 20
Scan-in digitizer, 15
Scan-out digitizer, 15
Schwartz’s inequality, 233-36



Index

Secondary colors, 49
Self-scanning array, 24
Separable,
scaling function, 335
transformation, 28486
two-dimensional wavelets, 341
Sequency, 291
Serial sectioning, 566
Set theory, 471, 649
Shaded surface display, 593-99
imaging geometry, 597
smooth shading, 598
surface description, 595
surface reflection phenomena,
595-97
Shah function, 254, 404
behavior under similarity, 254
sampling with, 255, 277
Shannon, C. E., 433
Shape analysis, 492
Shape descriptor, 496
Shift invariance, 145
Shift theorem (Fourier transform), 287, 329
Shrinking, 473
Shont-time Fourier transform (STFT). 305
Sieracki, M. E., 457
Sifting property, 404
Sigmoid (S-shaped) GST function, 86, 90,
530
Signal-to-noise ratio (SNR), 227, 232,
240, 443
Silicon sensors, 18, 24-28
Simitarity theorem (Fourier transform),
183, 197, 254, 416, 584
Sinc wavelets, 333, 337
Sine wave target, 409, 425
Singular matrix, 396, 399, 649
Singular value decomposition (SVD),
123, 298, 420, 424, 441, 641-45
Singular values. 421, 641
Sinusoidal decomposition, 189
Sinusoids and harmonic signals, 147
Skeletonization, 474, 507
Slant transform, 441
Slepian, D., 391
Small generating kernel (SGK) decompo-
sition, 422, 424
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Smith, A. R.. 121
Smoothing a noisy function, 163
Sobel edge operator, 463
Software, 55-68
development, 55, 61-63
documentation, 55, 68
organization, 63-68
Solid state cameras, 24
charge-coupled device, 24
charge-injection device, 26
photodiode array, 24
Spacecraft images, 129, 390
Spatial frequency, 31
Spatial resolution, 352
Spatial transtormation, 115, 120-25, 129,
138
control grid interpolation, 123--25
general, 122
homogeneous coordinates, 120
polynomial warping, 123
simple, 120
specification by control points, 122
Spatially three-dimensional images, 564,
) 566-81
Spatially variant blurring, 397
Spatially variant restoration, 397403
Speckle interferometry, 398, 425
Spectrum, 186, 500
computation of, 262-64
matrix, 287
vector, 287, 419
Spectrum analyzer, 193
Spherical aberration, 357, 366
Spot, 454
analysis for threshold selection, 454
detection, 299
histogram, 455
noncircular and noisy, 457
profile function, 455-57
Spot position noise, 48
Stars, viewing of, 370, 398, 408, 412
Stationarity, local, 399
Statistical decision theory, 518
Statistical pattern recognition, 447, 513
Step function, 162, 267
Stereographic projection, 131
Stereometry, 585-90, 599
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Stereoscopic image display, 590-93, 599
Stereoscopic image pair, 590, 592
Stokseth, P, A., 577
Stopband, 210
Structural texture analysis, 501
Structured programming, 63
Structuring element, 471-73
Stultz, K. F., 416
Subband coding, 305, 318, 322,327
Subband signals, 327
Subsampling, 321, 324, 325, 327,336,417
Subset, 649
Successive energy reduction, 405
Superresolution, 403-08, 425
myth of, 408
Supervised training, 521, 535, 537
Surface fitting, 501, 504, 507
Surface normal vector, 598
SVD (see Singular value decomposition)
SVD transform, 297
Symmetric matrix, 284, 638
Symmetric transform, 234
Symmeltric wavelets, 342
System analysis, 371-83
System identification, 387, 408
calibration targets, 408
cross-correlation, 412
edge spread function, 410
frequency sweep targets, 410-12
line spread function, 409
sine wave targets, 409
System MTF, 375
System PSF, 376
System of equations, 642

Target vector, 529

Telescopes, 370, 398
Temporally variant blurring, 398
Test target, 38, 208, 368, 554
Texture analysis, 303, 499-502
Thermal wax transfer printers, 51

Index

Thickening, 475
Thinning, 473
Three-dimensional image processing,
563-99
computerized axial tomography, 564,
582-85
multispectral analysis, 547
optical sectioning, 566-69
shaded surface display, 565, 593-98
spatially three-dimensional images,
564, 56681
stereometry, 564, 585-90
stereoscopic display, 565, 590-93
Threshold area function, 71-73
Thresholding, 75, 452
adaptive, 452, 454
global, 452
gradient image, 462
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307,314, 318, 328
Transform domain filtering, 299
Transform image coding, 438
Transforms, 171, 281, 306
types of, 307, 308
Transient functions, 148, 208, 267
Transmittance, 28
Triangular filter, 208
Triangular pulse, 159, 274
Truncation, 266-70, 277
effects of, 269
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